《因式分解》教學(xué)設(shè)計
《因式分解》教學(xué)設(shè)計
教學(xué)目標(biāo):
1、進一步鞏固因式分解的概念; 2、鞏固因式分解常用的三種方法
3、選擇恰當(dāng)?shù)姆椒ㄟM行因式分解 4、應(yīng)用因式分解來解決一些實際問題
5、體驗應(yīng)用知識解決問題的樂趣
教學(xué)重點:靈活運用因式分解解決問題
教學(xué)難點:靈活運用恰當(dāng)?shù)囊蚴椒纸獾姆椒,拓展練?xí)2、3
教學(xué)過程:
一、創(chuàng)設(shè)情景
若a=101,b=99,求a2-b2的值?
利用因式分解往往能將一些復(fù)雜的運算簡單化,那么我們先來回顧一下什么是因式分解和怎樣來因式分解。
二、知識回顧
1、因式分解定義:把一個多項式化成幾個整式積的形式,這種變形叫做把這個多項式分解因式.
判斷下列各式哪些是因式分解?(讓學(xué)生先思考,教師提問講解,讓學(xué)生明確因式分解的概念以及與乘法的關(guān)系)
(1).x2-4y2=(x+2y)(x-2y) 因式分解 (2).2x(x-3y)=2x2-6xy 整式乘法
(3).(5a-1)2=25a2-10a+1 整式乘法 (4).x2+4x+4=(x+2)2 因式分解
(5).(a-3)(a+3)=a2-9 整式乘法 (6).m2-4=(m+4)(m-4) 因式分解
(7).2r=2(R+r) 因式分解
2、.規(guī)律總結(jié)(教師講解): 分解因式與整式乘法是互逆過程.
分解因式要注意以下幾點: (1).分解的對象必須是多項式.
(2).分解的結(jié)果一定是幾個整式的乘積的形式. (3).要分解到不能分解為止.
3、因式分解的方法
提取公因式法:-6x2+6xy+3x=-3x(2x-2y-1) 公因式的概念;公因式的求法
公式法: 平方差公式:a2-b2=(a+b)(a-b) 完全平方公式:a2+2ab+b2=(a+b)2
4、強化訓(xùn)練
試一試把下列各式因式分解:
(1).1-x2=(1+x)(1-x) (2).4a2+4a+1=(2a+1)2
(3).4x2-8x=4x(x-2) (4).2x2y-6xy2 =2xy(x-3y)
三、例題講解
例1、分解因式
(1)-x3y3+x2y+xy (2)6(x-2)+2x(2-x)
(3) (4)y2+y+
例2、分解因式
1、a3-ab2= 2、(a-b)(x-y)-(b-a)(x+y)= 3、(a+b) 2+2(a+b)-15=
4、-1-2a-a2= 5、x2-6x+9-y2 6、x2-4y2+x+2y=
例3、分解因式
1、72-2(13x-7) 2 2、8a2b2-2a4b-8b3
四、知識應(yīng)用
1、(4x2-9y2)(2x+3y) 2、(a2b-ab2)(b-a)
3、解方程:(1)x2=5x (2) (x-2)2=(2x+1)2
4、.若x=-3,求20x2-60x的值. 5、1993-199能被200整除嗎?還能被哪些整數(shù)整除?
五、拓展應(yīng)用
1.計算:765217-235217 解:765217-235217=17(7652-2352)=17(765+235)(765-235)
2、20042+2004被2005整除嗎?
3、若n是整數(shù),證明(2n+1)2-(2n-1)2是8的倍數(shù).
六、課堂小結(jié):今天你對因式分解又有哪些新的認識?
【《因式分解》教學(xué)設(shè)計】相關(guān)文章:
《標(biāo)牌設(shè)計》的教學(xué)設(shè)計03-14
《國殤》教學(xué)設(shè)計12-11
《賽馬》的教學(xué)設(shè)計05-21
國慶的教學(xué)設(shè)計03-19
《 It was there 》教學(xué)設(shè)計與說明03-19
映山紅的教學(xué)設(shè)計03-19
頤和園精選教學(xué)設(shè)計03-20