毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

《長(zhǎng)方體和正方體的認(rèn)識(shí)》教案設(shè)計(jì)

時(shí)間:2021-06-22 11:38:40 教案 我要投稿

《長(zhǎng)方體和正方體的認(rèn)識(shí)》教案設(shè)計(jì)

  【教材分析】

《長(zhǎng)方體和正方體的認(rèn)識(shí)》教案設(shè)計(jì)

  蘇教版課程標(biāo)準(zhǔn)教材編寫(xiě)的《長(zhǎng)方體和正方體的認(rèn)識(shí)》以學(xué)生已有的觀察物體的豐富經(jīng)驗(yàn)為基礎(chǔ),先明確長(zhǎng)方體有幾個(gè)面,從不同的角度觀察一個(gè)長(zhǎng)方體最多能同時(shí)看到幾個(gè)面等知識(shí),自然地由實(shí)物圖抽象出直觀圖。在介紹棱和頂點(diǎn)的概念后,引導(dǎo)研究有幾條棱、幾個(gè)頂點(diǎn),接著研究面和棱的特征。教材力圖溝通棱、頂點(diǎn)和面之間的聯(lián)系,引導(dǎo)學(xué)生用看一看、量一量、比一比的方法,在合作交流中探究長(zhǎng)方體的特征。

  在以往的教學(xué)中,我們大多注重用“直觀實(shí)證”的方式研究長(zhǎng)方體的特征,而對(duì)面、棱、頂點(diǎn)之間關(guān)系的認(rèn)識(shí)更多停留在定義所描述的層次。這也就限制了這一內(nèi)容對(duì)發(fā)展學(xué)生空間觀念的作用。事實(shí)上,學(xué)生在以往的學(xué)習(xí)和日常生活的經(jīng)驗(yàn)中,已經(jīng)積累了關(guān)于長(zhǎng)方體和正方體的一些認(rèn)識(shí)。如何在此基礎(chǔ)上,系統(tǒng)地、深層次構(gòu)建對(duì)長(zhǎng)方體特征的認(rèn)識(shí)是值得研究的問(wèn)題。學(xué)生學(xué)習(xí)“體”的困難往往在于缺少?gòu)拿娴襟w過(guò)渡的橋梁,從點(diǎn)、線(xiàn)、面到體的認(rèn)識(shí)發(fā)展需要充分地在“體”上尋找點(diǎn)、線(xiàn)、面之間的聯(lián)系,實(shí)現(xiàn)認(rèn)知結(jié)構(gòu)的順應(yīng),這是空間觀念建立的關(guān)鍵。

  【教學(xué)片段】

  師:剛才,同學(xué)們動(dòng)腦筋有條理地?cái)?shù)出了長(zhǎng)方體有──

  生(齊):6個(gè)面,12條棱,8個(gè)頂點(diǎn)。

  師:我們的研究不能滿(mǎn)足于“是什么”,還要探究“為什么”。

  (學(xué)生疑惑地用眼神告訴我:這有什么“為什么”?事實(shí)就是這樣嘛。

  師:沒(méi)問(wèn)題?我先來(lái)說(shuō)一個(gè),長(zhǎng)方體有6個(gè)面,每個(gè)面都是(長(zhǎng)方形),長(zhǎng)方形有4條邊,這些邊就是長(zhǎng)方體的(棱)。那長(zhǎng)方體就應(yīng)該有6×4=24條棱,可為什么只有12條棱呢?

 。▽W(xué)生仔細(xì)打量眼前的長(zhǎng)方體模型,積極探索著答案。)

  生:(跑到黑板前指著直觀圖)就拿這條棱來(lái)說(shuō),它既是上面的一條邊,又是前面的一條邊。所以,在計(jì)算時(shí),同一條棱算了兩次。其他的棱也是這樣。

  師:那應(yīng)該怎樣算呢?

  生(齊):6×4÷2=12條棱。

  師:你現(xiàn)在也能提一些“為什么”的問(wèn)題嗎?

  生1:長(zhǎng)方體的6個(gè)面,每個(gè)面上有4個(gè)頂點(diǎn),能算出24個(gè)頂點(diǎn),為什么只有8個(gè)頂點(diǎn)?

