毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

初中數(shù)學(xué)教案

時間:2022-06-01 19:09:57 教案 我要投稿

初中數(shù)學(xué)教案(通用9篇)

  作為一名教學(xué)工作者,常常要寫一份優(yōu)秀的教案,編寫教案助于積累教學(xué)經(jīng)驗,不斷提高教學(xué)質(zhì)量。怎樣寫教案才更能起到其作用呢?以下是小編為大家整理的初中數(shù)學(xué)教案,僅供參考,希望能夠幫助到大家。

初中數(shù)學(xué)教案(通用9篇)

  初中數(shù)學(xué)教案 篇1

  一、內(nèi)容特點

  在知識與方法上類似于數(shù)系的第一次擴(kuò)張。也是后繼內(nèi)容學(xué)習(xí)的基礎(chǔ)。

  內(nèi)容定位:了解無理數(shù)、實數(shù)概念,了解(算術(shù))平方根的概念;會用根號表示數(shù)的(算術(shù))平方根,會求平方根、立方根,用有理數(shù)估計一個無理數(shù)的大致范圍,實數(shù)簡單的四則運算(不要求分母有理化)。

  二、設(shè)計思路

  整體設(shè)計思路:

  無理數(shù)的引入----無理數(shù)的表示----實數(shù)及其相關(guān)概念(包括實數(shù)運算),實數(shù)的應(yīng)用貫穿于內(nèi)容的始終。

  學(xué)習(xí)對象----實數(shù)概念及其運算;學(xué)習(xí)過程----通過拼圖活動引進(jìn)無理數(shù),通過具體問題的解決說明如何表示無理數(shù),進(jìn)而建立實數(shù)概念;以類比,歸納探索的方式,尋求實數(shù)的運算法則;學(xué)習(xí)方式----操作、猜測、抽象、驗證、類比、推理等。

  具體過程:

  首先通過拼圖活動和計算器探索活動,給出無理數(shù)的概念,然后通過具體問題的解決,引入平方根和立方根的概念和開方運算。最后教科書總結(jié)實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關(guān)概念、運算律和運算性質(zhì)等。

  第一節(jié):數(shù)怎么又不夠用了:通過拼圖活動,讓學(xué)生感受無理數(shù)產(chǎn)生的實際背景和引入的必要性;借助計算器探索無理數(shù)是無限不循環(huán)小數(shù),并從中體會無限逼近的思想;會判斷一個數(shù)是有理數(shù)還是無理數(shù)。

  第二、三節(jié):平方根、立方根:如何表示正方形的邊長?它的值到底是多少?并引入算術(shù)平方根、平方根、立方根等概念和開方運算。

  第四節(jié):公園有多寬:在實際生活和生產(chǎn)實際中,對于無理數(shù)我們常常通過估算來求它的近似值,為此這一節(jié)內(nèi)容介紹估算的方法,包括通過估算比較大小,檢驗計算結(jié)果的合理性等,其目的是發(fā)展學(xué)生的數(shù)感。

  第五節(jié):用計算器開方:會用計算器求平方根和立方根。經(jīng)歷運用計算器探求數(shù)學(xué)規(guī)律的活動,發(fā)展合情推理的能力。

  第六節(jié):實數(shù)。總結(jié)實數(shù)的概念及其分類,并用類比的方法引入實數(shù)的相關(guān)概念、運算律和運算性質(zhì)等。

  三、一些建議

  1.注重概念的形成過程,讓學(xué)生在概念的形成的過程中,逐步理解所學(xué)的概念;關(guān)注學(xué)生對無理數(shù)和實數(shù)概念的意義理解。

  2.鼓勵學(xué)生進(jìn)行探索和交流,重視學(xué)生的分析、概括、交流等能力的考察。

  3.注意運用類比的方法,使學(xué)生清楚新舊知識的區(qū)別和聯(lián)系。

  4.淡化二次根式的概念。

  初中數(shù)學(xué)教案 篇2

  教學(xué)目標(biāo)

  1.了解公式的意義,使學(xué)生能用公式解決簡單的實際問題;

  2.初步培養(yǎng)學(xué)生觀察、分析及概括的能力;

  3.通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實踐又反作用于實踐。

  教學(xué)建議

  一、教學(xué)重點、難點

  重點:通過具體例子了解公式、應(yīng)用公式。

  難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。

  二、重點、難點分析

  人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導(dǎo)出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認(rèn)識和改造世界帶來很多方便。

  三、知識結(jié)構(gòu)

  本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。

  四、教法建議

  1.對于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊涵的思想,明確公式的應(yīng)用具有普遍性,達(dá)到對公式的靈活應(yīng)用。

  2.在教學(xué)過程中,應(yīng)使學(xué)生認(rèn)識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運算推導(dǎo)新公式。

  3.在解決實際問題時,學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問題。這種從特殊到一般、再從一般到特殊認(rèn)識過程,有助于提高學(xué)生分析問題、解決問題的能力。

