圓與方程數(shù)學(xué)教案
作為一位無(wú)私奉獻(xiàn)的人民教師,時(shí)常會(huì)需要準(zhǔn)備好教案,編寫教案有利于我們弄通教材內(nèi)容,進(jìn)而選擇科學(xué)、恰當(dāng)?shù)慕虒W(xué)方法。教案應(yīng)該怎么寫才好呢?下面是小編收集整理的圓與方程數(shù)學(xué)教案,供大家參考借鑒,希望可以幫助到有需要的朋友。
本章在“第三章 直線與方程”的基礎(chǔ)上,在直角坐標(biāo)系中建立圓的方程,并通過(guò)圓的方程,研究直線與圓、圓與圓的位置關(guān)系。
在直角坐標(biāo)系中,建立幾何對(duì)象的方程,并通過(guò)方程研究幾何對(duì)象,這是研究幾何問(wèn)題的重要方法。通過(guò)坐標(biāo)系,把點(diǎn)與坐標(biāo)、曲線與方程聯(lián)系起來(lái),實(shí)現(xiàn)空間形式與數(shù)量關(guān)系的結(jié)合。
一、內(nèi)容與課程學(xué)習(xí)目標(biāo)
本章主要內(nèi)容是在直角坐標(biāo)系中建立圓的方程,并通過(guò)圓的方程,研究直線與圓、圓與圓的位置關(guān)系。通過(guò)本章學(xué)習(xí),要使學(xué)生達(dá)到如下學(xué)習(xí)目標(biāo):
1.回顧確定圓的幾何要素,在平面直角坐標(biāo)系中,探索并掌握?qǐng)A的標(biāo)準(zhǔn)方程與一般方程。
2.能根據(jù)給定直線、圓的方程,判斷直線與圓、圓與圓的位置關(guān)系。
3.能用直線和圓的方程解決一些簡(jiǎn)單的問(wèn)題。
4.進(jìn)一步體會(huì)用代數(shù)方法處理幾何問(wèn)題的思想。
5.通過(guò)具體情境,感受建立空間直角坐標(biāo)系的必要性,了解空間直角坐標(biāo)系,會(huì)用空間直角坐標(biāo)系刻畫點(diǎn)的位置。
6.通過(guò)表示特殊長(zhǎng)方體(所有棱分別與坐標(biāo)軸平行)頂點(diǎn)的坐標(biāo),探索并得出空間兩點(diǎn)間的距離公式。
二、內(nèi)容安排
本章內(nèi)容共分三節(jié),約需9課時(shí),具體課時(shí)分配如下(僅供參考):
4.1 圓的方程 約2課時(shí)
4.2 直線、圓的位置關(guān)系 約4課時(shí)
4.3 空間直角坐標(biāo)系 約2課時(shí)
小 結(jié) 約1課時(shí)
本章知識(shí)結(jié)構(gòu)如下:
1.“直線與方程”一章研究了直線方程的各種形式、直線之間的位置關(guān)系以及直線之間位置關(guān)系的簡(jiǎn)單應(yīng)用。本章在第三章的基礎(chǔ)上,學(xué)習(xí)圓的有關(guān)知識(shí)——圓的標(biāo)準(zhǔn)方程、圓的一般方程;繼續(xù)運(yùn)用“坐標(biāo)法”研究直線與圓、圓與圓的位置關(guān)系等幾何問(wèn)題;學(xué)習(xí)空間直角坐標(biāo)系的有關(guān)知識(shí),用坐標(biāo)表示簡(jiǎn)單的空間的幾何對(duì)象。
2.“圓的方程”一節(jié)包括圓的標(biāo)準(zhǔn)方程、圓的一般方程兩部分。首先提出確定圓的幾何要素這個(gè)問(wèn)題,指出圓心和半徑是確定一個(gè)圓最基本的要素,然后引導(dǎo)學(xué)生用代數(shù)的語(yǔ)言(方程)描述圓,進(jìn)而得到圓心為C(a,b ),半徑為r的圓的標(biāo)準(zhǔn)方程(x-a)2+(y-b)2=r2。對(duì)圓的標(biāo)準(zhǔn)方程進(jìn)行變形,可以得出圓的一般方程,它們是表示圓的方程的兩種形式。
