關(guān)于多項式除以單項式的教學(xué)設(shè)計(通用12篇)
作為一位優(yōu)秀的人民教師,往往需要進(jìn)行教學(xué)設(shè)計編寫工作,教學(xué)設(shè)計是實現(xiàn)教學(xué)目標(biāo)的計劃性和決策性活動。那么教學(xué)設(shè)計應(yīng)該怎么寫才合適呢?下面是小編收集整理的關(guān)于多項式除以單項式的教學(xué)設(shè)計,供大家參考借鑒,希望可以幫助到有需要的朋友。
多項式除以單項式的教學(xué)設(shè)計 1
重點、難點分析
重點是多項式除以單項式的法則及其應(yīng)用。多項式除以單項式,其基本方法與步驟是化歸為單項式除以單項式,結(jié)果仍是多項式,其項數(shù)與原多項式的項數(shù)相同。因此多項式除以單項式的運(yùn)算關(guān)鍵是將它轉(zhuǎn)化為單項式除法的運(yùn)算,再準(zhǔn)確應(yīng)用相關(guān)的運(yùn)算法則。
難點是理解法則導(dǎo)出的根據(jù)。根據(jù)除法是乘法的逆運(yùn)算可知,多項式除以單項式的運(yùn)算法則的實質(zhì)是把多項式除以單項式的的運(yùn)算轉(zhuǎn)化為單項式的`除法運(yùn)算。由于,故多項式除以單項式的法則也可以看做是乘法對加法的分配律的應(yīng)用。
教法建議
(1)多項式除以單項式運(yùn)算的實質(zhì)是把多項式除以單項式的運(yùn)算轉(zhuǎn)化為單項式的除法運(yùn)算,因此建議在學(xué)習(xí)本課知識之前對單項式的除法運(yùn)算進(jìn)行復(fù)習(xí)鞏固。
(2)多項式除以單項式所得商的項數(shù)與這個多項式的項數(shù)相同,不要漏項。
(3)要熟練地進(jìn)行多項式除以單項式的運(yùn)算,必須掌握它的基本運(yùn)算,冪的運(yùn)算性質(zhì)是整式乘除法的基礎(chǔ),只要抓住這關(guān)鍵的一步,才能準(zhǔn)確地進(jìn)行多項式除以單項式的運(yùn)算。
(4)符號仍是運(yùn)算中的重要問題,用多項式的每一項除以單項式時,要注意每一項的符號和單項式的符號。
教學(xué)設(shè)計示例
教學(xué)目標(biāo):
1.理解和掌握多項式除以單項式的運(yùn)算法則。
2.運(yùn)用多項式除以單項式的法則,熟練、準(zhǔn)確地進(jìn)行計算.
3.通過總結(jié)法則,培養(yǎng)學(xué)生的抽象概括能力.訓(xùn)練學(xué)生的綜合解題能力和計算能力.
4.培養(yǎng)學(xué)生耐心細(xì)致、嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維品質(zhì).
重點、難點:
1.多項式除以單項式的法則及其應(yīng)用.
2.理解法則導(dǎo)出的根據(jù)。
課時安排:
一課時.
教具學(xué)具:
投影儀、膠片.
學(xué)習(xí)要求
鞏固一元一次方程解法,加強(qiáng)應(yīng)用問題的訓(xùn)練,提高分析問題和解決問題能力。
課堂學(xué)習(xí)檢測
一、選擇題
1.籃球賽的組織者出售球票,需要付給售票處12%的酬金,如果組織者要在扣除酬金后,每張球票凈得12元,按精確到0.1元的要求,球票票價應(yīng)定為()。
(A)13.4元(B)13.5元(C)13.6元(D)13.7元
2.一商店把彩電按標(biāo)價的九折出售,仍可獲利20%,若該彩電的進(jìn)價是2400元,則彩電的標(biāo)價為()。
(A)3200元(B)3429元(C)2667元(D)3168元
3.某商店將彩電按原價提高40%,然后在廣告上寫“大酬賓,八折優(yōu)惠”,結(jié)果每臺彩電仍獲利270元,那么每臺彩電原價是()
(A)2150元(B)2200元(C)2250元(D)2300元
4.一個商店以每3盤16元的價格購進(jìn)一批錄音帶,又從另外一處以每4盤21元的價格購進(jìn)比前一批數(shù)量加倍的錄音帶。如果兩種合在一起以每3盤k元的價格全部出售可得到所投資的20%的收益,則k值等于()
(A)17(B)18(C)19(D)20
二、解答題
5.某城市有50萬戶居民,平均每戶有兩個水龍頭,估計其中有1%的水龍頭漏水。若每個漏水龍頭1秒鐘漏一滴水,10滴水約重1克,試問該城市一年因此而浪費(fèi)多少噸水(一年按365天計算)。
多項式除以單項式的教學(xué)設(shè)計 2
教學(xué)過程:
1.復(fù)習(xí)導(dǎo)入
(l)用式子表示乘法分配律.
(2)單項式除以單項式法則是什么?
(3)計算:
、
、
、
(4)填空:
規(guī)律:多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.
2.講授新課
例1計算:
(1)(2)
解:(1)原式
(2)原式
注意:(l)多項式除以單項式,商式與被除式的項數(shù)相同,不可丟項,如(l)中容易丟掉最后一項.
(2)要求學(xué)生說出式子每步變形的依據(jù).
(3)讓學(xué)生養(yǎng)成檢驗的習(xí)慣,利用乘除逆運(yùn)算,檢驗除的`對不對.
例2化簡:
解:原式
說明:注意弄清題中運(yùn)算順序,正確運(yùn)用有關(guān)法則、公式。
練習(xí):(1)P1501,2,。
(2)錯例辯析:
有兩個錯誤:第一,丟項,被除式有三項,商式只有二項,丟了最后一項1;第二項是符號上錯誤,商式第一項的符號為“-”,正確答案為。
3.小結(jié)
1.多項式除以單項式的法則是什么?
2.運(yùn)用該法則應(yīng)注意什么?
正確地把多項式除以單項式問題轉(zhuǎn)化為單項式除以單項式問題。計算不可丟項,分清“約掉”與“消掉”的區(qū)別:“約掉”對乘除法則言,不減項;“消掉”對加減法而言,減項。
4.作業(yè)
P152A組1,2。
B組1,2。
多項式除以單項式的教學(xué)設(shè)計 3
教學(xué)目標(biāo)
1、使學(xué)生能把簡單的與數(shù)量有關(guān)的詞語用代數(shù)式表示出來;
2、初步培養(yǎng)學(xué)生觀察、分析和抽象思維的能力
教學(xué)重點和難點
重點:把實際問題中的數(shù)量關(guān)系列成代數(shù)式?