  初中數(shù)學(xué)教案 篇3

  一、教學(xué)目的:

  1.理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進(jìn)行有關(guān)的論證和計算;

  2.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力。

  二、重點、難點

  1.教學(xué)重點:菱形的兩個判定方法。

  2.教學(xué)難點:判定方法的證明方法及運用。

  三、例題的意圖分析

  本節(jié)課安排了兩個例題,其中例1是教材P109的例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學(xué)生掌握菱形的判定方法,并會用這些判定方法進(jìn)行有關(guān)的論證和計算。這些題目的推理都比較簡單,學(xué)生掌握起來不會有什么困難,可以讓學(xué)生自己去完成。程度好一些的班級,可以選講例3。

  四、課堂引入

  1.復(fù)習(xí)

 。1)菱形的定義:一組鄰邊相等的平行四邊形;

  (2)菱形的性質(zhì)1 菱形的四條邊都相等;

  性質(zhì)2 菱形的對角線互相平分,并且每條對角線平分一組對角;

 。3)運用菱形的定義進(jìn)行菱形的判定,應(yīng)具備幾個條件?(判定:2個條件)

  2.【問題】要判定一個四邊形是菱形,除根據(jù)定義判定外,還有其它的判定方法嗎?

  3.【探究】(教材P109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉(zhuǎn)動的十字,四周圍上一根橡皮筋,做成一個四邊形。轉(zhuǎn)動木條,這個四邊形什么時候變成菱形?

  通過演示,容易得到:

  菱形判定方法1 對角線互相垂直的平行四邊形是菱形。

  注意此方法包括兩個條件:

 。1)是一個平行四邊形;

 。2)兩條對角線互相垂直。

  通過教材P109下面菱形的作圖,可以得到從一般四邊形直接判定菱形的方法:

  菱形判定方法2 四邊都相等的四邊形是菱形。

  五、例習(xí)題分析

  例1 (教材P109的例3)略

  例2(補充)已知:如圖 ABCD的對角線AC的垂直平分線與邊AD、BC分別交于E、F。

  求證:四邊形AFCE是菱形。

  證明:∵ 四邊形ABCD是平行四邊形,

  ∴ AE∥FC。

  ∴ ∠1=∠2。

  又 ∠AOE=∠COF,AO=CO,

  ∴ △AOE≌△COF。

  ∴ EO=FO。

  ∴ 四邊形AFCE是平行四邊形。

  又 EF⊥AC,

  ∴ AFCE是菱形(對角線互相垂直的平行四邊形是菱形)。

  ※例3(選講) 已知:如圖,△ABC中, ∠ACB=90°,BE平分∠ABC,CD⊥AB與D,EH⊥AB于H,CD交BE于F。

  求證:四邊形CEHF為菱形。

  略證:易證CF∥EH,CE=EH,在Rt△BCE中,∠CBE+∠CEB=90°,在Rt△BDF中,∠DBF+∠DFB=90°,因為∠CBE=∠DBF,∠CFE=∠DFB,所以∠CEB=∠CFE,所以CE=CF。

  所以,CF=CE=EH,CF∥EH,所以四邊形CEHF為菱形。

  六、隨堂練習(xí)

  1.填空:

  (1)對角線互相平分的四邊形是 ;

  (2)對角線互相垂直平分的四邊形是________;

  (3)對角線相等且互相平分的四邊形是________;

  (4)兩組對邊分別平行,且對角線 的四邊形是菱形。

  2.畫一個菱形,使它的兩條對角線長分別為6cm、8cm。

  3.如圖,O是矩形ABCD的對角線的交點,DE∥AC,CE∥BD,DE和CE相交于E,求證:四邊形OCED是菱形。

  七、課后練習(xí)

  1.下列條件中,能判定四邊形是菱形的是 ( )。

 。ˋ)兩條對角線相等

 。˙)兩條對角線互相垂直

  (C)兩條對角線相等且互相垂直

 。―)兩條對角線互相垂直平分

  2.已知:如圖,M是等腰三角形ABC底邊BC上的中點,DM⊥AB,EF⊥AB,ME⊥AC,DG⊥AC。求證:四邊形MEND是菱形.

