- 相關(guān)推薦
高一下學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)歸納筆記
高一下學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)歸納筆記1
函數(shù)的性質(zhì):
函數(shù)的.單調(diào)性、奇偶性、周期性
單調(diào)性:定義:注意定義是相對(duì)與某個(gè)具體的區(qū)間而言。
判定方法有:定義法(作差比較和作商比較)
導(dǎo)數(shù)法(適用于多項(xiàng)式函數(shù))
復(fù)合函數(shù)法和圖像法。
應(yīng)用:比較大小,證明不等式,解不等式。
奇偶性:定義:注意區(qū)間是否關(guān)于原點(diǎn)對(duì)稱(chēng),比較f(x)與f(-x)的關(guān)系。f(x)-f(-x)=0f(x)=f(-x)f(x)為偶函數(shù);f(x)+f(-x)=0f(x)=-f(-x)f(x)為奇函數(shù)。
判別方法:定義法,圖像法,復(fù)合函數(shù)法
應(yīng)用:把函數(shù)值進(jìn)行轉(zhuǎn)化求解。
周期性:定義:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿(mǎn)足:f(x+T)=f(x),則T為函數(shù)f(x)的周期。
其他:若函數(shù)f(x)對(duì)定義域內(nèi)的任意x滿(mǎn)足:f(x+a)=f(x-a),則2a為函數(shù)f(x)的周期.
應(yīng)用:求函數(shù)值和某個(gè)區(qū)間上的函數(shù)解析式。
高一下學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)歸納筆記2
求動(dòng)點(diǎn)的軌跡方程的常用方法:求軌跡方程的方法有多種,常用的有直譯法、定義法、相關(guān)點(diǎn)法、參數(shù)法和交軌法等。
直譯法:直接將條件翻譯成等式,整理化簡(jiǎn)后即得動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法通常叫做直譯法。
定義法:如果能夠確定動(dòng)點(diǎn)的軌跡滿(mǎn)足某種已知曲線(xiàn)的定義,則可利用曲線(xiàn)的定義寫(xiě)出方程,這種求軌跡方程的方法叫做定義法。
相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿(mǎn)足的曲線(xiàn)方程,整理化簡(jiǎn)便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法。
參數(shù)法:當(dāng)動(dòng)點(diǎn)坐標(biāo)x、y之間的直接關(guān)系難以找到時(shí),往往先尋找x、y與某一變數(shù)t的.關(guān)系,得再消去參變數(shù)t,得到方程,即為動(dòng)點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做參數(shù)法。
交軌法:將兩動(dòng)曲線(xiàn)方程中的參數(shù)消去,得到不含參數(shù)的方程,即為兩動(dòng)曲線(xiàn)交點(diǎn)的軌跡方程,這種求軌跡方程的方法叫做交軌法。
高一下學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)歸納筆記3
函數(shù)的應(yīng)用
1、函數(shù)零點(diǎn)的概念:對(duì)于函數(shù),把使成立的實(shí)數(shù)叫做函數(shù)的零點(diǎn)。
2、函數(shù)零點(diǎn)的意義:函數(shù)的零點(diǎn)就是方程實(shí)數(shù)根,亦即函數(shù)的圖象與軸交點(diǎn)的橫坐標(biāo)。即:
方程有實(shí)數(shù)根函數(shù)的圖象與軸有交點(diǎn)函數(shù)有零點(diǎn).
3、函數(shù)零點(diǎn)的求法:
求函數(shù)的零點(diǎn):
(代數(shù)法)求方程的'實(shí)數(shù)根;
(幾何法)對(duì)于不能用求根公式的方程,可以將它與函數(shù)的圖象聯(lián)系起來(lái),并利用函數(shù)的性質(zhì)找出零點(diǎn).
4、二次函數(shù)的零點(diǎn):
二次函數(shù)。
1)△>0,方程有兩不等實(shí)根,二次函數(shù)的圖象與軸有兩個(gè)交點(diǎn),二次函數(shù)有兩個(gè)零點(diǎn)。
2)△=0,方程有兩相等實(shí)根(二重根),二次函數(shù)的圖象與軸有一個(gè)交點(diǎn),二次函數(shù)有一個(gè)二重零點(diǎn)或二階零點(diǎn)。
3)△<0,方程無(wú)實(shí)根,二次函數(shù)的圖象與軸無(wú)交點(diǎn),二次函數(shù)無(wú)零點(diǎn)。
【高一下學(xué)期數(shù)學(xué)重點(diǎn)知識(shí)歸納筆記】相關(guān)文章:
高二數(shù)學(xué)重點(diǎn)知識(shí)歸納筆記08-13
高一數(shù)學(xué)知識(shí)點(diǎn)重點(diǎn)總結(jié)歸納04-29
高二化學(xué)重點(diǎn)知識(shí)歸納筆記09-03
高一數(shù)學(xué)必修一知識(shí)點(diǎn)歸納筆記04-26
高一歷史重點(diǎn)知識(shí)點(diǎn)歸納總結(jié)02-12
高一數(shù)學(xué)下學(xué)期重點(diǎn)知識(shí)和公式總結(jié)11-22
高一數(shù)學(xué)必修二重點(diǎn)知識(shí)筆記09-03