難點:正確理解題意,從中找出數(shù)量關(guān)系里的運(yùn)算順序并能準(zhǔn)確地寫成代數(shù)式???
教學(xué)手段
現(xiàn)代課堂教學(xué)手段
教學(xué)方法
啟發(fā)式教學(xué)
教學(xué)過程
(一)、從學(xué)生原有的認(rèn)知結(jié)構(gòu)提出問題
1、用代數(shù)式表示乙數(shù):(投影)
(1)乙數(shù)比x大5;(x+5)
(2)乙數(shù)比x的2倍小3;(2x-3)
(3)乙數(shù)比x的倒數(shù)小7;(-7)
(4)乙數(shù)比x大16%?((1+16%)x)
(應(yīng)用引導(dǎo)的方法啟發(fā)學(xué)生解答本題)
2、在代數(shù)里,我們經(jīng)常需要把用數(shù)字或字母敘述的一句話或一些計算關(guān)系式,列成代數(shù)式,正如上面的練習(xí)中的問題一樣,這一點同學(xué)們已經(jīng)比較熟悉了,但在代數(shù)式里也常常需要把用文字?jǐn)⑹龅囊痪湓捇蛴嬎汴P(guān)系式(即日常生活語言)列成代數(shù)式?本節(jié)課我們就來一起學(xué)習(xí)這個問題?
(二)、講授新課
例1用代數(shù)式表示乙數(shù):
(1)乙數(shù)比甲數(shù)大5;(2)乙數(shù)比甲數(shù)的2倍小3;
(3)乙數(shù)比甲數(shù)的倒數(shù)小7;(4)乙數(shù)比甲數(shù)大16%?
分析:要確定的乙數(shù),既然要與甲數(shù)做比較,那么就只有明確甲數(shù)是什么之后,才能確定乙數(shù),因此寫代數(shù)式以前需要把甲數(shù)具體設(shè)出來,才能解決欲求的乙數(shù)?
解:設(shè)甲數(shù)為x,則乙數(shù)的代數(shù)式為
(1)x+5(2)2x-3;(3)-7;(4)(1+16%)x?
(本題應(yīng)由學(xué)生口答,教師板書完成)
最后,教師需指出:第4小題的答案也可寫成x+16%x?
例2用代數(shù)式表示:
(1)甲乙兩數(shù)和的2倍;
(2)甲數(shù)的與乙數(shù)的的差;
(3)甲乙兩數(shù)的平方和;
(4)甲乙兩數(shù)的和與甲乙兩數(shù)的差的積;
(5)乙甲兩數(shù)之和與乙甲兩數(shù)的差的積?
分析:本題應(yīng)首先把甲乙兩數(shù)具體設(shè)出來,然后依條件寫出代數(shù)式?
解:設(shè)甲數(shù)為a,乙數(shù)為b,則
(1)2(a+b);(2)a-b;(3)a2+b2;
(4)(a+b)(a-b);(5)(a+b)(b-a)或(b+a)(b-a)?
(本題應(yīng)由學(xué)生口答,教師板書完成)
此時,教師指出:a與b的和,以及b與a的和都是指(a+b),這是因為加法有交換律?但a與b的差指的是(a-b),而b與a的差指的是(b-a)?兩者明顯不同,這就是說,用文字語言敘述的句子里應(yīng)特別注意其運(yùn)算順序?
例3用代數(shù)式表示:
(1)被3整除得n的數(shù);
(2)被5除商m余2的數(shù)?
分析本題時,可提出以下問題:
(1)被3整除得2的數(shù)是幾?被3整除得3的數(shù)是幾?被3整除得n的數(shù)如何表示?
(2)被5除商1余2的數(shù)是幾?如何表示這個數(shù)?商2余2的數(shù)呢?商m余2的數(shù)呢?
解:(1)3n;(2)5m+2?
(這個例子直接為以后讓學(xué)生用代數(shù)式表示任意一個偶數(shù)或奇數(shù)做準(zhǔn)備)?
例4設(shè)字母a表示一個數(shù),用代數(shù)式表示:
(1)這個數(shù)與5的和的3倍;(2)這個數(shù)與1的差的;
(3)這個數(shù)的5倍與7的和的一半;(4)這個數(shù)的平方與這個數(shù)的的和?
分析:啟發(fā)學(xué)生,做分析練習(xí)?如第1小題可分解為“a與5的和”與“和的3倍”,先將“a與5的和”例成代數(shù)式“a+5”再將“和的3倍”列成代數(shù)式“3(a+5)”?
解:(1)3(a+5);(2)(a-1);(3)(5a+7);(4)a2+a?
(通過本例的講解,應(yīng)使學(xué)生逐步掌握把較復(fù)雜的數(shù)量關(guān)系分解為幾個基本的數(shù)量關(guān)系,培養(yǎng)學(xué)生分析問題和解決問題的能力?)
例5設(shè)教室里座位的行數(shù)是m,用代數(shù)式表示:
(1)教室里每行的座位數(shù)比座位的行數(shù)多6,教室里總共有多少個座位?
(2)教室里座位的行數(shù)是每行座位數(shù)的,教室里總共有多少個座位?
分析本題時,可提出如下問題:
(1)教室里有6行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(2)教室里有m行座位,如果每行都有7個座位,那么這個教室總共有多少個座位呢?
(3)通過上述問題的解答結(jié)果,你能找出其中的規(guī)律嗎?(總座位數(shù)=每行的座位數(shù)×行數(shù))
解:(1)m(m+6)個;(2)(m)m個?
(三)、課堂練習(xí)
1?設(shè)甲數(shù)為x,乙數(shù)為y,用代數(shù)式表示:(投影)
(1)甲數(shù)的2倍,與乙數(shù)的的和;(2)甲數(shù)的與乙數(shù)的3倍的差;
(3)甲乙兩數(shù)之積與甲乙兩數(shù)之和的`差;(4)甲乙的差除以甲乙兩數(shù)的積的商?
2?用代數(shù)式表示:
(1)比a與b的和小3的數(shù);(2)比a與b的差的一半大1的數(shù);
(3)比a除以b的商的3倍大8的數(shù);(4)比a除b的商的3倍大8的數(shù)?
