毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

余弦定理的教案

時間:2021-04-20 17:20:43 教案 我要投稿

余弦定理的教案

  作為一位杰出的老師,時常要開展教案準(zhǔn)備工作,編寫教案有利于我們準(zhǔn)確把握教材的重點(diǎn)與難點(diǎn),進(jìn)而選擇恰當(dāng)?shù)慕虒W(xué)方法。如何把教案做到重點(diǎn)突出呢?以下是小編收集整理的余弦定理的教案,歡迎閱讀與收藏。

余弦定理的教案

  余弦定理的教案1

  一、教材分析

  《余弦定理》選自人教A版高中數(shù)學(xué)必修五第一章第一節(jié)第一課時。本節(jié)課的主要教學(xué)內(nèi)容是余弦定理的內(nèi)容及證明,以及運(yùn)用余弦定理解決“兩邊一夾角”“三邊”的解三角形問題。

  余弦定理的學(xué)習(xí)有充分的基礎(chǔ),初中的勾股定理、必修一中的向量知識、上一課時的正弦定理都是本節(jié)課內(nèi)容學(xué)習(xí)的知識基礎(chǔ),同時又對本節(jié)課的學(xué)習(xí)提供了一定的方法指導(dǎo)。其次,余弦定理在高中解三角形問題中有著重要的地位,是解決各種解三角形問題的常用方法,余弦定理也經(jīng)常運(yùn)用于空間幾何中,所以余弦定理是高中數(shù)學(xué)學(xué)習(xí)的一個十分重要的內(nèi)容。

  二、教學(xué)目標(biāo)

  知識與技能:

  1、理解并掌握余弦定理和余弦定理的推論。

  2、掌握余弦定理的推導(dǎo)、證明過程。

  3、能運(yùn)用余弦定理及其推論解決“兩邊一夾角”“三邊”問題。 過程與方法:

  1、通過從實際問題中抽象出數(shù)學(xué)問題,培養(yǎng)學(xué)生知識的遷移能力。

  2、通過直角三角形到一般三角形的過渡,培養(yǎng)學(xué)生歸納總結(jié)能力。

  3、通過余弦定理推導(dǎo)證明的過程,培養(yǎng)學(xué)生運(yùn)用所學(xué)知識解決實際問題的能力。

  情感態(tài)度與價值觀:

  1、在交流合作的過程中增強(qiáng)合作探究、團(tuán)結(jié)協(xié)作精神,體驗 解決問題的成功喜悅。

  2、感受數(shù)學(xué)一般規(guī)律的美感,培養(yǎng)數(shù)學(xué)學(xué)習(xí)的興趣。

  三、教學(xué)重難點(diǎn)

  重點(diǎn):余弦定理及其推論和余弦定理的運(yùn)用。

  難點(diǎn):余弦定理的發(fā)現(xiàn)和推導(dǎo)過程以及多解情況的判斷。

  四、教學(xué)用具

  普通教學(xué)工具、多媒體工具 (以上均為命題教學(xué)的準(zhǔn)備)

  余弦定理的教案2

  一、教學(xué)內(nèi)容分析

  人教版《普通高中課程標(biāo)準(zhǔn)實驗教科書·必修(五)》(第2版)第一章《解三角形》第一單元第二課《余弦定理》。通過利用向量的數(shù)量積方法推導(dǎo)余弦定理,正確理解其結(jié)構(gòu)特征和表現(xiàn)形式,解決“邊、角、邊”和“邊、邊、邊”問題,初步體會余弦定理解決“邊、邊、角”,體會方程思想,激發(fā)學(xué)生探究數(shù)學(xué),應(yīng)用數(shù)學(xué)的潛能。

  二、學(xué)生學(xué)習(xí)情況分析

  本課之前,學(xué)生已經(jīng)學(xué)習(xí)了三角函數(shù)、向量基本知識和正弦定理有關(guān)內(nèi)容,對于三角形中的邊角關(guān)系有了較進(jìn)一步的認(rèn)識。在此基礎(chǔ)上利用向量方法探求余弦定理,學(xué)生已有一定的學(xué)習(xí)基礎(chǔ)和學(xué)習(xí)興趣?傮w上學(xué)生應(yīng)用數(shù)學(xué)知識的意識不強(qiáng),創(chuàng)造力較弱,看待與分析問題不深入,知識的系統(tǒng)性不完善,使得學(xué)生在余弦定理推導(dǎo)方法的探求上有一定的難度,在發(fā)掘出余弦定理的結(jié)構(gòu)特征、表現(xiàn)形式的數(shù)學(xué)美時,能夠激發(fā)學(xué)生熱愛數(shù)學(xué)的思想感情;從具體問題中抽象出數(shù)學(xué)的本質(zhì),應(yīng)用方程的思想去審視,解決問題是學(xué)生學(xué)習(xí)的一大難點(diǎn)。