  3.做一做:

  設(shè)計一個由菱形組成的花邊圖案,花邊的長為15 cm,寬為4 cm,由有一條對角線在同一條直線上的四個菱形組成,前一個菱形對角線的交點,是后一個菱形的一個頂點,畫出花邊圖形。

  初中數(shù)學(xué)教案 篇4

  [教學(xué)目標(biāo)]

  1、體會并了解反比例函數(shù)的圖象的意義

  2、能列表、描點、連線法畫出反比例函數(shù)的圖象

  3、通過反比例函數(shù)的圖象的分析,探索并掌握反比例函數(shù)的圖象的性質(zhì)

  [教學(xué)重點和難點]

  本節(jié)教學(xué)的重點是反比例函數(shù)的圖象及圖象的性質(zhì)

  由于反比例函數(shù)的圖象分兩支,給畫圖帶來了復(fù)雜性是本節(jié)教學(xué)的難點

  [教學(xué)過程]

  1、情境創(chuàng)設(shè)

  可以從復(fù)習(xí)一次函數(shù)的圖象開始:你還記得一次函數(shù)的圖象嗎?在回憶與交流中,進(jìn)一步認(rèn)識函數(shù)圖象的直觀有助于理解函數(shù)的性質(zhì)。轉(zhuǎn)而導(dǎo)人關(guān)注新的函數(shù)——反比例函數(shù)的圖象研究:反比例函數(shù)的圖象又會是什么樣子呢?

  2、探索活動

  探索活動1反比例函數(shù)y?

  由于反比例函數(shù)y?

  要分幾個層次來探求:

  (1)可以先估計——例如:位置(圖象所在象限、圖象與坐標(biāo)軸的交點等)、趨勢(上升、下降等);

  (2)方法與步驟——利用描點作圖;

  列表:取自變量x的哪些值?——x是不為零的任何實數(shù),所以不能取x的值的為零,但仍可以以零為基準(zhǔn),左右均勻,對稱地取值。

  描點:依據(jù)什么(數(shù)據(jù)、方法)找點?

  連線:怎樣連線?——可在各個象限內(nèi)按照自變量從小到大的順序用兩條光滑的曲線把所描的點連接起來。

  探索活動2反比例函數(shù)y?2的圖象.x2的圖象是曲線型的,且分成兩支.對此,學(xué)生第一次接觸有一定的難度,因此需x2的圖象.x

  可以引導(dǎo)學(xué)生采用多種方式進(jìn)行自主探索活動:

  2的圖象的方式與步驟進(jìn)行自主探索其圖象;x

  222(2)可以通過探索函數(shù)y?與y??之間的關(guān)系,畫出y??的圖象.xxx

  22探索活動3反比例函數(shù)y??與y?的圖象有什么共同特征?xx(1)可以用畫反比例函數(shù)y?

  引導(dǎo)學(xué)生從通過與一次函數(shù)的圖象的對比感受反比例函數(shù)圖象“曲線”及“兩支”的特征。(即雙曲線)反比例函數(shù)y?

  k(k≠0)的圖象中兩支曲線都與x軸、y軸不相交;并且當(dāng)k?0時,圖象在第一、第x

  初中數(shù)學(xué)教案 篇5

  把方程兩邊都加上(或減去)同一個數(shù)或同一個整式,就相當(dāng)于把方程中的某些項改變符號后,從方程的一邊移到另一邊,這樣的變形叫做移項。

  一、教材內(nèi)容分析

  本節(jié)課是數(shù)學(xué)人教版七年級上冊第三章第二節(jié)第二小節(jié)的內(nèi)容。這是一節(jié)“概念加例題型”課,此種課型中的學(xué)習(xí)內(nèi)容一部分是概念,一部分是運用前面的概念解決實際問題的例題。本節(jié)課主要內(nèi)容是利用移項解一元一次方程。是學(xué)生學(xué)習(xí)解一元一次方程的基礎(chǔ),這一部分內(nèi)容在方程中占有很重要的地位,是解方程、解一元一次不等式、解一元二次不等式的重要基礎(chǔ)。這類課一般采用“導(dǎo)學(xué)導(dǎo)教,當(dāng)堂訓(xùn)練”的方式進(jìn)行,教師指導(dǎo)學(xué)生學(xué)習(xí)的重點一般不放在概念上,要特別留意學(xué)生運用概念解題或做與例題類似的習(xí)題時,對概念的理解是否到位。

  二、教學(xué)目標(biāo):

  1.知識與技能:

  (1)找相等關(guān)系列一元一次方程;

 。2)用移項解一元一次方程。

 。3)掌握移項變號的基本原則

  2.過程與方法:經(jīng)歷運用方程解決實際問題的過程,發(fā)展抽象、概括、分析問題和解決問題的能力,認(rèn)識用方程解決實際問題的關(guān)鍵是建立相等關(guān)系。

  3.情感、態(tài)度:通過具體情境引入新問題,在移項法則探究的過程中,培養(yǎng)學(xué)生合作意識,滲透化歸的思想。

  三、學(xué)情分析

  針對七年級學(xué)生學(xué)習(xí)熱情高,但觀察、分析、概括能力較弱的特點,本節(jié)從實際問題入手,讓學(xué)生通過自己思考、動手,激發(fā)學(xué)生的求知欲,提高學(xué)生學(xué)習(xí)的興趣與積極性。在課堂教學(xué)中,學(xué)生主要采取自學(xué)、討論、思考、合作交流的學(xué)習(xí)方式,使學(xué)生真正成為課堂的主人,逐步培養(yǎng)學(xué)生觀察、概括、歸納的能力。