3?用代數(shù)式表示:
(1)與a-1的和是25的數(shù);(2)與2b+1的積是9的數(shù);
(3)與2x2的差是x的數(shù);(4)除以(y+3)的商是y的數(shù)?
〔(1)25-(a-1);(2);(3)2x2+2;(4)y(y+3)?〕
(四)、師生共同小結(jié)
首先,請學(xué)生回答:
1?怎樣列代數(shù)式?2?列代數(shù)式的關(guān)鍵是什么?
其次,教師在學(xué)生回答上述問題的基礎(chǔ)上,指出:對于較復(fù)雜的數(shù)量關(guān)系,應(yīng)按下述規(guī)律列代數(shù)式:
(1)列代數(shù)式,要以不改變原題敘述的數(shù)量關(guān)系為準(zhǔn)(代數(shù)式的形式不唯一);
(2)要善于把較復(fù)雜的數(shù)量關(guān)系,分解成幾個基本的數(shù)量關(guān)系;
(3)把用日常生活語言敘述的數(shù)量關(guān)系,列成代數(shù)式,是為今后學(xué)習(xí)列方程解應(yīng)用題做準(zhǔn)備?要求學(xué)生一定要牢固掌握
練習(xí)設(shè)計
1、用代數(shù)式表示:
(1)體校里男生人數(shù)占學(xué)生總數(shù)的60%,女生人數(shù)是a,學(xué)生總數(shù)是多少?
(2)體校里男生人數(shù)是x,女生人數(shù)是y,教練人數(shù)與學(xué)生人數(shù)之比是1∶10,教練人數(shù)是多?
2、已知一個長方形的周長是24厘米,一邊是a厘米,
求:(1)這個長方形另一邊的長;(2)這個長方形的面積?
板書設(shè)計
§3.2代數(shù)式
(一)知識回顧(三)例題解析(五)課堂小結(jié)
例1、例2
(二)觀察發(fā)現(xiàn)(四)課堂練習(xí)練習(xí)設(shè)計
教學(xué)后記
由于列代數(shù)式的內(nèi)容既是本章的重點,又是本書的重點,同時也是學(xué)生學(xué)習(xí)過程中的一個難點,故在設(shè)計其教學(xué)過程時,注意所選例題及練習(xí)題由易到難,循序漸進(jìn),使學(xué)生逐步地掌握好這一內(nèi)容,為今后的學(xué)習(xí)打下一個良好的基礎(chǔ)?同時,也使學(xué)生的抽象思維能力得到初的培養(yǎng)?
多項式除以單項式的教學(xué)設(shè)計 4
教材分析:
單項式的乘法是浙教版七年級下冊第五章第二節(jié)的內(nèi)容,主要學(xué)習(xí)單項式乘以單項式、單項式乘以多項式的法則,是建立在學(xué)生學(xué)習(xí)過有理數(shù)的乘法和冪的運(yùn)算性質(zhì)上的,同時為接下來學(xué)習(xí)多項式的乘法奠定堅實的基礎(chǔ),因此單項式的乘法起到承前啟后的作用,在整式乘法中占有獨特的地位。
學(xué)情分析
本節(jié)課的說課對象是7年級的學(xué)生,七年級的學(xué)生已經(jīng)學(xué)習(xí)過單項式的概念,會用合并同類項法則進(jìn)行整式的加減運(yùn)算;熟練掌握了數(shù)的乘法運(yùn)算;以及學(xué)習(xí)了上一節(jié)的同底數(shù)冪的乘法運(yùn)算。這對本節(jié)課所要學(xué)習(xí)的單項式的乘法做了鋪墊。
基于以上的教材分析和學(xué)情分析我指定了如下的教學(xué)三維目標(biāo)教學(xué)三維目標(biāo)
(1)知識與技能目標(biāo)
1.口述單項式與單項式的,單項式與多項式的乘法法則;
2.舉出單項式與單項式、單項式與多項式乘法實例。
3.對給出的單項式與單項式、單項式與多項式,能夠快速準(zhǔn)確的進(jìn)行運(yùn)算
(2)過程與方法目標(biāo)
1.引導(dǎo)學(xué)生運(yùn)用乘法交換律與結(jié)合律,以及同底數(shù)冪的乘法法則來總結(jié)出單項式與單項式的.乘法法則。
2.小組討論合作學(xué)習(xí),類比有理數(shù)的乘法分配律,使學(xué)生自己得出單項式與多項式乘法法則。
(3)情感態(tài)度與價值觀目標(biāo)
1.體會乘法交換律、結(jié)合律和分配律的作用
2.利用運(yùn)算律將問題轉(zhuǎn)化,使學(xué)生獲得成就感,培養(yǎng)學(xué)習(xí)興趣
教學(xué)重點:
單項式與單項式、單項式與多項式的乘法法則
教學(xué)難點:
多種運(yùn)算法則的綜合運(yùn)用(有理數(shù)的乘法、同底數(shù)冪的乘法、冪的乘方、積的乘方)
教學(xué)方法:
下面,為了講清重點、難點,使學(xué)生能達(dá)到本節(jié)課設(shè)定的目標(biāo),我制定了如下的教學(xué)方法:
新課標(biāo)認(rèn)為,應(yīng)當(dāng)讓學(xué)生在具體生動的情境中學(xué)習(xí)數(shù)學(xué)。我采用測量廣場面積為例子,引導(dǎo)學(xué)生探索單項式乘法這一新知,然后師生互動,根據(jù)例子,讓學(xué)生總結(jié)出單項式乘法的法則,使學(xué)生更好的接受新知,理解新知。在課堂練習(xí)中,采用師生共同練習(xí)的方式,強(qiáng)化思維與解題思路,在課后作業(yè)中,采用練習(xí)法來鞏固知識、分層布置作業(yè),因材施教。掌握基礎(chǔ)性知識與技能,積極培養(yǎng)學(xué)生求知的興趣。
教學(xué)過程:
一、回顧舊知
1.回顧單項式的概念,讓學(xué)生列舉出幾個簡單的單項式
2.溫習(xí)同底數(shù)冪的乘法運(yùn)算am?an?am?n,?amam?n,?a?ban?bn nn
二、創(chuàng)設(shè)情景
1.(PPT展示)一位旅行者用步長測量某廣場的面積:他先從南走到北,記下所走的步數(shù)為1000步;再從東走到西,記下所走的步數(shù)為600步,然后根據(jù)自己的步長來估算廣場的面積。
問:(1)若步長用a m表示,請用含a的代數(shù)式表示廣場的面積?