  三、設(shè)計思想

  新課程的數(shù)學(xué)提倡學(xué)生動手實踐,自主探索,合作交流,深刻地理解基本結(jié)論的本質(zhì),體驗數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的歷程,力求對現(xiàn)實世界蘊(yùn)涵的一些數(shù)學(xué)模式進(jìn)行思考,作出判斷;同時要求教師從知識的傳授者向課堂的設(shè)計者、組織者、引導(dǎo)者、合作者轉(zhuǎn)化,從課堂的執(zhí)行者向?qū)嵤┱、探究開發(fā)者轉(zhuǎn)化。本課盡力追求新課程要求,利用師生的互動合作,提高學(xué)生的數(shù)學(xué)思維能力,發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用意識和創(chuàng)新意識,深刻地體會數(shù)學(xué)思想方法及數(shù)學(xué)的應(yīng)用,激發(fā)學(xué)生探究數(shù)學(xué)、應(yīng)用數(shù)學(xué)知識的潛能。

  四、教學(xué)目標(biāo)

  繼續(xù)探索三角形的邊長與角度間的具體量化關(guān)系、掌握余弦定理的兩種表現(xiàn)形式,體會向量方法推導(dǎo)余弦定理的思想;通過實踐演算運(yùn)用余弦定理解決“邊、角、邊”及“邊、邊、邊”問題;深化與細(xì)化方程思想,理解余弦定理的本質(zhì)。通過相關(guān)教學(xué)知識的聯(lián)系性,理解事物間的普遍聯(lián)系性。

  五、教學(xué)重點(diǎn)與難點(diǎn)

  教學(xué)重點(diǎn)是余弦定理的發(fā)現(xiàn)過程及定理的應(yīng)用;教學(xué)難點(diǎn)是用向量的數(shù)量積推導(dǎo)余弦定理的思路方法及余弦定理在應(yīng)用求解三角形時的思路。

  六、教學(xué)過程:

  七、教學(xué)反思

  本課的教學(xué)應(yīng)具有承上啟下的目的。因此在教學(xué)設(shè)計時既要兼顧前后知識的聯(lián)系,又要使學(xué)生明確本課學(xué)習(xí)的重點(diǎn),將新舊知識逐漸地融為一體,構(gòu)建比較完整的知識系統(tǒng)。所以在余弦定理的表現(xiàn)方式、結(jié)構(gòu)特征上重加指導(dǎo),只有當(dāng)學(xué)生正確地理解了余弦定理的本質(zhì),才能更好地應(yīng)用求解問題。本課教學(xué)設(shè)計力求在型(模型、類型),質(zhì)(實質(zhì)、本質(zhì)),思(思維、思想方法)上達(dá)到教學(xué)效果。本課之前學(xué)生已學(xué)習(xí)過三角函數(shù),平面幾何,平面向量、解析幾何、正弦定理等與本課緊密聯(lián)系的內(nèi)容,使本課有了較多的處理工具,也使余弦定理的探討有了更加簡潔的工具。因此在本課的教學(xué)設(shè)計中抓住前后知識的聯(lián)系,重視數(shù)學(xué)思想的教學(xué),加深對數(shù)學(xué)概念本質(zhì)的理解,認(rèn)識數(shù)學(xué)與實際的聯(lián)系,學(xué)會應(yīng)用數(shù)學(xué)知識和方法解決一些實際問題。學(xué)生應(yīng)用數(shù)學(xué)的意識不強(qiáng),創(chuàng)造力不足、看待問題不深入,很大原因在于學(xué)生的知識系統(tǒng)不夠完善。因此本課運(yùn)用聯(lián)系的觀點(diǎn),從多角度看待問題,在提出問題、思考分析問題、解決問題等多方面對學(xué)生進(jìn)行示范引導(dǎo),將舊知識與新知識進(jìn)行重組擬合及提高,幫助學(xué)生建立自己的良好知識結(jié)構(gòu)。