3.“直線、圓的位置關(guān)系”中,先從幾何角度指出它們之間的直線與直線、直線與圓的位置關(guān)系,然后用方程去描述它們,通過(guò)方程研究直線、圓的位置關(guān)系。最后安排了直線與圓的方程在解決實(shí)際問(wèn)題和平面幾何問(wèn)題方面的應(yīng)用。
通過(guò)方程,研究直線與圓、圓與圓的位置關(guān)系是本章的主要內(nèi)容之一。判斷直線與圓、圓與圓的位置關(guān)系可以從兩個(gè)方面入手:
。1)曲線C1與C2有無(wú)公共點(diǎn),等價(jià)于由它們的方程組成的方程組有無(wú)實(shí)數(shù)解.方程組有幾組實(shí)數(shù)解,曲線C1與C2就有幾個(gè)公共點(diǎn);方程組沒有實(shí)數(shù)解,C1與C2就沒有公共點(diǎn)。
。2)運(yùn)用平面幾何知識(shí),把直線與圓、圓與圓的位置關(guān)系的結(jié)論轉(zhuǎn)化為相應(yīng)的代數(shù)問(wèn)題。
在本節(jié)的最后,進(jìn)一步指出用坐標(biāo)方法解決幾何問(wèn)題的“三部曲”:
第一步:建立適當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,用坐標(biāo)和方程表示問(wèn)題中涉及的幾何元素,將平面幾何問(wèn)題轉(zhuǎn)化為代數(shù)問(wèn)題;
第二步:通過(guò)代數(shù)運(yùn)算,解決代數(shù)問(wèn)題;
第三步:把代數(shù)運(yùn)算結(jié)果“翻譯”成幾何結(jié)論。
4.“空間直角坐標(biāo)系”包括空間直角坐標(biāo)系的概念,用坐標(biāo)表示空間中簡(jiǎn)單的幾何對(duì)象,以及空間中兩點(diǎn)間的距離公式。
5.為了使學(xué)生更好地了解“坐標(biāo)法”,認(rèn)識(shí)信息技術(shù)在探求軌跡方面的作用,本章安排了“閱讀與思考 坐標(biāo)法與機(jī)器證明”和“探究與發(fā)現(xiàn) 用《幾何畫板》探求點(diǎn)的軌跡(圓)”。“閱讀與思考 坐標(biāo)法與機(jī)器證明”介紹了坐標(biāo)法、笛卡兒、坐標(biāo)法與機(jī)器證明之間的關(guān)系、機(jī)器證明的思想,以及在機(jī)器證明方面作出重大貢獻(xiàn)的的我國(guó)著名數(shù)學(xué)家吳文俊先生。目的是拓廣學(xué)生的知識(shí)面,了解我國(guó)數(shù)學(xué)家作出的重大貢獻(xiàn),激發(fā)學(xué)生進(jìn)一步深入學(xué)習(xí)數(shù)學(xué)的興趣。“探究與發(fā)現(xiàn) 用《幾何畫板》探求點(diǎn)的軌跡(圓)”介紹了《幾何畫板》在探求點(diǎn)的軌跡,幫助學(xué)生猜想、發(fā)現(xiàn)方面的作用。
三、編寫中考慮的幾個(gè)問(wèn)題
1.始終貫穿“坐標(biāo)法”的思想
解析幾何的特點(diǎn)是用代數(shù)的方法研究幾何圖形。對(duì)于義務(wù)教育階段中判斷圓與直線、圓與圓之間的位置關(guān)系的方法,學(xué)生并不陌生。這里研究問(wèn)題的方法與以前不同,這就是坐標(biāo)法.
