毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

《對數(shù)函數(shù)的圖像與性質(zhì)》教案

時間:2021-06-24 19:06:24 教案 我要投稿

《對數(shù)函數(shù)的圖像與性質(zhì)》教案

  案例背景

《對數(shù)函數(shù)的圖像與性質(zhì)》教案

  對數(shù)函數(shù)是函數(shù)中又一類重要的基本初等函數(shù),它是在學(xué)生已經(jīng)學(xué)過對數(shù)與常用對數(shù),反函數(shù)以及指數(shù)函數(shù)的基礎(chǔ)上引入的.故是對上述知識的應(yīng)用,也是對函數(shù)這一重要數(shù)學(xué)思想的進一步認(rèn)識與理解.對數(shù)函數(shù)的概念,圖象與性質(zhì)的學(xué)習(xí)使學(xué)生的知識體系更加完整,系統(tǒng),同時又是對數(shù)和函數(shù)知識的拓展與延伸.它是解決有關(guān)自然科學(xué)領(lǐng)域中實際問題的重要工具,是學(xué)生今后學(xué)習(xí)對數(shù)方程,對數(shù)不等式的基礎(chǔ).

  案例敘述:

  (一).創(chuàng)設(shè)情境

 。◣煟呵懊娴膸追N函數(shù)都是以形式定義的方式給出的,今天我們將從反函數(shù)的角度介紹新的函數(shù).

  反函數(shù)的實質(zhì)是研究兩個函數(shù)的關(guān)系,所以自然我們應(yīng)從大家熟悉的函數(shù)出發(fā),再研究其反函數(shù).這個熟悉的函數(shù)就是指數(shù)函數(shù).

  (提問):什么是指數(shù)函數(shù)?指數(shù)函數(shù)存在反函數(shù)嗎?

 。▽W(xué)生): 是指數(shù)函數(shù),它是存在反函數(shù)的.

 。◣煟呵蠓春瘮(shù)的步驟

  (由一個學(xué)生口答求反函數(shù)的過程):

  由 得 .又 的值域為 ,

  所求反函數(shù)為 .

  (師):那么我們今天就是研究指數(shù)函數(shù)的反函數(shù)-----對數(shù)函數(shù).

  (二)新課

  1.(板書) 定義:函數(shù) 的反函數(shù) 叫做對數(shù)函數(shù).

 。◣煟河捎诙x就是從反函數(shù)角度給出的,所以下面我們的研究就從這個角度出發(fā).如從定義中你能了解對數(shù)函數(shù)的什么性質(zhì)嗎?最初步的認(rèn)識是什么?

  (教師提示學(xué)生從反函數(shù)的三定與三反去認(rèn)識,學(xué)生自主探究,合作交流)

 。▽W(xué)生)對數(shù)函數(shù)的定義域為 ,對數(shù)函數(shù)的值域為 ,且底數(shù) 就是指數(shù)函數(shù)中的 ,故有著相同的限制條件 .

 。ㄔ诖嘶A(chǔ)上,我們將一起來研究對數(shù)函數(shù)的圖像與性質(zhì).)

  2.研究對數(shù)函數(shù)的圖像與性質(zhì)

 。ㄌ釂枺┯檬裁捶椒▉懋嫼瘮(shù)圖像?

  (學(xué)生1)利用互為反函數(shù)的兩個函數(shù)圖像之間的關(guān)系,利用圖像變換法畫圖.

  (學(xué)生2)用列表描點法也是可以的。

  請學(xué)生從中上述方法中選出一種,大家最終確定用圖像變換法畫圖.

  (師)由于指數(shù)函數(shù)的圖像按 和 分成兩種不同的類型,故對數(shù)函數(shù)的圖像也應(yīng)以1為分界線分成兩種情況 和 ,并分別以 和 為例畫圖.

  具體操作時,要求學(xué)生做到:

  (1) 指數(shù)函數(shù) 和 的圖像要盡量準(zhǔn)確(關(guān)鍵點的位置,圖像的變化趨勢等).

  (2) 畫出直線 .

  (3) 的圖像在翻折時先將特殊點 對稱點 找到,變化趨勢由靠近 軸對稱為逐漸靠近 軸,而 的圖像在翻折時可提示學(xué)生分兩段翻折,在 左側(cè)的先翻,然后再翻在 右側(cè)的部分.

  學(xué)生在筆記本完成具體操作,教師在學(xué)生完成后將關(guān)鍵步驟在黑板上演示一遍,畫出

  和 的圖像.(此時同底的指數(shù)函數(shù)和對數(shù)函數(shù)畫在同一坐標(biāo)系內(nèi))如圖:

  教師畫完圖后再利用電腦將 和 的圖像畫在同一坐標(biāo)系內(nèi),如圖:

  然后提出讓學(xué)生根據(jù)圖像說出對數(shù)函數(shù)的性質(zhì)(要求從幾何與代數(shù)兩個角度說明)

  3. 性質(zhì)

  (1) 定義域:

  (2) 值域:

  由以上兩條可說明圖像位于 軸的右側(cè).