  師:?jiǎn)柕煤!你有答案嗎?/p>

  生1:我有答案,但想讓其他同學(xué)回答。

  生2:(指著直觀圖上的一個(gè)頂點(diǎn))這個(gè)頂點(diǎn)既是上面的一個(gè)頂點(diǎn),又是前面的一個(gè)頂點(diǎn),還是右面的一個(gè)頂點(diǎn)。也就是說(shuō)這個(gè)頂點(diǎn)計(jì)算時(shí)被算了3次。其他頂點(diǎn)也一樣。所以應(yīng)該用6×4÷3=8個(gè)頂點(diǎn)。

  師:真是太好了!剛才我們是由面的個(gè)數(shù),根據(jù)面與棱、頂點(diǎn)之間的關(guān)系推算出棱的條數(shù)、頂點(diǎn)的個(gè)數(shù)。你還想研究什么問(wèn)題?

  生1:能不能由棱的條數(shù)推算出頂點(diǎn)的個(gè)數(shù)、面的個(gè)數(shù)?

  生2:由頂點(diǎn)的個(gè)數(shù)是不是也能推算出面的個(gè)數(shù)和棱的條數(shù)?

  師:真會(huì)提問(wèn)題!同學(xué)們有興趣研究嗎?

 。▽W(xué)生興致勃勃地研究并匯報(bào)了兩個(gè)問(wèn)題。)

  師:觀察一下這6道算式,在利用面、棱、頂點(diǎn)之間關(guān)系推算時(shí),有什么規(guī)律?

  生1:都先算出了24。這是為什么?

  (學(xué)生陷入了沉思,不一會(huì)兒,陸續(xù)舉起手。)

  生2:這兒的24表示的是24條邊(棱)或者24個(gè)頂點(diǎn)。因?yàn)殚L(zhǎng)方體是由6個(gè)長(zhǎng)方形圍成的立體圖形。這6個(gè)長(zhǎng)方形一共有24條邊、24個(gè)頂點(diǎn)。

  生3:推算時(shí),就要先算出24條邊或24個(gè)頂點(diǎn),再看看與要求的面、棱、頂點(diǎn)之間的數(shù)量關(guān)系,計(jì)算出最后的結(jié)果。

  師:老師也沒(méi)想到,同學(xué)們通過(guò)自己的積極思考,弄清楚了這么多“為什么”。

  ……

  師:同學(xué)們通過(guò)看一看、量一量、比一比等多種方法發(fā)現(xiàn)了長(zhǎng)方體面和棱的特征。除此之外,有沒(méi)有其他方法研究面和棱的特征?

  生:通過(guò)重疊比較,我們發(fā)現(xiàn)長(zhǎng)方體相對(duì)的面完全相同。兩個(gè)長(zhǎng)方形完全一樣,也就是它們的長(zhǎng)和寬分別相等。所以,長(zhǎng)方體相對(duì)的棱長(zhǎng)度相等。

  師:反過(guò)來(lái)呢?

  生:通過(guò)測(cè)量,我們發(fā)現(xiàn)相對(duì)的棱長(zhǎng)度相等。而相對(duì)面的長(zhǎng)和寬分別是兩組相對(duì)的棱,長(zhǎng)和寬分別相等的長(zhǎng)方形完全相同。

  師:真厲害!看來(lái),研究長(zhǎng)方體的特征不僅可以通過(guò)操作來(lái)發(fā)現(xiàn),更可以運(yùn)用所學(xué)的知識(shí)思考來(lái)發(fā)現(xiàn)。

