毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

實用文檔>眾數(shù)與中位數(shù)數(shù)學教案

眾數(shù)與中位數(shù)數(shù)學教案

時間:2024-08-16 20:25:38

眾數(shù)與中位數(shù)數(shù)學教案

眾數(shù)與中位數(shù)數(shù)學教案

眾數(shù)與中位數(shù)數(shù)學教案

  眾數(shù)與中位數(shù)數(shù)學教案

  一、教材分析

  A、教材的地位與作用:①本節(jié)教材是初三代數(shù)第十四章統(tǒng)計初步第二節(jié),它是上節(jié)平均數(shù)的延續(xù)。平均數(shù)、眾數(shù)及中位數(shù)都是描述一組數(shù)據(jù)的集中趨勢的特征數(shù),但描述的角度和適用范圍有所不同。本節(jié)教學使學生進一步體會用樣本估計總體的統(tǒng)計思想方法,形成運用數(shù)學知識解決簡單應(yīng)用問題的能力。學好本節(jié)課,也將為本章后繼內(nèi)容的學習打下良好的基礎(chǔ)。②本節(jié)內(nèi)容在中考命題中也占有重要地位,如:2003年河南中考選擇題16題.2000年河南中考選擇題19題,1997年河南中考選擇題3題,1996年河南中考填空題9題!2000一高英才杯” 選擇題3題。

  B.教學目標

  1、知識目標:

 、偈箤W生理解眾數(shù)與中位數(shù)的意義。

 、跁笠唤M數(shù)據(jù)的眾數(shù)和中位數(shù)。

  2、能力目標:培養(yǎng)學生的觀察能力、計算能力。

  3、德育目標:

 、倥囵B(yǎng)學生認真、耐心、細致的學習態(tài)度和學習習慣。

 、跐B透數(shù)學知識來源于生活,反過來又服務(wù)于生活的思想。

  C、重點·難點·疑點

  1.教學重點:定義的理解及求一組數(shù)據(jù)的眾數(shù)與中位數(shù)。

  2.教學難點:

  ①平均數(shù)、眾數(shù)、中位數(shù)這三數(shù)之間的區(qū)別與聯(lián)系。

 、谂紨(shù)個數(shù)據(jù)的中位數(shù)的求法。

  3.教學疑點:學生容易把一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù)的次數(shù)當做眾數(shù)。

  二、教法設(shè)計

  問題情景教學法

  三、教學過程

 、僭鯓忧笠唤M數(shù)據(jù)的平均數(shù)?

 、谄骄鶖(shù)與一組數(shù)據(jù)中的每個數(shù)據(jù)均有關(guān)系嗎?

  這節(jié)課,我們將進一步學習另兩個反映一組數(shù)據(jù)的集中趨勢的特征數(shù)——眾數(shù)和中位數(shù)。

  14。2眾數(shù)與中位數(shù)(課件)

  問題情景一:一家童鞋店在一段時間內(nèi)銷售了某種童鞋30雙,其中各種尺碼的鞋的銷售量如下表所示:

  問題情景二:某面包房,在一天內(nèi)銷售面包100個,各類面包銷售量如下表: 在這個問題里,如果你是鞋店老板,你最關(guān)心的是什么?

  定義:在一組數(shù)據(jù)中,出現(xiàn)次數(shù)最多的數(shù)據(jù)叫做這組數(shù)據(jù)的眾數(shù)。 在這個問題中,如果你是店主,你最關(guān)心的是什么?