  四、教學(xué)重點

  利用移項解一元一次方程。

  五、教學(xué)難點:

  移項法則的探究過程。

  六、教學(xué)過程:

  (一)情景引入

  引例:請同學(xué)們思考這樣一個有趣的問題,我國民間流傳著許多趣味算題,多以順口溜的形式表達(dá),請看這樣一個數(shù)學(xué)問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨分別是( )

  A.3個老頭,4個梨 B.4個老頭,3個梨 C.5個老頭,6個梨 D.7個老頭,8個梨

  設(shè)計意圖:大部分同學(xué)會用算術(shù)法(答案代入法)來解答的,而這類問題我們?nèi)绾斡梅匠虂斫獯鹉兀考て饘W(xué)生求知的欲望,巧妙過渡,揭示課題。板書課題:解一元一次方程——移項

 。ǘ┏鍪緦W(xué)習(xí)目標(biāo)

  1.理解移項法,明確移項法的依據(jù),會解形如ax+b=cx+d類型 的一元一次方程。

  2.會建立方程解決簡單的實際問題。

  設(shè)計意圖:這兩個目標(biāo)的達(dá)成,也驗證了本節(jié)課學(xué)生自學(xué)的效果,這也是本節(jié)課的教學(xué)重難點。

  (三)導(dǎo)教導(dǎo)學(xué)

  1.出示自學(xué)指導(dǎo)

  自學(xué)教材問題2到例3的內(nèi)容,思考以下問題:

  (1)問題2中這批書的總數(shù)有哪幾種表示法?它們之間有什么關(guān)系?本題可作為列方程的依據(jù)的等量關(guān)系是什么?

  (2)什么是移項?移項的依據(jù)是什么?移項時應(yīng)該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學(xué)例3后請歸納解這類一元一次方程的步驟(8分鐘后,比誰能仿照問題2和例3的格式正確解答問題)

  2.學(xué)生自學(xué)

  學(xué)生根據(jù)自學(xué)提綱進(jìn)行獨立學(xué)習(xí),教師巡視,對自學(xué)速度慢的、自學(xué)能力差的、注意力不夠集中的學(xué)生給以暗示和幫扶,有利于自學(xué)后的成果展示。

  3.交流展示(小組合作展示)

 。ê献鹘涣饕唬┙滩膯栴}2中這批書的總數(shù)有哪幾種表示法?它們之間有什么關(guān)系?本題哪個相等關(guān)系可作為列方程的依據(jù)呢?

  問題2:把一些圖書分給某班學(xué)生閱讀,如果每人分3本,則剩余20本;如果每人分4本,則還缺25本.這個班有多少學(xué)生?

  1)設(shè)未知數(shù):設(shè)這個班有X名學(xué)生,根據(jù)兩種不同分法這批書的總數(shù)就有兩種表示方法,即這批書共有(3 X+20)本或(4X-25)本。

  2)找相等關(guān)系:這批書的總數(shù)是一個定值,表示同一個量的兩個不同的式子相等。(板書)

  3)根據(jù)等量關(guān)系列方程: 3x+20 = 4x-25(板書)

  【總結(jié)提升】解決“分配問題”應(yīng)用題的列方程的基本要點:

  A.找出能貫穿應(yīng)用題始終的一個不變的量。

  B.用兩個不同的式子去表示這個量。

  C.由表示這個不變的量的兩個式子相等列出方程。

  設(shè)計意圖:因為在自學(xué)提綱的引領(lǐng)下,每個小組自主學(xué)習(xí)的效果不同,反饋的意見不同,所以在展示中首先要展示學(xué)生對課本例題的理解思路。采取主動自愿的方式,一個小組主講,其它小組補充。

  (變式訓(xùn)練1)某學(xué)校組織學(xué)生共同種一批樹,如果每人種5棵,則剩下3棵;如果每人種6棵,則缺3棵樹苗,求參與種樹的人數(shù)

 。ㄖ辉O(shè)列即可)

 。ㄗ兪接(xùn)練2)我國民間流傳著許多趣味算題,多以順口溜的形式表達(dá),請看這樣一個數(shù)學(xué)問題:一群老頭去趕集,半路買了一堆梨,一人一個多一個,一人兩個少兩個,老頭和梨各多少?

  設(shè)計意圖:檢查提問學(xué)生對“分配問題”應(yīng)用題掌握的情況,學(xué)生回答后教師板書所列方程為后面教學(xué)做好鋪墊。學(xué)生會帶著“如何解這類方程?”的好奇心過渡到下一個環(huán)節(jié)的學(xué)習(xí)。

 。ê献鹘涣鞫┦裁词且祈?移項的依據(jù)是什么?移項時應(yīng)該注意什么問題?解形如“ax+b=cx+d”類型的方程中移項起了什么作用?自學(xué)例3后請歸納解這類一元一次方程的步驟。

 。ò鍟 )把等式一邊的某項改變符號后,從等式的一邊移到另一邊,這種變形叫做移項。

  《解一元一次方程——移項》教學(xué)設(shè)計(魏玉英)

  師:為什么等式(方程)可以這樣變形?依據(jù)什么?