在建立圓的標(biāo)準(zhǔn)方程時(shí),首先幫助學(xué)生回顧確定圓的要素,然后利用坐標(biāo)法來(lái)刻畫圓,建立了圓的標(biāo)準(zhǔn)方程;判斷圓與直線、圓與圓的位置關(guān)系時(shí),首先回顧義務(wù)教育階段如何判斷圓與直線、圓與圓的位置關(guān)系,然后利用坐標(biāo)法研究它們。從另一個(gè)角度看,既然圓、直線都可以用方程來(lái)刻畫,那么就可以通過(guò)對(duì)方程的研究來(lái)研究直線與圓、圓與圓的位置關(guān)系,這就是兩曲線是否有公共點(diǎn)的問(wèn)題,即它們的方程組成的方程組有沒有實(shí)數(shù)解的問(wèn)題。本章在進(jìn)行圓與直線、圓與圓的位置關(guān)系判斷時(shí),常常采用這兩種方法.
2.從一個(gè)或幾個(gè)數(shù)學(xué)問(wèn)題展開知識(shí)內(nèi)容
問(wèn)題是數(shù)學(xué)的心臟。引入知識(shí)內(nèi)容時(shí),常設(shè)置一個(gè)或幾個(gè)問(wèn)題,創(chuàng)設(shè)一種情境,一方面引起學(xué)生的興趣,另一方面引起學(xué)生解決問(wèn)題的求知欲望。
比如“4. 1.2 圓的一般方程”,提出了兩個(gè)思考題
思考:方程x2+y2-2x+4y+1=0表示什么圖形?方程x2+y2-2x-4y+6=0表示什么圖形?
實(shí)際上,對(duì)方程x2+y2-2x-4y+6=0配方,得(x-1)2+(y-2)2=-1,這個(gè)方程不表示任何圖形。
緊接著,教科書又提出一個(gè)讓學(xué)生探究的問(wèn)題。
探究:形如x2+y2+Dx+Ey+F=0的方程在什么條件下表示圓?
教科書環(huán)環(huán)相扣,把學(xué)生引入一個(gè)又一個(gè)“憤”與“悱”的境地,使得學(xué)生通過(guò)問(wèn)題的解決學(xué)習(xí)新的知識(shí)。
3.關(guān)注結(jié)論形成的過(guò)程,通過(guò)思考、探究,得出結(jié)論
本章在編寫時(shí)注意呈現(xiàn)方式,不直接給出結(jié)論,讓學(xué)生證明。而是把結(jié)論放在學(xué)生經(jīng)過(guò)一系列數(shù)學(xué)活動(dòng)之后,通過(guò)思考、探究,得出結(jié)論。比如,用“坐標(biāo)法”解決問(wèn)題的“三部曲”就是通過(guò)解決一系列問(wèn)題后得出。在例題的呈現(xiàn)時(shí),增加了分析的過(guò)程,重點(diǎn)分析解題的思路。在探求點(diǎn)的軌跡時(shí),提倡先用信息技術(shù)工具探究軌跡的形狀,對(duì)問(wèn)題有一個(gè)直觀的了解,然后再分析軌跡形成的原因,找出解決問(wèn)題的方法,使得學(xué)生抓住問(wèn)題的本質(zhì),理清思路,制訂合理的解題策略。
4.充分利用教科書邊空,提出具有一定思考價(jià)值的問(wèn)題,強(qiáng)調(diào)重要的數(shù)學(xué)思想方法
利用教科書邊空不失時(shí)機(jī)地提出一些具有一定思考價(jià)值的問(wèn)題,例如:
。1)當(dāng)一個(gè)問(wèn)題解決之后,詢問(wèn)“還有其他不同的解法嗎?”或者是“有更好的解法嗎?”
(2)當(dāng)同一個(gè)問(wèn)題有兩種解法時(shí),要求比較它們的優(yōu)劣。如“請(qǐng)同學(xué)們比較這兩種證明方法,并指出各自的特點(diǎn)?”在比較中加深理解,促使學(xué)生養(yǎng)成解題后反思的良好習(xí)慣.