  【教學(xué)反思】

  一、數(shù)學(xué)學(xué)習(xí)是經(jīng)驗(yàn)的,也是推理的

  新課程注重向?qū)W生提供充分的從事數(shù)學(xué)活動(dòng)的機(jī)會(huì),使學(xué)生獲得廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn),這符合學(xué)生的認(rèn)知規(guī)律和心理特征。但如今的課堂上不乏學(xué)生的觀察、操作、猜測(cè)、驗(yàn)證等活動(dòng),但很少運(yùn)用數(shù)學(xué)知識(shí)進(jìn)行簡(jiǎn)單的推理。有人說(shuō),推理是中學(xué)的.事。其實(shí)不然,推理是數(shù)學(xué)的基本思維方式,也是人們學(xué)習(xí)和生活中經(jīng)常使用的思維方式。如果忽視學(xué)生推理能力的培養(yǎng),會(huì)在很大程度上阻礙數(shù)學(xué)思維的發(fā)展。所以,重視學(xué)生在具體、豐富的活動(dòng)中經(jīng)歷數(shù)學(xué)知識(shí)的形成過(guò)程,獲得體驗(yàn)的同時(shí),更要注重學(xué)生從已有的數(shù)學(xué)事實(shí)出發(fā),展開(kāi)合情推理和演繹推理。小學(xué)幾何常被稱(chēng)為“經(jīng)驗(yàn)幾何”,這并不意味著幾何教學(xué)無(wú)須承擔(dān)發(fā)展推理能力的重任。對(duì)于六年級(jí)學(xué)生來(lái)說(shuō),已經(jīng)積累了相當(dāng)豐富的研究平面圖形的知識(shí)經(jīng)驗(yàn),已經(jīng)初步認(rèn)識(shí)了立體圖形,并且積累了豐富的觀察物體的經(jīng)驗(yàn),這些知識(shí)經(jīng)驗(yàn)基礎(chǔ)使學(xué)生探索長(zhǎng)方體的特征沒(méi)有任何障礙。因此,從已有的知識(shí)經(jīng)驗(yàn)出發(fā),更好地發(fā)展學(xué)生的空間觀念理應(yīng)成為教學(xué)的訴求。實(shí)踐表明:從學(xué)生熟悉的面(長(zhǎng)方形)的數(shù)量和特征出發(fā),聯(lián)系面圍成體的活動(dòng)經(jīng)驗(yàn),對(duì)棱的條數(shù)、頂點(diǎn)的個(gè)數(shù)及棱的特征展開(kāi)驗(yàn)證性推理是非常有價(jià)值的。這其中有憑借經(jīng)驗(yàn)和直覺(jué),通過(guò)歸納和類(lèi)比進(jìn)行的推測(cè),也有依據(jù)已有的某個(gè)事實(shí),按照邏輯和運(yùn)算進(jìn)行的推理。形式化結(jié)果的解釋也蘊(yùn)含著豐富的推理,由面到棱和由棱到面的特征推斷讓我們看到了證明的雛形。這些都促進(jìn)了學(xué)生數(shù)學(xué)思維的發(fā)展。

  二、空間觀念是具象的,也是關(guān)系的

  一般認(rèn)為,小學(xué)階段幾何圖形教學(xué)承載的空間觀念目標(biāo)主要是能進(jìn)行實(shí)物和圖形間轉(zhuǎn)換。這種空間觀念是相對(duì)“具象的”。實(shí)踐表明:要實(shí)現(xiàn)實(shí)物與圖形間的轉(zhuǎn)換,學(xué)生的認(rèn)知結(jié)構(gòu)中必須建立準(zhǔn)確的模型。這就要求,對(duì)圖形的認(rèn)識(shí)不能停留于直觀建構(gòu),而要適度抽象為頭腦中的模型,這種模型的穩(wěn)固形成依賴(lài)于對(duì)圖形基本元素關(guān)系的理性思辨。否則,學(xué)生頭腦中的模型依然是模糊的,不能隨時(shí)順利提取和準(zhǔn)確利用。引導(dǎo)六年級(jí)的學(xué)生有意識(shí)地思考長(zhǎng)方體的基本元素——面、棱、頂點(diǎn)之間關(guān)系,不僅必要而且可行。這種關(guān)系的找尋以棱和頂點(diǎn)的概念為出發(fā)點(diǎn),以各自數(shù)量之間的關(guān)系、面和棱的特征聯(lián)系為主要研究對(duì)象。教師引導(dǎo)學(xué)生以長(zhǎng)方體的模型和直觀圖為依托,首先考量面的個(gè)數(shù)與棱的條數(shù)之間的關(guān)系,深化了對(duì)“兩個(gè)面相交的線(xiàn)叫做棱”這一概念的認(rèn)識(shí);接著由面的個(gè)數(shù)到頂點(diǎn)的個(gè)數(shù)的推算則從面的角度揭示了頂點(diǎn)的形成;后來(lái)又逆向地從棱到頂點(diǎn)、棱到面、頂點(diǎn)到棱、頂點(diǎn)到面等角度全方位、深刻揭示了各元素之間的內(nèi)在聯(lián)系:三條棱相交的點(diǎn)叫做頂點(diǎn),四條棱圍成了一個(gè)面,一條棱的兩個(gè)端點(diǎn)就是兩個(gè)頂點(diǎn),一個(gè)長(zhǎng)方形四個(gè)角的頂點(diǎn)就長(zhǎng)方體的頂點(diǎn)等。教者還引導(dǎo)學(xué)生從面的特征推理出棱的特征、從棱的特征推理出面的特征,這也深刻揭示著面和棱之間的密切聯(lián)系,溝通了面與體的內(nèi)在聯(lián)系。這些元素關(guān)系的建立極大地明晰了學(xué)生認(rèn)知結(jié)構(gòu)中的長(zhǎng)方體模型,為后面學(xué)習(xí)長(zhǎng)(正)方體展開(kāi)圖、長(zhǎng)方體的表面積等知識(shí)提供了堅(jiān)實(shí)的觀念基礎(chǔ)。