  同時要強調(diào)眾數(shù)的功能,即“當一組數(shù)據(jù)中不少數(shù)據(jù)多次重復出現(xiàn)時,常用眾數(shù)來描述這組數(shù)據(jù)的集中趨勢”。

  注意:①.眾數(shù)是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的數(shù)據(jù),是一組數(shù)據(jù)中的原數(shù)據(jù),而不是相應(yīng)的次數(shù)。例如:問題一中眾數(shù)是(21厘米),不要把21厘米的鞋的銷售量11當作所求的眾數(shù)。

 、谝唤M數(shù)據(jù)中的眾數(shù)有時不只一個,如數(shù)據(jù)2、3、-1、2、1、3中,2和3都出現(xiàn)了2次,它們都是這組數(shù)據(jù)的眾數(shù)。

  例1、在一次英語口試中,20名學生的得分如下:

  70 80 100 60 80 70 90 50 80 70

  80 70 90 80 90 80 70 90 60 80

  求這次英語口試中學生得分的眾數(shù).

  請用觀察法找出這組數(shù)據(jù)中哪些數(shù)據(jù)出現(xiàn)的頻數(shù)較多,從而進一步找出它的眾數(shù);也可仿照問題一畫表格找出眾數(shù)。強調(diào)一下這個結(jié)論反映了得80分的學生最多。

  問題情景三:在初三數(shù)學競賽中,我班其中5名學生的成績從低分到高分排列名次是: 55 57 61 62 98,其中哪一個數(shù)據(jù)能用來描述這組數(shù)據(jù)的集中趨勢?

  觀察在這5個數(shù)據(jù)中,前4個數(shù)據(jù)的大小比較接近,最后1個數(shù)據(jù)與它們的差異較大。這時如果用其中最中間的數(shù)據(jù)61來描述這組數(shù)據(jù)的集中趨勢,可以不受個別數(shù)據(jù)較大變動的影響。

  中位數(shù)定義:將一組數(shù)據(jù)按大小依次排列,把處在最中間位置的一個數(shù)據(jù)(或最中間兩個數(shù)據(jù)的平均數(shù))叫做這組數(shù)據(jù)的中位數(shù)。

  注意:1.求中位數(shù)要將一組數(shù)據(jù)按大小順序,而不必計算,顧名思義,中位數(shù)就是位置處于最中間的一個數(shù)(或最中間的兩個數(shù)的平均數(shù)),排序時,從小到大或從大到小都可以。

  2.在數(shù)據(jù)個數(shù)為奇數(shù)的情況下,中位數(shù)是這組數(shù)據(jù)中的一個數(shù)據(jù);如情景三的中位數(shù)是61。但在數(shù)據(jù)個數(shù)為偶數(shù)的情況下,其中位數(shù)是最中間兩個數(shù)據(jù)的平均數(shù),它不一定與這組數(shù)據(jù)中的某個數(shù)據(jù)相等。

  例2 10名工人某天生產(chǎn)同一零件,生產(chǎn)的件數(shù)是:

  15 17 14 10 15 19 17 16 14 12

  求這一天10名工人生產(chǎn)的零件的中位數(shù).

  請觀察分析后,自解.

  例3在一次中學生田徑運動會上,參加男子跳高的17名運動員的成績?nèi)缦卤硭荆?/p>

  觀察表格,分析回答下列問題:①表中.共有多少個數(shù)據(jù)?其中哪個數(shù)據(jù)出現(xiàn)的次數(shù)最多?這組數(shù)據(jù)的眾數(shù)是什么?說明什么? 分別求這些運動員成績的眾數(shù),中位數(shù)與平均數(shù)(平均數(shù)的計算結(jié)果保留到小數(shù)點后第2位)。

 、诒砝锏17個數(shù)據(jù)可看成是按什么順序排列的?其中第幾個數(shù)是最中間的數(shù)據(jù)?這組數(shù)據(jù)的中位數(shù)是多少?說明什么?