(3)當(dāng)同一個(gè)問(wèn)題有多種解法時(shí),要求學(xué)生在教科書已經(jīng)給出一種或兩種解法的基礎(chǔ)上再給出一種。
歸納、抽象是重要的數(shù)學(xué)思想方法。在問(wèn)題解決之后,要求學(xué)生進(jìn)行一些簡(jiǎn)單的歸納。例如,“4. 1.1 圓的標(biāo)準(zhǔn)方程”,在學(xué)習(xí)了例2與例3之后,提出“比較例2和例3,你能歸納出求任意三角形外接圓的標(biāo)準(zhǔn)方程的兩種方法嗎?”
通過(guò)問(wèn)題的開放性,觸類旁通地提出問(wèn)題。比如,研究圓C1:x2+2+2x+8y-8=0與圓C2:x2+y2-4x-4y-2=0的關(guān)系時(shí),把它們的方程相減,得到 x+2y-1=0。在邊空處要求“畫出圓C1與2以及方程x+2y-1=0表示的直線,你發(fā)現(xiàn)了什么?你能說(shuō)明為什么嗎?”更進(jìn)一步,能否說(shuō),要研究圓C1與圓C2的關(guān)系只要研究直線x+2y-1=0與C1(或C2)的關(guān)系就可以了呢?這一問(wèn)題,不僅體現(xiàn)了“化歸”的思想,而且是頗具思考價(jià)值的.
5.注意加強(qiáng)與實(shí)際問(wèn)題、其他學(xué)科的聯(lián)系
本章內(nèi)容的選擇盡可能加強(qiáng)與學(xué)生的生活、生產(chǎn)實(shí)際的聯(lián)系。比如,為說(shuō)明研究直線與圓的位置關(guān)系的必要性,設(shè)置了一個(gè)漁船能否避開臺(tái)風(fēng)的問(wèn)題:
一艘輪船在沿直線返回港口的途中,接到氣象臺(tái)的臺(tái)風(fēng)預(yù)報(bào):臺(tái)風(fēng)中心位于輪船正西70 km處,受影響的范圍是半徑長(zhǎng)為30 km的圓形區(qū)域. 已知港口位于臺(tái)風(fēng)中心正北40 km處,如果這艘輪船不改變航線,那么它是否會(huì)受到臺(tái)風(fēng)的影響?
在直線與圓的方程的應(yīng)用部分,設(shè)置了與圓拱橋有關(guān)的計(jì)算題。學(xué)習(xí)空間直角坐標(biāo)系時(shí),要求寫出食鹽晶胞中鈉原子在空間直角坐標(biāo)系中的位置(坐標(biāo))等等。
6.介紹科技成果,滲透數(shù)學(xué)文化
本章通過(guò)設(shè)置“閱讀與思考 坐標(biāo)法與機(jī)器證明”欄目,介紹科學(xué)家、數(shù)學(xué)史、數(shù)學(xué)在現(xiàn)代生活中的應(yīng)用等,機(jī)器證明幾何定理是坐標(biāo)法的精彩應(yīng)用,我國(guó)數(shù)學(xué)家吳文俊先生在這方面有著重要的貢獻(xiàn),較為詳細(xì)地介紹了機(jī)器證明幾何定理研究的歷史。
四、對(duì)教學(xué)的幾個(gè)建議
1.認(rèn)真把握教學(xué)要求
教學(xué)中,注意控制教學(xué)的難度,避免進(jìn)行綜合性強(qiáng)、難度較大的數(shù)學(xué)題的訓(xùn)練,避免在解題技巧上做文章。比如,義務(wù)教育階段“空間與圖形”部分涉及的許多結(jié)論都可以用坐標(biāo)法來(lái)加以證明,而義務(wù)教育階段的教學(xué)要求已經(jīng)有所改變。因此,用坐標(biāo)法證明平面幾何題要求不宜過(guò)高,適可而止。再如,教科書不介紹圓的切線方程x0x+y0y=r2,這并不是說(shuō)不涉及圓與直線相切這一位置關(guān)系。與直線相切這一位置關(guān)系的判斷可以有兩種方法,一種是利用圓心到直線的距離等于半徑長(zhǎng);另一種是利用它們的方程組成的方程組只有一組實(shí)數(shù)解。