1000a?600a
(2)若步長為0.8m,那么廣場的面積為多少?
1000 0.8 600 0.8
引導(dǎo)學(xué)生對第二個算式進(jìn)行變形,教師提示運(yùn)用乘法的交換律與結(jié)合律,學(xué)生容易得出(1000 600) (0.8 0.8),在追問學(xué)生能不能運(yùn)用同底數(shù)冪的乘法在進(jìn)行整理,教師引導(dǎo)寫出(1000 600) (0.82)。重新回到第一問,看看能不能類比寫出(1)式的計算結(jié)果。
【設(shè)計意圖】使學(xué)生運(yùn)用乘法交換律與結(jié)合律以及同底數(shù)冪的乘法來初步進(jìn)行運(yùn)算
三、練一練
請2位學(xué)生到黑板進(jìn)行計算,其余學(xué)生在草稿紙上運(yùn)算。
若學(xué)生仍不熟練,在請同學(xué)做書本上P121課內(nèi)練習(xí)T1的(1)(3)
【設(shè)計意圖】鞏固學(xué)生單項式的乘法運(yùn)算,并熟練掌握計算技巧。
四、合作學(xué)習(xí)
(10min)
(1)(b-2m) a
ab-2am
(3)單項式與多項式相乘,就是單項式去乘多項式的每一項,再把所得的積相加。
【設(shè)計意圖】由單項式相乘,推導(dǎo)出多項式相乘,讓學(xué)生自我體會發(fā)現(xiàn)規(guī)律的成就感。
五、試一試
列舉出書中的多項式乘法運(yùn)算
【設(shè)計意圖】不僅是對單項式乘法的回顧,更是對單項式乘以多項式的練習(xí)。
六、歸納小結(jié)
學(xué)生闡述本節(jié)課學(xué)習(xí)的知識與收獲,教師引導(dǎo)學(xué)生復(fù)述法則
【設(shè)計意圖】教師引導(dǎo)完學(xué)生學(xué)習(xí)知識后,學(xué)生能夠總結(jié)出所學(xué)知識,說明學(xué)生掌握情況良好,也體現(xiàn)出了學(xué)生課堂主體的地位。
七、布置作業(yè)
課后作業(yè)A題必做,B題選做,有興趣的同學(xué)完成設(shè)計題
【設(shè)計意圖】針對不同學(xué)生的情況,我分層布置作業(yè),體現(xiàn)因材施教,調(diào)動同學(xué)的積極性。
以上就是我對本節(jié)課的理解。
多項式除以單項式的教學(xué)設(shè)計 5
一、內(nèi)容簡介
本節(jié)課的主題:通過一系列的探究活動,引導(dǎo)學(xué)生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。
關(guān)鍵信息:
1、以教材作為出發(fā)點,依據(jù)《數(shù)學(xué)課程標(biāo)準(zhǔn)》,引導(dǎo)學(xué)生體會、參與科學(xué)探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關(guān)系。通過學(xué)生自主、獨立的發(fā)現(xiàn)問題,對可能的答案做出假設(shè)與猜想,并通過多次的檢驗,得出正確的結(jié)論。學(xué)生通過收集和處理信息、表達(dá)與交流等活動,獲得知識、技能、方法、態(tài)度特別是創(chuàng)新精神和實踐能力等方面的發(fā)展。
2、用標(biāo)準(zhǔn)的數(shù)學(xué)語言得出結(jié)論,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)習(xí)態(tài)度和方法。
二、學(xué)習(xí)者分析:
1、在學(xué)習(xí)本課之前應(yīng)具備的基本知識和技能:
、偻愴椀亩x。
、诤喜⑼愴椃▌t
、鄱囗検匠艘远囗検椒▌t。
2、學(xué)習(xí)者對即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:
在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。這節(jié)課的目的就是讓學(xué)生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應(yīng)用方法。
三、教學(xué)/學(xué)習(xí)目標(biāo)及其對應(yīng)的課程標(biāo)準(zhǔn):
。ㄒ唬┙虒W(xué)目標(biāo):
1、經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號感和推力能力。
2、會推導(dǎo)完全平方公式,并能運(yùn)用公式進(jìn)行簡單的計算。
。ǘ┲R與技能:經(jīng)歷從具體情境中抽象出符號的過程,認(rèn)識有理數(shù)、實數(shù)、代數(shù)式、防城、不等式、函數(shù);掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、防城、不等式、函數(shù)等進(jìn)行描述。
(三)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學(xué)問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的'差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗。
。ㄋ模┣楦信c態(tài)度:敢于面對數(shù)學(xué)活動中的困難,并有獨立克服困難
和運(yùn)用知識解決問題的成功體驗,有學(xué)好數(shù)學(xué)的自信心;并尊重與理解他人的見解;能從交流中獲益。
四、教育理念和教學(xué)方式:
1、教師是學(xué)生學(xué)習(xí)的組織者、促進(jìn)者、合作者:學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動的、富有個性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。
教學(xué)是師生交往、積極互動、共同發(fā)展的過程。當(dāng)學(xué)生迷路的時候,教師不輕易告訴方向,而是引導(dǎo)他怎樣去辨明方向;當(dāng)學(xué)生登山畏懼了的時候,教師不是拖著他走,而是喚起他內(nèi)在的精神動力,鼓勵他不斷向上攀登。
2、采用“問題情景—探究交流—得出結(jié)論—強(qiáng)化訓(xùn)練”的模式展開教學(xué)。
3、教學(xué)評價方式:
(1)通過課堂觀察,關(guān)注學(xué)生在觀察、總結(jié)、訓(xùn)練等活動中的主
動參與程度與合作交流意識,及時給與鼓勵、強(qiáng)化、指導(dǎo)和矯正。
。2)通過判斷和舉例,給學(xué)生更多機(jī)會,在自然放松的狀態(tài)下,
揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學(xué)情,調(diào)查教學(xué)。
。3)通過課后訪談和作業(yè)分析,及時查漏補(bǔ)缺,確保達(dá)到預(yù)期的教學(xué)效果。
五、教學(xué)媒體:
多媒體
六、教學(xué)和活動過程:
教學(xué)過程設(shè)計如下:
〈一〉、提出問題
[引入]同學(xué)們,前面我們學(xué)習(xí)了多項式乘多項式法則和合并同類項法則,通過運(yùn)算下列四個小題,你能總結(jié)出結(jié)果與多項式中兩個單項式的關(guān)系嗎?
