《正弦定理》教案
作為一名無私奉獻(xiàn)的老師,通常會被要求編寫教案,教案有助于學(xué)生理解并掌握系統(tǒng)的知識。那要怎么寫好教案呢?以下是小編為大家收集的《正弦定理》教案,歡迎大家分享。
一、教學(xué)內(nèi)容分析
本節(jié)課是高一數(shù)學(xué)第五章《三角比》第三單元中正弦定理的第一課時,它既是初中“解直角三角形”內(nèi)容的直接延拓,也是坐標(biāo)法等知識在三角形中的具體運(yùn)用,是生產(chǎn)、生活實(shí)際問題的重要工具,正弦定理揭示了任意三角形的邊角之間的一種等量關(guān)系,它與后面的余弦定理都是解三角形的重要工具。
本節(jié)課其主要任務(wù)是引入證明正弦定理及正弦定理的基本應(yīng)用,在課型上屬于“定理教學(xué)課”。因此,做好“正弦定理”的教學(xué),不僅能復(fù)習(xí)鞏固舊知識,使學(xué)生掌握新的有用的知識,體會聯(lián)系、發(fā)展等辯證觀點(diǎn),學(xué)生通過對定理證明的探究和討論,體驗(yàn)到數(shù)學(xué)發(fā)現(xiàn)和創(chuàng)造的.歷程,進(jìn)而培養(yǎng)學(xué)生提出問題、解決問題等研究性學(xué)習(xí)的能力。
二、學(xué)情分析
對高一的學(xué)生來說,一方面已經(jīng)學(xué)習(xí)了平面幾何,解直角三角形,任意角的三角比等知識,具有一定觀察分析、解決問題的能力;但另一方面對新舊知識間的聯(lián)系、理解、應(yīng)用往往會出現(xiàn)思維障礙,思維靈活性、深刻性受到制約。根據(jù)以上特點(diǎn),教師恰當(dāng)引導(dǎo),提高學(xué)生學(xué)習(xí)主動性,注意前后知識間的聯(lián)系,引導(dǎo)學(xué)生直接參與分析問題、解決問題。
三、設(shè)計(jì)思想:
培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)、學(xué)會探究是全面發(fā)展學(xué)生能力的重要方面,也是高中新課程改革的主要任務(wù)。如何培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)、學(xué)會探究呢?建構(gòu)主義認(rèn)為:“知識不是被動吸收的,而是由認(rèn)知主體主動建構(gòu)的!边@個觀點(diǎn)從教學(xué)的角度來理解就是:知識不僅是通過教師傳授得到的,更重要的是學(xué)生在一定的情境中,運(yùn)用已有的學(xué)習(xí)經(jīng)驗(yàn),并通過與他人(在教師指導(dǎo)和學(xué)習(xí)伙伴的幫助下)協(xié)作,主動建構(gòu)而獲得的,建構(gòu)主義教學(xué)模式強(qiáng)調(diào)以學(xué)生為中心,視學(xué)生為認(rèn)知的主體,教師只對學(xué)生的意義建構(gòu)起幫助和促進(jìn)作用。本節(jié)“正弦定理”的教學(xué),將遵循這個原則而進(jìn)行設(shè)計(jì)。
四、教學(xué)目標(biāo):
1、在創(chuàng)設(shè)的問題情境中,讓學(xué)生從已有的幾何知識和處理幾何圖形的常用方法出發(fā),探索和證明正弦定理,體驗(yàn)坐標(biāo)法將幾何問題轉(zhuǎn)化為代數(shù)問題的優(yōu)越性,感受數(shù)學(xué)論證的嚴(yán)謹(jǐn)性。
2、理解三角形面積公式,能運(yùn)用正弦定理解決三角形的兩類基本問題,并初步認(rèn)識用正弦定理解三角形時,會有一解、兩解、無解三種情況。
3、通過對實(shí)際問題的探索,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用意識,激發(fā)學(xué)生學(xué)習(xí)的興趣,讓學(xué)生感受到數(shù)學(xué)知識既來源于生活,又服務(wù)與生活。
五、教學(xué)重點(diǎn)與難點(diǎn)
教學(xué)重點(diǎn):正弦定理的探索與證明;正弦定理的基本應(yīng)用。
教學(xué)難點(diǎn):正弦定理的探索與證明。
突破難點(diǎn)的手段:抓知識選擇的切入點(diǎn),從學(xué)生原有的認(rèn)知水平和所需的知識特點(diǎn)入手,教師在學(xué)生主體下給于適當(dāng)?shù)奶崾竞椭笇?dǎo)。
六、復(fù)習(xí)引入:
1、在任意三角形行中有大邊對大角,小邊對小角的邊角關(guān)系?是否可以把邊、角關(guān)系準(zhǔn)確量化?
2、在ABC中,角A、B、C的正弦對邊分別是a,b,c,你能發(fā)現(xiàn)它們之間有什么關(guān)系嗎?
結(jié)論:
證明:(向量法)過A作單位向量j垂直于AC,由AC+CB=AB邊同乘以單位向量。
正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等。
七、教學(xué)反思
本節(jié)是“正弦定理”定理的第一節(jié),在備課中有兩個問題需要精心設(shè)計(jì)。一個是問題的引入,一個是定理的證明。通過兩個實(shí)際問題引入,讓學(xué)生體會為什么要學(xué)習(xí)這節(jié)課,從學(xué)生的“最近發(fā)展區(qū)”入手進(jìn)行設(shè)計(jì),尋求解決問題的方法。具體的思路就是從解決課本的實(shí)際問題入手展開,將問題一般化導(dǎo)出三角形中的邊角關(guān)系——正弦定理。因此,做好“正弦定理”的教學(xué)既能復(fù)習(xí)鞏固舊知識,也能讓學(xué)生掌握新的有用的知識,有效提高學(xué)生解決問題的能力。
1、在教學(xué)過程中,我注重引導(dǎo)學(xué)生的思維發(fā)生,發(fā)展,讓學(xué)生體會數(shù)學(xué)問題是如何解決的,給學(xué)生解決問題的一般思路。從學(xué)生熟悉的直角三角形邊角關(guān)系,把銳角三角形和鈍角三角形的問題也轉(zhuǎn)化為直角三角形的性,從而得到解決,并滲透了分類討論思想和數(shù)形結(jié)合思想等思想。
2、在教學(xué)中我恰當(dāng)?shù)乩枚嗝襟w技術(shù),是突破教學(xué)難點(diǎn)的一個重要手段。利用《幾何畫板》探究比值的值,由動到靜,取得了很好的效果,加深了學(xué)生的印象。
3、由于設(shè)計(jì)的內(nèi)容比較的多,教學(xué)時間的超時,這說明我自己對學(xué)生情況的把握不夠準(zhǔn)確到位,致使教學(xué)過程中時間的分配不夠適當(dāng),教學(xué)語言不夠精簡,今后我一定避免此類問題,爭取更大的進(jìn)步。
【《正弦定理》教案】相關(guān)文章:
正弦定理教學(xué)反思12-23
正弦定理課后的教學(xué)反思12-18
勾股定理的逆定理說課稿12-04
勾股定理的逆定理說課稿4篇12-04
正弦函數(shù)的對稱軸10-12
半角的正弦、余弦和正切說課稿11-05
《勾股定理逆定理》的優(yōu)秀教學(xué)反思(精選5篇)12-28
《探索勾股定理》的說課稿11-30