  (出示)依據(jù)等式的基本性質(zhì)

  即:等式兩邊都加上或減去同一個數(shù)或同一個整式,所得結(jié)果仍是等式。

  師:解一元一次方程中“移項”起了什么作用?

 。ǔ鍪荆 通過移項,使等號左邊僅含未知數(shù)的項,等號右邊僅含常數(shù)的項,使方程更接近x=a的形式。(與課題對照滲透轉(zhuǎn)化思想)

  (基礎(chǔ)訓(xùn)練)搶答:判斷下列移項是否正確,如有錯誤,請修改

  《解一元一次方程——移項》教學(xué)設(shè)計(魏玉英)

  設(shè)計理念:讓各個小組憑著勢力去搶答。這五個習(xí)題重點考察學(xué)生對移項的掌握是本節(jié)課的重難點,習(xí)題分層設(shè)計且成梯度分布。

  【歸納板書】 解“ax+b=cx+d”型的一元一次方程的步驟:

  (1) 移項,

  (2) 合并同類項,

  (3) 系數(shù)化為1

 。ňC合訓(xùn)練) 解下列方程(任選兩題)

  設(shè)計理念:第(2)、(3)兩題未知數(shù)系數(shù)是相同類型的,所以讓學(xué)生任選一題即可。通過綜合訓(xùn)練能讓學(xué)生更進(jìn)一步鞏固用移項和合并同類項去解方程了。

 。ㄖ锌荚嚲殻┤魓=2是關(guān)于x的方程2x+3m-1=0的解,則m的值為

  設(shè)計理念:通過本題的訓(xùn)練讓學(xué)生明確中考在本節(jié)的考點,同時激勵學(xué)生在數(shù)學(xué)知識的學(xué)習(xí)中要抓住知識的'核心和重點。

  (四)我總結(jié)、我提高:

  通過本節(jié)課的學(xué)習(xí)我收獲了。

  設(shè)計意圖:通過小組之間互相談收獲的方式進(jìn)行課堂小結(jié),讓學(xué)生相互檢查本節(jié)課的學(xué)習(xí)效果。可以引導(dǎo)學(xué)生從本節(jié)課獲得的知識、解題的思想方法、學(xué)習(xí)的技巧等方面交流意見。

  (五)當(dāng)堂檢測(50分)

  1.下列方程變形正確的是( )

  A.由-2x=6, 得x=3

  B.由-3=x+2, 得x=-3-2

  C.由-7x+3=x-3, 得(-7+1)x=-3-3

  D.由5x=2x+3, 得x=-1

  2.一批游客乘汽車去觀看“上海世博會”。如果每輛汽車乘48人,那么還多4人;如果每輛汽車乘50人,那么還有6個空位,求汽車和游客各有多少?(只設(shè)出未知數(shù)和列出方程即可)

  3.(20分)已知x=1是關(guān)于x的方程3m+8x=m+x的解,求m的值。

 。◣熒顒樱⿲W(xué)生獨立答題,教師巡回檢查,對先答完的學(xué)生進(jìn)行及時批改,并把得滿分的學(xué)生作為小老師對后解答完的學(xué)生的檢測進(jìn)行評定,最后老師進(jìn)行小結(jié)。

 。⿲嵺`活動

  請每一位同學(xué)用自己的年齡編一 道“ax+b=cx+d”型的方程應(yīng)用題,并解答。先在組內(nèi)交流,選出組內(nèi)最有創(chuàng)意的一個記在題卡上,自習(xí)在全班進(jìn)行展示 。

  設(shè)計意圖:

  讓學(xué)生課后完成,讓學(xué)生深深體會到數(shù)學(xué)來源于生活而又服務(wù)于生活,體現(xiàn)了數(shù)學(xué)知識與實際相結(jié)合。

  初中數(shù)學(xué)教案 篇6

  教學(xué)目標(biāo):

  1、理解切線的判定定理,并學(xué)會運用。

  2、知道判定切線常用的方法有兩種,初步掌握方法的選擇。

  教學(xué)重點

  切線的判定定理和切線判定的方法。

  教學(xué)難點

  切線判定定理中所闡述的圓的切線的兩大要素:一是經(jīng)過半徑外端;二是直線垂直于這條半徑;學(xué)生開始時掌握不好并極容易忽視一。

  教學(xué)過程:

  一、復(fù)習(xí)提問

  【教師】

  問題1.怎樣過直線l上一點P作已知直線的垂線?

  問題2.直線和圓有幾種位置關(guān)系?

  問題3.如何判定直線l是⊙O的切線?

  啟發(fā):

 。1)直線l和⊙O的公共點有幾個?