。2m+3n)2= ,(—2m—3n)2= ,
。2m—3n)2= ,(—2m+3n)2= 。
〈二〉、分析問題
1、[學(xué)生回答]分組交流、討論
。2m+3n)2=4m2+12mn+9n2,(—2m—3n)2=4m2+12mn+9n2,
(2m—3n)2=4m2—12mn+9n2,(—2m+3n)2=4m2—12mn+9n2。
(1)原式的特點。
。2)結(jié)果的項數(shù)特點。
(3)三項系數(shù)的特點(特別是符號的特點)。
(4)三項與原多項式中兩個單項式的關(guān)系。
2、[學(xué)生回答]總結(jié)完全平方公式的語言描述:
兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數(shù)差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學(xué)生回答]完全平方公式的數(shù)學(xué)表達(dá)式:
。╝+b)2=a2+2ab+b2;
(a—b)2=a2—2ab+b2。
〈三〉、運(yùn)用公式,解決問題
1、口答:(搶答形式,活躍課堂氣氛,激發(fā)學(xué)生的學(xué)習(xí)積極性)
。╩+n)2= ,(m—n)2= ,
。ā猰+n)2= ,(—m—n)2= ,
(a+3)2= ,(—c+5)2= ,
。ā7—a)2= ,(0.5—a)2= 。
2、判斷:
()①(a—2b)2=a2—2ab+b2
。ǎ冢2m+n)2=2m2+4mn+n2
。ǎ郏ā猲—3m)2=n2—6mn+9m2
。ǎ埽5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a—0.2b)2=5a2—5ab+0.04b2
。ǎ蓿ā猘—2b)2=(a+2b)2
()⑦(2a—4b)2=(4a—2b)2
。ǎ啵ā5m+n)2=(—n+5m)2
3、小試牛刀
、伲▁+y)2= ;②(—y—x)2= ;
、郏2x+3)2= ;④(3a—2)2= ;
、荩2x+3y)2= ;⑥(4x—5y)2= ;
、撸0.5m+n)2= ;⑧(a—0.6b)2= 。
〈四〉、[學(xué)生小結(jié)]
你認(rèn)為完全平方公式在應(yīng)用過程中,需要注意那些問題?
(1)公式右邊共有3項。
。2)兩個平方項符號永遠(yuǎn)為正。
。3)中間項的符號由等號左邊的兩項符號是否相同決定。
。4)中間項是等號左邊兩項乘積的2倍。
〈五〉、冒險島:
(1)(—3a+2b)2=
。2)(—7—2m)2=
(3)(—0.5m+2n)2=
。4)(3/5a—1/2b)2=
。5)(mn+3)2=
。6)(a2b—0.2)2=
。7)(2xy2—3x2y)2=
(8)(2n3—3m3)2=
〈六〉、學(xué)生自我評價
[小結(jié)]通過本節(jié)課的學(xué)習(xí),你有什么收獲和感悟?
本節(jié)課,我們自己通過計算、分析結(jié)果,總結(jié)出了完全平方公式。在知識探索的過程中,同學(xué)們積極思考,大膽探索,團(tuán)結(jié)協(xié)作共同取得了進(jìn)步。
〈七〉[作業(yè)]P34隨堂練習(xí)P36習(xí)題
多項式除以單項式的教學(xué)設(shè)計 6
教學(xué)目標(biāo):
1.理解和掌握多項式除以單項式的運(yùn)算法則。
2.運(yùn)用多項式除以單項式的法則,熟練、準(zhǔn)確地進(jìn)行計算.
3.通過總結(jié)法則,培養(yǎng)學(xué)生的抽象概括能力.訓(xùn)練學(xué)生的綜合解題能力和計算能力.
4.培養(yǎng)學(xué)生耐心細(xì)致、嚴(yán)謹(jǐn)?shù)臄?shù)學(xué)思維品質(zhì).
重點、難點:
1.多項式除以單項式的法則及其應(yīng)用.
2.理解法則導(dǎo)出的根據(jù)。
課時安排:
一課時.
教具學(xué)具:
投影儀、膠片.
教學(xué)過程:
1.復(fù)習(xí)導(dǎo)入
(l)用式子表示乘法分配律.
。2)單項式除以單項式法則是什么?
(3)計算:
、
②
、
(4)填空:
規(guī)律:多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加.
2.講授新課
例1計算:
。1)
。2)
解:(1)原式
。2)原式
注意:(l)多項式除以單項式,商式與被除式的.項數(shù)相同,不可丟項,如(l)中容易丟掉最后一項.
。2)要求學(xué)生說出式子每步變形的依據(jù).
。3)讓學(xué)生養(yǎng)成檢驗的習(xí)慣,利用乘除逆運(yùn)算,檢驗除的對不對.
例2化簡:
解:原式
說明:注意弄清題中運(yùn)算順序,正確運(yùn)用有關(guān)法則、公式。
練習(xí):(1)P150 1,2。
。2)錯例辯析:
有兩個錯誤:第一,丟項,被除式有三項,商式只有二項,丟了最后一項1;第二項是符號上錯誤,商式第一項的符號為“-”,正確答案為
。
3.小結(jié)
1.多項式除以單項式的法則是什么?
2.運(yùn)用該法則應(yīng)注意什么?
正確地把多項式除以單項式問題轉(zhuǎn)化為單項式除以單項式問題。計算不可丟項,分清“約掉”與“消掉”的區(qū)別:“約掉”對乘除法則言,不減項;“消掉”對加減法而言,減項。
4.作業(yè)
P152 A組1,2。
B組1,2。
今天的內(nèi)容就介紹到這里了。
多項式除以單項式的教學(xué)設(shè)計 7
〖教學(xué)目標(biāo)〗
1、經(jīng)歷探索多項式的乘法運(yùn)算法則的過程,掌握多項式與多項式相乘的法則。
2、會運(yùn)用單項式與單項式,單項式與多項式,多項式與多項式相乘的法則,化簡整式。
3、會用多項式的乘法解決簡單的實際問題。
〖教學(xué)重點與難點〗
教學(xué)重點:多項式與多項式相乘的運(yùn)算。
教學(xué)難點:例2包含了多種運(yùn)算,過程比較復(fù)雜是本節(jié)的難點。
〖教學(xué)過程〗
一、創(chuàng)設(shè)情境,引出課題
小明找來一張鉛畫紙包數(shù)學(xué)課本,已知課本長a厘米,寬b厘米,厚c厘米,小明想將課本封面與封底的每一邊都包進(jìn)去m厘米,問如果你是小明你會在鉛畫紙上裁下一塊多大面積的長方形?