  余弦定理的教案3

  一、單元教學(xué)內(nèi)容

  運(yùn)算定律P——P

  二、單元教學(xué)目標(biāo)

  1、探索和理解加法交換律、結(jié)合律,乘法交換律、結(jié)合律和分配律,能運(yùn)用運(yùn)算定律進(jìn)行一些簡便計算。

  2、理解和掌握減法和除法的運(yùn)算性質(zhì),并能應(yīng)用這些運(yùn)算性質(zhì)進(jìn)行簡便計算。

  3、會應(yīng)用運(yùn)算律進(jìn)行一些簡便運(yùn)算,掌握運(yùn)算技巧,提高計算能力。

  4、在經(jīng)歷運(yùn)算定律和運(yùn)算性質(zhì)的發(fā)現(xiàn)過程中,體驗歸納、總結(jié)和抽象的數(shù)學(xué)思維方法。

  5、在經(jīng)歷運(yùn)算定律的字母公式形成過程中,能進(jìn)行有條理地思考,并表達(dá)自己的思考結(jié)果。

  6、經(jīng)歷簡便計算過程,感受數(shù)的運(yùn)算與日常生活的密切聯(lián)系,并在活動中學(xué)會與他人合作。

  7、在經(jīng)歷解決問題的過程中,體驗運(yùn)算律的`價值,增強(qiáng)應(yīng)用數(shù)學(xué)的意識。

  三、單元教學(xué)重、難點(diǎn)

  1、理解加法交換律、結(jié)合律,乘法交換律、結(jié)合律和分配律,能運(yùn)用運(yùn)算定律進(jìn)行一些簡便計算。

  2、理解和掌握減法和除法的運(yùn)算性質(zhì),并能應(yīng)用這些運(yùn)算性質(zhì)進(jìn)行簡便計算。

  四、單元教學(xué)安排

  運(yùn)算定律10課時

  第1課時 加法交換律和結(jié)合律

  一、教學(xué)內(nèi)容:加法交換律和結(jié)合律P17——P18

  二、教學(xué)目標(biāo):

  1、在解決實際問題的過程中,發(fā)現(xiàn)并掌握加法交換律和結(jié)合律,學(xué)會用字母表示加法交換律和結(jié)合律。

  2、在探索運(yùn)算律的過程中,發(fā)展分析、比較、抽象、概括能力,培養(yǎng)學(xué)生的符號感。

  3、培養(yǎng)學(xué)生的觀察能力和概括能力。

  三、教學(xué)重難點(diǎn)

  重點(diǎn):發(fā)現(xiàn)并掌握加法交換律、結(jié)合律。

  難點(diǎn):由具體上升到抽象,概括出加法交換律和加法結(jié)合律。

  四、教學(xué)準(zhǔn)備

  多媒體課件

  五、教學(xué)過程

 。ㄒ唬⿲(dǎo)入新授

  1、出示教材第17頁情境圖。

  師:在我們班里,有多少同學(xué)會騎自行車?你最遠(yuǎn)騎到什么地方? 師生交流后,課件出示李叔叔騎車旅行的場景:騎車是一項有益健康的運(yùn)動,你看,這位李叔叔正在騎車旅行呢!

  2、獲取信息。

  師:從中你知道了哪些數(shù)學(xué)信息?(學(xué)生回答)

  3、師小結(jié)信息,引出課題:加法交換律和結(jié)合律。

 。ǘ┨剿靼l(fā)現(xiàn)

  第一環(huán)節(jié) 探索加法交換律

  1、課件繼續(xù)出示:“李叔叔今天上午騎了40km,下午騎了56km,一共騎了多少千米?”

  學(xué)生口頭列式,教師板書出示: 40+56=96(千米) 56+40=96(千米) 你能用等號把這兩道算式寫成一個等式嗎? 40+56=56+40 你還能再寫出幾個這樣的等式嗎?