 。2)圓心O到直線L的距離與半徑的數(shù)量關(guān)系 如何?

  學(xué)生答完后,教師強調(diào)(2)是判定直線 l是⊙O的切線的常用方法,即: 定理:圓心O到直線l的距離OA 等于圓的半 (如圖1,投影顯示)

  再啟發(fā):若把距離OA理解為 OA⊥l,OA=r;把點A理解為半徑在圓上的端點 ,請同學(xué)們試將上面定理用新的理解改寫成新的命題,此命題就 是這節(jié)課要學(xué)的“切線的判定定理”(板書課題)

  二、引入新課內(nèi)容

  【學(xué)生】命題:經(jīng)過半徑的在圓上的端點且垂直于半 徑的直線是圓的切線。

  證明定理:啟發(fā)學(xué)生分清命題的題設(shè)和結(jié)論,寫出已 知、求證,分析證明思路,閱讀課本P60。

  定理:經(jīng)過半徑外端并且垂直于這條半徑的直線是圓的切線。

  定理的證明:已知:直線l經(jīng)過半徑OA的外端點A,直線l⊥OA,

  求證:直線l是⊙O的切線

  證明:略

  定理的符號語言:∵直線l⊥OA,直線l經(jīng)過半徑OA的外端A

  ∴直線l為⊙O的切線。

  是非題:

 。1)垂直于圓的半徑的直線一定是這個圓的切線。 ( )

 。2)過圓的半徑的外端的直線一定是這個圓的切線。 ( )

  三、例題講解

  例1、已知:直線AB經(jīng)過⊙O上的點C,并且OA=OB,CA=CB。

  求證:直線AB是⊙O的切線。

  引導(dǎo)學(xué)生分析:由于AB過⊙O上的點C,所以連結(jié)OC,只要證明AB⊥OC即可。

  證明:連結(jié)OC.

  ∵OA=OB,CA=CB,

  ∴AB⊥OC

  又∵直線AB經(jīng)過半徑OC的外端C

  ∴直線AB是⊙O的切線。

  練習(xí)1、如圖,已知⊙O的半徑為R,直線AB經(jīng)過⊙O上的點A,并且AB=R,∠OBA=45°。求證:直線AB是⊙O的切線。

  練習(xí)2、如圖,已知AB為⊙O的直徑,C為⊙O上一點,AD⊥CD于點D,AC平分∠BAD。

  求證:CD是⊙O的切線。

  例2、如圖,已知AB是⊙O的直徑,點D在AB的延長線上,且BD=OB,過點D作射線DE,使∠ADE=30°。

  求證:DE是⊙O的切線。

  思考題:在Rt△ABC中,∠B=90°,∠A的平分線交BC于D,以D為圓心,BD為半徑作圓,問⊙D的切線有幾條?是哪幾條?為什么?

  四、小結(jié)

  1.切線的判定定理。

  2.判定一條直線是圓的切線的方法:

 、俣x:直線和圓有唯一公共點。

 、跀(shù)量關(guān)系:直線到圓心的距離等于該圓半徑(即d = r).[

 、矍芯的判定定理:經(jīng)過半徑外端且與這條半徑垂直的直線是圓的切線。

  3.證明一條直線是圓的切線的輔助線和證法規(guī)律。

  凡是已知公共點(如:直線經(jīng)過圓上的點;直線和圓有一個公共點;)往往是"連結(jié)"圓心和公共點,證明"垂直"(直線和半徑);若不知公共點,則過圓心作一條線段垂直于直線,證明所作的線段等于半徑。即已知公共點,“連半徑,證垂直”;不知公共點,則“作垂直,證半徑”。

  五、布置作業(yè):略

  《切線的判定》教后體會

  本課例《切線的判定》作為市考試院調(diào)研課型兼區(qū)級研討課,我以“教師為引導(dǎo),學(xué)生為主體”的二期課改的理念出發(fā),通過學(xué)生自我活動得到數(shù)學(xué)結(jié)論作為教學(xué)重點,呈現(xiàn)學(xué)生真實的思維過程為教學(xué)宗旨,進(jìn)行教學(xué)設(shè)計,目的在于讓學(xué)生對知識有一個本質(zhì)的、有效的理解。本節(jié)課切實反映了平時的教學(xué)情況,為前來調(diào)研和研討的老師提供了真實的樣本。反思本節(jié)課,有以下幾個成功與不足之處:

  成功之處:

  一、 教材的二度設(shè)計順應(yīng)了學(xué)生的認(rèn)知規(guī)律

  這批學(xué)生習(xí)慣于單一知識點的學(xué)習(xí),即得出一個知識點,必須由淺入深反復(fù)進(jìn)行練習(xí),鞏固后方能加以提升與綜合,否則就會混淆概念或定理的條件和結(jié)論,導(dǎo)致錯誤,久之便會失去學(xué)習(xí)數(shù)學(xué)的興趣和信心。本教時課本上將切線判定定理和性質(zhì)定理的導(dǎo)出作為第一課時,兩個定理的運用和切線的兩種常用的判定方法作為第二課時,學(xué)生往往會因第一時間得不到及時的鞏固,對定理本質(zhì)的東西不能很好地理解,在運用時抓不住關(guān)鍵,解題僅僅停留在模仿層次上,接受能力薄弱的學(xué)生更是因知識點多不知所措,在云里霧里。二度設(shè)計將切線的判定方法作為第一課時,切線的性質(zhì)定理以及兩個定理的綜合運用作為第二課時,這樣的設(shè)計即是對前面所學(xué)的“直線與圓相切的判定方法”的復(fù)習(xí),又是對后面學(xué)習(xí)綜合運用兩個定理,合理選擇兩種方法判定切線作了鋪墊,教學(xué)呈現(xiàn)了一個循序漸進(jìn)、溫過知新的過程。從學(xué)生的反饋情況判斷,教學(xué)效果較為理想。

  二、重視學(xué)生數(shù)感的培養(yǎng)呼應(yīng)了課改的理念

  數(shù)感類似與語感、樂感、美感,擁有了感覺,知識便會融會貫通,學(xué)習(xí)就會輕松。擁有數(shù)感,不僅會對數(shù)學(xué)知識反應(yīng)靈敏,更會在生活中不知不覺運用數(shù)學(xué)思維方式解決實際問題。本節(jié)課中,兩個例題由教師誘導(dǎo),學(xué)生發(fā)現(xiàn)完成的,而三個習(xí)題則完全放手讓學(xué)生去思考完成,不乏有不會做和做得復(fù)雜的學(xué)生,但在展示和交流中,撞擊出思維的火花,難以忘懷。讓學(xué)生嘗試總結(jié)規(guī)律,也是對學(xué)生能力的培養(yǎng),在本節(jié)課中,輔助線的規(guī)律是由學(xué)生得出,事實證明,學(xué)生有這樣的理解、概括和表達(dá)能力。通過思考得出正確的結(jié)論,這個結(jié)論往往是刻骨銘心的,長此以往,對數(shù)和形的感覺會越來越好。

  不足之處:

  一、這節(jié)課沒有“高潮”,沒有讓學(xué)生特別興奮激起求知欲的情境,整個教學(xué)過程是在一個平靜、和諧的氛圍中完成的。

  二、課的引入太直截了當(dāng),脫離不了應(yīng)試教學(xué)的味道。

  三、教學(xué)風(fēng)格的定勢使所授知識不能很合理地與生活實際相聯(lián)系,一定程度上阻礙了學(xué)生解決實際問題能力的發(fā)展。

  通過本節(jié)課的教學(xué),我深刻感悟到在教學(xué)實踐中,教師要不斷地充實自己,拓寬知識面,努力突破已有的教學(xué)形狀,適應(yīng)現(xiàn)代教育,適應(yīng)現(xiàn)代學(xué)生。課堂教學(xué)中,敢于實驗,舍得放手,盡量培養(yǎng)學(xué)生主體意識,問題讓學(xué)生自己去揭示,方法讓學(xué)生自己去探索,規(guī)律讓學(xué)生自己去發(fā)現(xiàn),知識讓學(xué)生自己去獲得,教師只提供給學(xué)生現(xiàn)實情境、充足的思考時間和活動空間,給學(xué)生表現(xiàn)自我的機會和成功的體驗,培養(yǎng)學(xué)生的自我意識,發(fā)揮學(xué)生的主體作用,來真正實現(xiàn)《數(shù)學(xué)課程標(biāo)準(zhǔn)》中提出的“學(xué)生是數(shù)學(xué)學(xué)習(xí)的主人,教師是數(shù)學(xué)學(xué)習(xí)的組織者、引導(dǎo)者與合作者”這一教學(xué)理念。

  初中數(shù)學(xué)教案 篇7

  教學(xué)目標(biāo):

  1、 在現(xiàn)實情境中理解線段、射線、直線等簡單圖形(知識目標(biāo))

  2、 會說出線段、射線、直線的特征;會用字母表示線段、射線、直線(能力目標(biāo))

  3、 通過操作活動,了解兩點確定一條直線等事實,積累操作活動的經(jīng)驗,培養(yǎng)學(xué)生的興趣、愛好,感受圖形世界的豐富多彩。(情感態(tài)度目標(biāo))

  教學(xué)難點:

  了解“兩點確定一條直線”等事實,并應(yīng)用它解決一些實際問題

  教 具:

  多媒體、棉線、三角板

  教學(xué)過程:

  情景創(chuàng)設(shè):

  觀察電腦展示圖,使學(xué)生感受圖形世界的豐富多彩,激發(fā)學(xué)習(xí)興趣。

  如何來描述我們所看到的現(xiàn)象?