二、引出新知,探究示例
1、合作探索學(xué)習(xí):有一家廚房的平面布局如圖1
。1)請用三種不同的方法表示廚房的總面積。
(2)這三種不同的方法表示的`面積應(yīng)當(dāng)相等,你能用運(yùn)算律解釋嗎?
(3)通過上面的討論,你能總結(jié)出單項式與多項式相乘的運(yùn)算規(guī)律嗎?
(讓學(xué)生以同桌合作的形式進(jìn)行探索,然后表達(dá)交流)
答:(1)總面積:(a+n)(b+m);a(b+m)+n(b+m)或b(a+n)+m(a+n);ab+am+nb+nm
(2)總面積相等,由此可得到(a+n)(b+m)=a(b+m)+n(b+m)……①
=ab+am+nb+nm……②
第①步運(yùn)用分配律把(b+m)看成一個數(shù),第②步再運(yùn)用分配律。
(3)由(a+n)(b+m)=ab+am+nb+nm師生共同總結(jié)得出多項式與多項式相乘的法則:
。▽W(xué)生歸納,教師板書)
2、運(yùn)用新知,計算例題
例1:計算
。1)(x+y)(a+2b)(2)(3x—1)(x+3)(3)(x—1)2
解:(1)(x+y)(a+2b)=x?a+x?(2b)+y?a+y?(2b)=ax+2bx+ay+2by
。2)(3x—1)(x+3)=3x2+9x—x—3=3x2+8x—3
(3)(x—1)2=(x—1)(x—1)=x2—x—x+1=x2—2x+1
教師在示范過程中引導(dǎo)學(xué)生注意這三題都按多項式相乘的法則進(jìn)行,運(yùn)算過程中注意符號,防止漏乘,結(jié)果要合并同類項。
反饋練習(xí):課內(nèi)練習(xí)1
例2,先化簡,再求值:(2a—3)(3a+1)—ba(a—4),其中a=
解:(2a—3)(3a+1)—ba(a—4)=6a2+2a—9a—3—6a2+24a=17a—3
當(dāng)a=時,原式=17a—3=17×()—3=—19—3=—22
注意的幾點:(1)必須先化簡,再求值,注意符號及解題格式。
(2)當(dāng)代入的是一個負(fù)數(shù)時,添上括號。
。3)在運(yùn)算過程中,把帶分?jǐn)?shù)化為假分?jǐn)?shù)來計算。
反饋練習(xí):1、計算當(dāng)y=—2時,(3y+2)(y—4)—(y—2)(y—3)的值。
2、課內(nèi)練習(xí)2、3。
三、分層訓(xùn)練,能力升級
1、填空
(1)(2x—1)(x—1)=
。2)x(x2—1)—(x+1)(x2+1)=
。3)若(x—a)(x+2)=x2—6x—16,則a=
。4)方程y(y—1)—(y—2)(y+3)=2的解為
2、某地區(qū)有一塊原長m米,寬a米的長方形林區(qū)增長了200米,加寬了15米,則現(xiàn)在這塊地的面積為平方米。
3、某人以一年期的定期儲蓄把2000元錢存入銀行,當(dāng)年的年利率為x,第二年的年利率減少10%,則第二年到期時他的本利和為多少元?
四、小結(jié)
讓學(xué)生談?wù)勍ㄟ^這節(jié)課的學(xué)習(xí),有哪些收獲與疑問?教師及時總結(jié)內(nèi)容并解答疑惑。
五、布置作業(yè)
課本的分層作業(yè)題。
多項式除以單項式的教學(xué)設(shè)計 8
學(xué)習(xí)目標(biāo)
1、經(jīng)歷探索多項式乘法法則的過程,理解多項式乘法法則。
2、學(xué)會用多項式乘法法則進(jìn)行計算。
3、要有用幾何圖形理解代數(shù)知識的能力和復(fù)雜問題轉(zhuǎn)化為簡單問題的轉(zhuǎn)化思想。
學(xué)習(xí)重難點
重點是掌握多項式的乘法法則并加以運(yùn)用。
難點是理解多項式乘法法則的推導(dǎo)過程和運(yùn)用法則進(jìn)行計算。
教學(xué)過程設(shè)計
看一看
認(rèn)真閱讀教材,記住以下知識:
1、多項式乘法的法則:
2、歸納易錯點:
做一做:
1.計算:
(1)(a+2b)(a-b)= ;
(2)(3a-2)(2a+5)= ;
(3)(x-3)(3x-4)= ;
(4)(3x-y)(x+2y)= .
2.計算:(4x2-2xy+y2)(2x+y).
3.計算(a-b)(a-b)其結(jié)果為()
A.a2-b2B.a2+b2
C.a2-2ab+b2D.a2-2ab-b2
4.(x+a)(x-3)的積的一次項系數(shù)為零,則a的值是()
A.1B.2C.3D.4
5.下面計算中,正確的是()
A.(m-1)(m-2)=m2-3m-2
B.(1-2a)(2+a)=2a2-3a+2
C.(x+y)(x-y)=x2-y2
D.(x+y)(x+y)=x2+y2
6.如果(x+3)(x+a)=x2-2x-15,則a等于()
A.2B.-8C.-12D.-5
想一想
你還有哪些地方不是很懂?請寫出來。
.
預(yù)習(xí)展示:
一、計算(1)(x+y)(a+2b)
(2)(3x-1)(x+3)
二、先化簡,再求值:
(2a-3)(3a+1)-6a(a-4)其中a=2/17
應(yīng)用探究
計算
(1)(a+b)(a-b)
(2)(a+b)2
(3)(a+b)(a2-ab+b2)
(4)(a+b+c)(c+d+e)
拓展提高
1.當(dāng)y為何值時,(-2y+1)與(2-y)互為負(fù)倒數(shù).
2.已知(x+2)(x2+ax+b)的積不含x的二次項和一次項,求a、b的值.
3.已知:A=x2+x+1,B=x+p-1,化簡:AB-pA,當(dāng)x=-1時,求其值.
堂堂清
1.解方程:(2x+3)(x-4)-(x+2)(x-3)=x2+6.