  三、課堂思考是個(gè)體的,也是群體的

  學(xué)生獨(dú)立思考的能力是在教師的引導(dǎo)和與同伴的思維碰撞中逐漸形成和發(fā)展的。課堂中學(xué)生要進(jìn)行獨(dú)立思考,但個(gè)體思維的成果也需要與同伴的交流和碰撞。這其中,教師是促進(jìn)個(gè)體思維深入、群體思維共享的組織者和引導(dǎo)者。當(dāng)個(gè)體思維依靠自身的力量不能打開(kāi)或難以實(shí)現(xiàn)轉(zhuǎn)換時(shí),教師的示范和引導(dǎo)便成為重要的源頭。正如學(xué)生面對(duì)由對(duì)面、棱、頂點(diǎn)的“是多少”向“為什么”的思考躍進(jìn)時(shí),教師示范提出了“為什么”的問(wèn)題,將思維聚焦于利用關(guān)系推算數(shù)量,從而搭建起一個(gè)對(duì)原有信息整理分類(lèi)、分析關(guān)系的思維橋梁。這也激活了學(xué)生自主提問(wèn)和思考的方向,學(xué)生的思維隨著有價(jià)值的問(wèn)題的提出不斷展開(kāi),個(gè)體思維的豐富成果不斷被演化和推廣。在由此及彼的類(lèi)比處,教師適時(shí)的點(diǎn)撥:“剛才我們是由面的個(gè)數(shù),根據(jù)面與棱、頂點(diǎn)之間的關(guān)系推算出棱的條數(shù)、頂點(diǎn)的個(gè)數(shù)。你還想研究什么問(wèn)題?”再次打開(kāi)學(xué)生的思路,促進(jìn)自主提問(wèn)和思考的深入。在研究似乎可以告一段落時(shí),教師畫(huà)龍點(diǎn)睛式的追問(wèn)“有什么規(guī)律”,再次引發(fā)群體思維的風(fēng)暴。而后,學(xué)生群體水到渠成地“證明”棱的特征、面的特征,更展現(xiàn)出思維的無(wú)限潛力。這么豐富的思辨成果只有在教師的引導(dǎo)和點(diǎn)撥下通過(guò)群體的思維才能不斷地展現(xiàn)。

【《長(zhǎng)方體和正方體的認(rèn)識(shí)》教案設(shè)計(jì)】相關(guān)文章:

《長(zhǎng)方體和正方體的認(rèn)識(shí)》教案設(shè)計(jì)范文06-24

長(zhǎng)方體和正方體的認(rèn)識(shí)說(shuō)課稿02-05

長(zhǎng)方體和正方體的認(rèn)識(shí)說(shuō)課稿11-02

《長(zhǎng)方體和正方體的認(rèn)識(shí)》教案06-24

《長(zhǎng)方體和正方體的認(rèn)識(shí)》說(shuō)課稿11-26

《長(zhǎng)方體和正方體的認(rèn)識(shí)》教案08-25

長(zhǎng)方體和正方體教案設(shè)計(jì)08-28

長(zhǎng)方體和正方體認(rèn)識(shí)的教學(xué)設(shè)計(jì)06-29

《長(zhǎng)方體和正方體的認(rèn)識(shí)》教學(xué)設(shè)計(jì)07-03