 、劭蛇x用哪個公式求這組數(shù)據(jù)的平均數(shù)?所求得的平均數(shù)能說明什么?這樣分析例題,可使學生加深理解平均數(shù)、眾數(shù)、中位數(shù)的概念之間的聯(lián)系與區(qū)別,體會到這三個數(shù)在描述一組數(shù)據(jù)集中趨勢時的不同角度。

  補充練習1、已知一組數(shù)據(jù)10,10,x,8(由大到小排列)的中位數(shù)與平均數(shù)相等,求x值及這組數(shù)據(jù)的中位數(shù)。

  解:∵10,10,x,8的中位數(shù)與平均數(shù)相等

  ∴(10+x)=(10+10+x+8)

  ∴x=8,(10+x)=9

  ∴這組數(shù)據(jù)中的中位數(shù)是9。

  補充練習2、當5個整數(shù)從小到大排列,其中位數(shù)是4,如果這個數(shù)集的唯一眾數(shù)是6,則這5個整數(shù)可能的最大的和是( )

  A。21 B。22 C。23 D。24

  分析:設(shè)這5個整數(shù)按從小到大排列為a1,a2,a3,a4,a5,由于中位數(shù)是4,所以a3=4,又6是唯一眾數(shù),所以a4=a5=6,此時,a2最大只能取3,a1最大取2,故a1+a2+a3+a4+a5=2+3+4+6+6=21

  解:選(A)

  3、教材P159中1、2、3

  1。知識小結(jié):這節(jié)課我們學習了眾數(shù)、中位數(shù)的概念,了解了它們在描述一組數(shù)據(jù)集中趨勢時的不同角度和適用范圍。

  2。方法小結(jié):①眾數(shù)由所給數(shù)據(jù)可直接求出,(一組數(shù)據(jù)中的眾數(shù)可能不止一個,眾數(shù)是一組數(shù)據(jù)中出現(xiàn)的次數(shù)最多的數(shù)據(jù),而不是該數(shù)據(jù)出現(xiàn)的次數(shù)。如果有兩個數(shù)據(jù)出現(xiàn)的次數(shù)相同,并且比其他數(shù)據(jù)出現(xiàn)次數(shù)都多,那么這兩個數(shù)據(jù)都是這組數(shù)據(jù)的眾數(shù))。②求中位數(shù)時,首先要先排序(從小到大或從大到。缓笥嬎阒形粩(shù)的序號,分數(shù)據(jù)為奇數(shù)個與偶數(shù)個兩種來求。(既找出最中間的一個數(shù)據(jù)或最中間兩個數(shù)并算出它們的平均數(shù))。

  3。知識網(wǎng)絡(luò):平均數(shù)、眾數(shù)及中位數(shù)都是描述一組數(shù)據(jù)的集中趨勢的特征數(shù),但描述的角度和適用范圍有所不同。平均數(shù)的大小與一組數(shù)據(jù)里的每個數(shù)據(jù)均有關(guān)系,其中任何數(shù)據(jù)的變動都會相應(yīng)引起平均數(shù)的變動;眾數(shù)著眼于對各數(shù)據(jù)出現(xiàn)的頻數(shù)的考察,其大小只與這組數(shù)據(jù)中的部分數(shù)據(jù)有關(guān)。當一組數(shù)據(jù)中有不少數(shù)據(jù)多次重復出現(xiàn)時,其眾數(shù)往往是我們關(guān)心的一種統(tǒng)計量;中位數(shù)則僅與數(shù)據(jù)的排列位置有關(guān),某些數(shù)據(jù)的變動對它的中位數(shù)沒有影響。當一組數(shù)據(jù)中的個別數(shù)據(jù)變動較大時,可用它來描述其集中趨勢。

  教材P163A組1、2、3,B組。

【眾數(shù)與中位數(shù)數(shù)學教案】相關(guān)文章:

數(shù)學教案:圓的認識02-12

認識球體數(shù)學教案03-20

數(shù)學教案模版之數(shù)軸03-20

《秒的認識》數(shù)學教案(精選10篇)08-17

大班數(shù)學教案設(shè)計03-20

數(shù)學教案之確定位置03-20

大班數(shù)學教案貨幣的運用03-19

大班數(shù)學教案之認識球體03-20

命題及其關(guān)系數(shù)學教案設(shè)計03-20

《認識時分》優(yōu)秀數(shù)學教案(通用13篇)02-17

用戶協(xié)議