2.先化簡,再求值:5x(x2+2x+1)-x(x-4)(5x-3),其中x=1.
教后反思
在前面學(xué)習(xí)了單項式與單項式相乘,單項式與多項式相乘的.法則之后,有繼續(xù)來學(xué)習(xí)多項式與多項式的乘法法則,對學(xué)生來說掌握起來并不困難,但是學(xué)生的計算能力不是很強(qiáng),所以計算起來很浪費(fèi)時間,并且計算容易出錯。
多項式除以單項式的教學(xué)設(shè)計 9
一、知識結(jié)構(gòu)
二、重點、難點分析
本節(jié)教學(xué)的重點是掌握單項式與多項式相乘的法則.難點是正確、迅速地進(jìn)行單項式與多項式相乘的計算.本節(jié)知識是進(jìn)一步學(xué)習(xí)多項式乘法,以及乘法公式等后續(xù)知識的基礎(chǔ)。
1.單項式與多項式相乘,就是用單項式去乘多項式的每一項,再把所得的積相加,即
其中, 可以表示一個數(shù)、一個字母,也可以是一個代數(shù)式.
2.利用法則進(jìn)行單項式和多項式運(yùn)算時要注意:
(1)多項式每一項都包括前面的符號,例如 中的多項式,共有兩項,就是 .運(yùn)用法則計算時,一定要強(qiáng)調(diào)積的符號.
。2)單項式必須和多項式中的每一項相乘,不能漏乘多項式中的任何一項.因此,單項式與多項式相乘的.結(jié)果是一個多項式,其項數(shù)與因式中多項式的項數(shù)相同.
。3)對于混合運(yùn)算,要注意運(yùn)算順序,同時要注意:運(yùn)算結(jié)果如有同類項要合并,從而得出最簡結(jié)果.
3﹒根據(jù)去括號法則和多項式中每一項包含它前面的符號,來確定乘積每一項的符號;
4﹒非零單項式乘以不含同類項的多項式,乘積仍然是多項式;積的項數(shù)與所乘多項式的項數(shù)相等;
5﹒對于含有乘方、乘法、加減法的混合運(yùn)算的題目,要注意運(yùn)算順序;也要注意合并同類項,得出最簡結(jié)果.
三、教法建議
1.單項式與多項式相乘的基本依據(jù)是乘法分配律,故在本課開始先講述乘法分配律,由有理數(shù)過渡到字母.
2.由乘法分配律過渡到單項乘多項式的法則時,也可以采用以下代換的方法,如計算:(—4x2)·(2x2+3x—1).
設(shè)m=—4x2,a=2x2,b=3x,c=—1,
∴ (—4x2)·(2x2+3x—1)
=m(a+b+c)
=ma+mb+mc
=(—4x2)·2x2+(—4x2)·3x+(—4x2)·(—1)
=—8x4—12x3+4x2.
這樣過渡較自然,同時也滲透了一些代換的思想.
3.單項式與多項式相乘,積仍是多項式,它的項數(shù)與多項式的項數(shù)相同.這是單項式與多項式相乘的結(jié)果,這個結(jié)果也是我們掌握法則的關(guān)鍵.一般說來,對于一個運(yùn)算法則的掌握應(yīng)從分析結(jié)果開始,分析結(jié)果的結(jié)構(gòu),分析結(jié)果與各算式的關(guān)系,這樣才能較好地掌握法則.
多項式除以單項式的教學(xué)設(shè)計 10
尊敬的各位評委、老師,大家好!今天我說課的題目是《多項式與多項式相乘》。
一、教材分析
1、 本節(jié)課的內(nèi)容和地位
課標(biāo)要求:理解多項式與多項式相乘的法則,并運(yùn)用法則進(jìn)行準(zhǔn)確運(yùn)算。
選用教材:選自華東師范大學(xué)出版社出版的《數(shù)學(xué)》八年級上冊第十三章第3節(jié)。課題是《多項式與多項式相乘》,課時為1課時。
主要內(nèi)容:多項式與多項式相乘法則:多項式與多項式相乘,先用一個多項式的每一項乘另一個多項式的每一項,再把所得的積相加
教材地位:本課學(xué)習(xí)多項式與多項式相乘的法則,對學(xué)生初中階段學(xué)好必備的基礎(chǔ)知識與基本技能、解決實際問題起到基礎(chǔ)作用,在提高學(xué)生的運(yùn)算能力方面有重要的作用。同時,對平方差與完全平方公式的應(yīng)用以及楊輝三角等后續(xù)教學(xué)內(nèi)容起到奠基作用。
2、教學(xué)目標(biāo)
知識與技能目標(biāo):理解并掌握多項式乘以多項式的法則,能夠按步驟進(jìn)行簡單的多項式乘法的運(yùn)算。
過程與方法目標(biāo):
1、通過創(chuàng)設(shè)情景中的問題的探索,體驗數(shù)學(xué)是一個充滿觀察、歸納的過程;
2、通過整體處理,再利用分配律的.結(jié)果與幾何圖形面積的結(jié)果進(jìn)行比較,培養(yǎng)學(xué)生從不同的角度思考數(shù)學(xué)的意識;
3、通過為學(xué)生提供自主練習(xí)的活動空間,提高學(xué)生的運(yùn)算能力;
4、借助具體到一般的認(rèn)知規(guī)律,培養(yǎng)學(xué)生探索問題的能力和創(chuàng)新的品質(zhì)。
情感、態(tài)度與價值觀目標(biāo):
學(xué)生通過主動參與探索法則和拓展探索等的學(xué)習(xí)活動,領(lǐng)悟轉(zhuǎn)化思想,體會數(shù)學(xué)與生活的聯(lián)系,感受數(shù)學(xué)的應(yīng)用價值,從而激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
3、教學(xué)重點:多項式乘以多項式法則的理解和應(yīng)用;
4、教學(xué)難點:將多項式與多項式的乘法轉(zhuǎn)化為單項式與多項式的乘法,防止漏乘、重復(fù)乘和看錯符號。
二、教學(xué)對象分析
本節(jié)課是在學(xué)習(xí)了“單項式與多項式相乘”的基礎(chǔ)上進(jìn)行的,學(xué)生已經(jīng)掌握了“單項式與多項式相乘”的運(yùn)算法則,因此沒有把時間過多地放在復(fù)習(xí)舊知上,而是讓學(xué)生親身參加探索發(fā)現(xiàn),從而獲取新知。在法則的得出過程中,讓學(xué)生在探索的過程中自己發(fā)現(xiàn)總結(jié)規(guī)律,提高了學(xué)生的積極性。在法則的應(yīng)用這一環(huán)節(jié)選配一些變式練習(xí),通過書上的基本練習(xí)達(dá)到訓(xùn)練雙基的目的,通過變式練習(xí)達(dá)到發(fā)展智力、提高能力的目的。
三、教學(xué)方法
注重體現(xiàn)教師的導(dǎo)向作用和學(xué)生的主體地位。教學(xué)過程中盡力引導(dǎo)學(xué)生成為知識的發(fā)現(xiàn)者,把教師的點撥和學(xué)生解決問題結(jié)合起來,為學(xué)生創(chuàng)設(shè)情境,從而不斷激發(fā)學(xué)生的求知欲望和學(xué)習(xí)興趣,使學(xué)生輕松愉快地學(xué)習(xí)。
四、學(xué)法
1、自主學(xué)習(xí)歸納
2、小組討論
多項式除以單項式的教學(xué)設(shè)計 11
【學(xué)習(xí)重點】
多項式乘以多項式法則的形成過程以及理解和應(yīng)用
【學(xué)習(xí)難點】
多項式乘以多項式法則正確使用
【學(xué)習(xí)過程】
。ㄒ唬┘で閷(dǎo)入:
回顧舊知識。
1.教師引導(dǎo)學(xué)生復(fù)習(xí)單項式乘以多項式運(yùn)算法則.并通過練習(xí)加以鞏固:
。1)(- 2a)(2a 22ab) 問題:某公園,有一塊原長a米、寬p米的長方形草地增長了b米,加寬了q米。請你表示這塊草地現(xiàn)在的面積。
問題:
(1)如何表示擴(kuò)大后的草地的面積?