  學(xué)生獨(dú)自寫出幾個這樣的等式,并在小組內(nèi)交流各自寫出的等式,互相檢驗

  寫出的等式是否符合要求。

  2、觀察寫出的這些算式,你有什么發(fā)現(xiàn)?并用自己喜歡的方式表示出來。 全班交流。從這些算式可以發(fā)現(xiàn):兩個數(shù)相加,交換加數(shù)的位置,和不變?梢杂梅杹肀硎荆?+☆=☆+?;

  可以用文字來表示:甲數(shù)十乙數(shù)=乙數(shù)十甲數(shù)。

  3、如果用字母a、b分別表示兩個加數(shù),又可以怎樣來表示發(fā)現(xiàn)的這個規(guī)律呢? a+b=b+a

  教師指出:這就是加法交換律。

  4、初步應(yīng)用:在( )里填上合適的數(shù)。

  37+36=36+( )305+49=( )+305b+100=( )+b 47+( )=126+( ) m+( )=n+( ) 13+24=( )+( )第二環(huán)節(jié) 探索加法結(jié)合律

  1、課件出示教材第18頁例2情境圖。

  師:從例2的情境圖中,你獲得了哪些信息?

  師生交流后提出問題:要求“李叔叔三天一共騎了多少千米”可以怎樣列式? 學(xué)生獨(dú)立列式,指名匯報。 匯報預(yù)設(shè):

  方法一:先算出“第一天和第二天共騎了多少千米”: (88+104)+96=192+96 =288(千米)

  方法二:先算出“第二天和第三天共騎了多少千米”: 88+(104+96)=88+200=288(千米)

  把這兩道算式寫成一道等式:

 。88+104)+96=88+(104+96)

  2、算一算,下面的○里能填上等號嗎?

  (45+25)+13○45+(25+13)(36+18)+22○36+(18+22)

  小組討論。先比較每組的兩個算式,再比較這三組算式,在小組里說說你有

  什么發(fā)現(xiàn)。

  集體交流,使學(xué)生明確:三個算式加數(shù)沒變,加數(shù)的位置也沒變,運(yùn)算的順序變了,它們的和不變。也就是:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。

  3、如果用字母a、b、c分別表示三個加數(shù),可以怎樣用字母來表示這個規(guī)律呢? (a+b)+c=a+(b+c)

  教師指出:這就是加法結(jié)合律。

  4、初步應(yīng)用。

  在橫線上填上合適的數(shù)。 (45+36)+64=45+(36+) (560+)+ =560+(140+70) (360+)+108=360+(92+) (57+c)+d=57+(+)

 。ㄈ╈柟贪l(fā)散

  1、完成教材第18頁“做一做”。

  學(xué)生獨(dú)立填寫,組織匯報時,讓學(xué)生說說是根據(jù)什么運(yùn)算律填寫的。

  2、下面各等式哪些符合加法交換律,哪些符合加法結(jié)合律?

 。1)470+320=320+470

 。2)a+55+45=55+45+a

  (3)(27+65)+35=27+(65+35)

 。4)70+80+40=70+40+80

 。5)60+(a+50)=(60+a)+50

 。6)b+900=900+b

 。ㄋ模┰u價反饋

  通過今天這節(jié)課的學(xué)習(xí),你有哪些收獲?

  師生交流后總結(jié):學(xué)習(xí)了加法交換律和結(jié)合律,并知道了如何用符號和字母來表示發(fā)現(xiàn)的規(guī)律。

 。ㄎ澹┌鍟O(shè)計

  加法交換律和結(jié)合律

  加法交換律加法結(jié)合律

  例1:李叔叔今天一共騎了多少千米? 例2:李叔叔三天一共騎了多少千米? 40+56=96(千米) (88+104) +96 88+(104+96) 56+40=96(千米)=192+96 =88+200=288(千米) =288(千米) 40+56=56+40 (88+104)+96=88+(104+96) a+b=b+a (a+b)+c=a+(b+c)

  兩個數(shù)相加,交換加數(shù)的位置,和不變。

  六、教學(xué)后記

  三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。

【余弦定理的教案】相關(guān)文章:

余弦定理說課稿6篇11-12

檢閱的教案02-19

美術(shù)的教案02-28

草原的教案02-21

籃球的教案02-19

背影的教案09-21

背影的教案11-19

《常見的標(biāo)志》教案02-26

理想的翅膀教案02-22

可貴的沉默教案02-21