2.關(guān)注重要數(shù)學(xué)思想方法的教學(xué)
重要的數(shù)學(xué)思想方法不怕重復(fù)。《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》要求“坐標(biāo)法”應(yīng)貫穿平面解析幾何教學(xué)的始終,幫助學(xué)生不斷地體會(huì)“數(shù)形結(jié)合”的思想方法。在教學(xué)中應(yīng)自始至終強(qiáng)化這一思想方法,這是解析幾何的特點(diǎn)。教學(xué)中注意“數(shù)”與“形”的結(jié)合,在通過(guò)代數(shù)方法研究幾何對(duì)象的位置關(guān)系以后,還可以畫出其圖形,驗(yàn)證代數(shù)結(jié)果;同時(shí),通過(guò)觀察幾何圖形得到的數(shù)學(xué)結(jié)論,對(duì)結(jié)論進(jìn)行代數(shù)證明,不應(yīng)割斷它們之間的聯(lián)系,只強(qiáng)調(diào)其一方面。
3.關(guān)注學(xué)生的動(dòng)手操作和主動(dòng)參與
學(xué)習(xí)方式的轉(zhuǎn)變是課程改革的重要目標(biāo)之一。教學(xué)中,注意提供充分的數(shù)學(xué)活動(dòng)和交流的機(jī)會(huì),引導(dǎo)他們?cè)谧灾魈剿鞯倪^(guò)程中獲得知識(shí)、增強(qiáng)技能、掌握基本的數(shù)學(xué)思想方法。例如,判斷直線與圓、圓與圓的位置關(guān)系以及它們的簡(jiǎn)單應(yīng)用,探究點(diǎn)的軌跡等內(nèi)容,可以先讓學(xué)生畫一畫、想一想,然后進(jìn)行代數(shù)論證!坝^察”“思考”“探究”等欄目設(shè)置目的之一就是想讓學(xué)生參與到數(shù)學(xué)活動(dòng)中來(lái)。
4.關(guān)注信息技術(shù)的應(yīng)用
平面解析幾何是一門典型的數(shù)與形結(jié)合的學(xué)科,信息技術(shù)在加強(qiáng)幾何直觀,促使數(shù)與形結(jié)合方面有著特殊的作用。借助信息技術(shù),可以形象、直觀地幫助學(xué)生認(rèn)識(shí)所研究的曲線。在動(dòng)態(tài)演示中,觀察曲線的性質(zhì),在直觀了解的基礎(chǔ)上,尋求形成這些性質(zhì)的原因以及代數(shù)表示。通過(guò)對(duì)方程的研究,了解曲線與曲線的關(guān)系時(shí),運(yùn)用信息技術(shù),可以進(jìn)一步驗(yàn)證得到的結(jié)果,為抽象的認(rèn)識(shí)增添了形象的支持。在探究點(diǎn)的軌跡時(shí),可以借助信息技術(shù),探究軌跡的形狀等等。
【圓與方程數(shù)學(xué)教案】相關(guān)文章:
數(shù)學(xué)教案:圓的認(rèn)識(shí)02-12
數(shù)學(xué) -橢圓及其標(biāo)準(zhǔn)方程教案03-20
《橢圓及其標(biāo)準(zhǔn)方程》的教學(xué)反思02-24
數(shù)學(xué)教學(xué)之方程教學(xué)反思03-20
從算式到方程的教學(xué)設(shè)計(jì)(精選12篇)10-26
夢(mèng)圓飛天教案例子07-13
《圓的整理與復(fù)習(xí)》教學(xué)設(shè)計(jì)(精選17篇)09-14