(2)用不同的方法表示出來后的等式為什么是相等的呢?
(學(xué)生分組討論,相互交流得出答案。)
學(xué)生得到了兩種不同的表示方法,一個是(a+b)(p+q)平方米;另一個是 (ap+bp+aq+bq)米平方,以上的兩個結(jié)果都是正確的。
問:你從計算中發(fā)現(xiàn)了什么?
由于(a+b)(p+q)和(ap+bp+aq+bq)表示同一個量, 故有(a+b)(p+q)=(ap+bp+aq+bq)
問:你會計算這個式子嗎?你是怎樣計算的?
學(xué)生討論得:由繁化簡,把a(bǔ)+b看作一個整體,使之轉(zhuǎn)化為單項式乘以多項式,即可得出結(jié)論。
【設(shè)計意圖】
這里重要的是學(xué)生能理解運(yùn)算法則及其探索過程,體會分配律可以將多項式與多項式相乘轉(zhuǎn)化為單項多與多項式相乘。滲透整體思想和轉(zhuǎn)化思想。
。ǘ┳灾魈骄
引導(dǎo):觀察這一結(jié)果的每一項與原來兩個多項式各項之間的關(guān)系,能不能由原來的多項式各項之間相乘直接得到?如果能得到,又是怎樣相乘得到的?(教師示范。)
問:你能用語言敘述這個式子嗎? 多項式乘以多項式的法則:
多項式乘以多項式先用一個多項式的每一項乘以另一個多項式的每一項,再把所得的積相加。
即:(m+n)(a+b)=ma+mb+na+nb。
【設(shè)計意圖】
引導(dǎo)學(xué)生發(fā)現(xiàn)多項式乘多項式的法則,培養(yǎng)學(xué)生分析問題、歸納問題的.能力。通過對同一面積的不同表示方式,使學(xué)生對多項式乘多項式的有一個直觀的認(rèn)識,給出了多項式相乘的一個幾何解釋。
。ㄈ┑淅治
例1:計算:
(1)(x+2)(x+3)
(1)(2x-5y)(3x-y)
多項式除以單項式的教學(xué)設(shè)計 12
學(xué)習(xí)目標(biāo):
1.理解并掌握多項式乘以多項式的法則.
2.經(jīng)歷探索多項式與多項式相乘的過程,理解多項式與多項式相乘的結(jié)果,能夠按多項
式與多項式相乘的步驟進(jìn)行簡單的多項式乘以多項式的運(yùn)算,并達(dá)到熟練進(jìn)行多項式的乘法
運(yùn)算的目的
3.培養(yǎng)數(shù)學(xué)感知,體驗數(shù)學(xué)在實際應(yīng)用中的價值,樹立良好的學(xué)習(xí)態(tài)度.
學(xué)習(xí)重點:多項式乘以多項式法則的形成過程以及理解和應(yīng)用
學(xué)習(xí)難點:多項式乘以多項式法則正確使用
一、在你的積極嘗試中探索發(fā)現(xiàn)規(guī)律
整式的乘法實際上就是:
單項式×單項式單項式×多項式多項式×多項式
我們已經(jīng)學(xué)習(xí)了單項式乘以單項式,單項式乘以多項式,今天我們一起探究:多項式
×多項式的`有關(guān)問題
先思考下面的問題:某地區(qū)在退耕還林期間,有一塊原長為m米,寬為a米的長方形
林區(qū),現(xiàn)在該林區(qū)長增長了n米,寬增加了b米,請你求出這塊林區(qū)現(xiàn)在的面積.你有幾種表達(dá)?你從計算中發(fā)現(xiàn)了什么?
于是,得到多項式與多項式的乘法法則:
用文字表述為:
用式子表示為:
法則的理論依據(jù)是:
二、在應(yīng)用中鞏固新知,發(fā)展思維能力
★1.計算:(1)(x+2)(x+3)(2)(-3x-1)(2x+1)
★2.計算:(1)(x-3y)(-x-7y)(2)(-2x+5y)(-3x-y)
★★3.若(x+t ) (x+6)的積不含x的一次項,求t的值.
★★4.試說明:代數(shù)式(2x+3) (6x+2)-6x (2x+13)+8(7x+2)的值與x的取值無關(guān).
【多項式除以單項式的教學(xué)設(shè)計】相關(guān)文章:
《分?jǐn)?shù)除以整數(shù)》教學(xué)反思及交流(精選10篇)10-27
《軍神》教學(xué)設(shè)計03-30
《郵票的張數(shù)》教學(xué)設(shè)計06-15
復(fù)習(xí)除法的教學(xué)設(shè)計03-30