  (3)圖像恒過(1,0)

  (4) 奇偶性:既不是奇函數(shù)也不是偶函數(shù),即它不關(guān)于原點對稱,也不關(guān)于 軸對稱.

  (5) 單調(diào)性:與 有關(guān).當(dāng) 時,在 上是增函數(shù).即圖像是上升的

  當(dāng) 時,在 上是減函數(shù),即圖像是下降的.

  之后可以追問學(xué)生有沒有最大值和最小值,當(dāng)?shù)玫椒穸ù鸢笗r,可以再問能否看待何時函數(shù)值為正?學(xué)生看著圖可以答出應(yīng)有兩種情況:

  當(dāng) 時,有 ;當(dāng) 時,有 .

  學(xué)生回答后教師可指導(dǎo)學(xué)生巧記這個結(jié)論的方法:當(dāng)?shù)讛?shù)與真數(shù)在1的同側(cè)時函數(shù)值為正,當(dāng)?shù)讛?shù)與真數(shù)在1的兩側(cè)時,函數(shù)值為負,并把它當(dāng)作第(6)條性質(zhì)板書記下來.

  最后教師在總結(jié)時,強調(diào)記住性質(zhì)的關(guān)鍵在于要腦中有圖.且應(yīng)將其性質(zhì)與指數(shù)函數(shù)的性質(zhì)對比記憶.(特別強調(diào)它們單調(diào)性的一致性)

  對圖像和性質(zhì)有了一定的了解后,一起來看看它們的應(yīng)用.

  (三).簡單應(yīng)用

  1. 研究相關(guān)函數(shù)的性質(zhì)

  例1. 求下列函數(shù)的定義域:

  (1) (2) (3)

  先由學(xué)生依次列出相應(yīng)的不等式,其中特別要注意對數(shù)中真數(shù)和底數(shù)的條件限制.

  2. 利用單調(diào)性比較大小

  例2. 比較下列各組數(shù)的'大小

  (1) 與 ; (2) 與 ;

  (3) 與 ; (4) 與 .

  讓學(xué)生先說出各組數(shù)的特征即它們的底數(shù)相同,故可以構(gòu)造對數(shù)函數(shù)利用單調(diào)性來比大。詈笞寣W(xué)生以其中一組為例寫出詳細的比較過程.

  三.拓展練習(xí)

  練習(xí):若 ,求 的取值范圍.

  四.小結(jié)及作業(yè)

  案例反思:

  本節(jié)的重點是理解對數(shù)函數(shù)的定義,掌握對數(shù)函數(shù)的圖象性質(zhì).難點是利用指數(shù)函數(shù)的圖象和性質(zhì)得到對數(shù)函數(shù)的圖象和性質(zhì).由于對數(shù)函數(shù)的概念是一個抽象的形式,學(xué)生不易理解,而且又是建立在指數(shù)與對數(shù)關(guān)系和反函數(shù)概念的基礎(chǔ)上,通過互為反函數(shù)的兩個函數(shù)的關(guān)系由已知函數(shù)研究未知函數(shù)的性質(zhì),這種方法是第一次使用,學(xué)生不適應(yīng),把握不住關(guān)鍵,因而在上采取教師逐步引導(dǎo),學(xué)生自主合作的方式,從學(xué)生熟悉的指數(shù)問題出發(fā),通過對指數(shù)函數(shù)的認(rèn)識逐步轉(zhuǎn)化為對對數(shù)函數(shù)的認(rèn)識,而且畫對數(shù)函數(shù)圖象時,既要考慮到對底數(shù)的分類討論而且對每一類問題也可以多選幾個不同的底,畫在同一個坐標(biāo)系內(nèi),便于觀察圖象的特征,找出共性,歸納性質(zhì).

【《對數(shù)函數(shù)的圖像與性質(zhì)》教案】相關(guān)文章:

《對數(shù)函數(shù)的圖像與性質(zhì)》說課稿11-09

《對數(shù)函數(shù)的圖像與性質(zhì)》說課稿12-31

《對數(shù)函數(shù)圖像與性質(zhì)》說課稿07-06

對數(shù)函數(shù)的圖像與性質(zhì)說課稿11-04

《對數(shù)函數(shù)的圖像與性質(zhì)》說課稿范文11-09

《對數(shù)函數(shù)的圖像與性質(zhì)》的說課稿范文04-02

對數(shù)函數(shù)的圖像和性質(zhì)說課稿04-02

對數(shù)函數(shù)及其圖像與性質(zhì)試題03-31

對數(shù)函數(shù)的圖像與性質(zhì)優(yōu)秀說課稿模板04-02