  教學(xué)過程:

  1、 一段拉直的棉線可近似地看作線段

  師生畫線段

  演示投影片1:

 、賹⒕段向一個方向無限延長,就形成了______

  學(xué)生畫射線

 、趯⒕段向兩個方向無限延長就形成了_______

  學(xué)生畫直線

  2、 討論小組交流:

 、 生活中,還有哪些物體可以近似地看作線段、射線、直線?

 。◤娬{(diào)近似兩個字,注意引導(dǎo)學(xué)生線段、射線、直線是從生活上抽象出來的)

 、诰段、射線、直線,有哪些不同之處, 有哪些相同之處?

 。ü膭顚W(xué)生用自己的語言描述它們各自的特點)

  3、 問題1:圖中有幾條線段?哪幾條?

  “要說清楚哪幾條,必須先給線段起名字!”從而引出線段的記法。

  點的記法: 用一個大寫英文字母

  線段的記法:

 、儆脙蓚端點的字母來表示

 、谟靡粋小寫英文字母表示

  自己想辦法表示射線,讓學(xué)生充分討論,并比較如何表示合理

  射線的記法:

  用端點及射線上一點來表示,注意端點的字母寫在前面

  直線的記法:

 、 用直線上兩個點來表示

 、 用一個小寫字母來表示

  強調(diào)大寫字母與小寫字母來表示它們時的區(qū)別

 。ㄎ覀冎浪麄兪菬o限延長的,我們?yōu)榱朔奖阊芯考s定成俗的用上面的方法來表示它們。)

  練習(xí)1:讀句畫圖(如圖示)

 。1) 連BC、AD

 。2) 畫射線AD

 。3) 畫直線AB、CD相交于E

 。4) 延長線段BC,反向延長線段DA相交與F

 。5) 連結(jié)AC、BD相交于O

  練習(xí)2:右圖中,有哪幾條線段、射線、直線

  4、 問題2 請過一點A畫直線,可以畫幾條?過兩點A、B呢?

  學(xué)生通過畫圖,得出結(jié)論:過一點可以畫無數(shù)條直線

  經(jīng)過兩點有且只有一條直線

  問題3 如果你想將一硬紙條固定在硬紙板上,至少需要幾根圖釘?

  為什么?(學(xué)生通過操作,回答)

  小組討論交流:

  你還能舉出一個能反映“經(jīng)過兩點有且只有一條直線”的實例嗎?

  適當(dāng)引導(dǎo):栽樹時只要確定兩個樹坑的位置,就能確定同一行的樹坑所在的直線。建筑工人在砌墻時,經(jīng)常在兩個墻角分別立一根標(biāo)志桿,在兩根標(biāo)志桿之間拉一根繩,沿這根繩就可以砌出直的墻來。

  5、 小結(jié):

 、 學(xué)生回憶今天這節(jié)課學(xué)過的內(nèi)容

  進(jìn)一步清晰線段、射線、直線的概念

 、 強調(diào)線段、射線、直線表示方法的掌握

  6、 作業(yè):

 、匍喿x“讀一讀” P121

  ②習(xí)題4的1、2、3、4作為思考題

  初中數(shù)學(xué)教案 篇8

  一、教材分析

  本節(jié)內(nèi)容是人民教育出版社出版《義務(wù)教育課程實驗教科書(五四學(xué)制)數(shù)學(xué)》(供天津用)八年級下冊第十章整式第一節(jié)整式加減第2小節(jié)整式的加減。

  二、設(shè)計思想

  本節(jié)內(nèi)容是學(xué)生掌握了“整式”有關(guān)概念的延展學(xué)習(xí),為后繼學(xué)習(xí)整式運算、因式分解、一元二次方程及函數(shù)知識奠定基礎(chǔ),是“數(shù)”向“式”的正式過度,具有十分重要地位。

  八年級學(xué)生已具有了較強的數(shù)的運算技能和“合并”的意識(解一元一次方程中用)同時也具有初步的觀察、歸納、探索的技能。因此,我結(jié)合教材,立足讓每個學(xué)生都有發(fā)展的宗旨,我采用合作探究的學(xué)習(xí)方式開展教學(xué)活動,通過設(shè)計有針對性、多樣式的問題引導(dǎo)學(xué)生,給學(xué)生提供充足的、和諧的探索空間讓學(xué)生學(xué)習(xí)。通過學(xué)習(xí)活動不但培養(yǎng)學(xué)生化簡意識,提升數(shù)學(xué)運算技能而且讓學(xué)生深刻體會到數(shù)學(xué)是解決實際問題的重要工具,增強應(yīng)用數(shù)學(xué)的意識。

  三、教學(xué)目標(biāo):

 。ㄒ唬┲R技能目標(biāo):

  1、理解同類項的含義,并能辨別同類項。

  2、掌握合并同類項的方法,熟練的合并同類項。

  3、掌握整式加減運算的方法,熟練進(jìn)行運算。

 。ǘ┻^程方法目標(biāo):

  1、通過探究同類項定義、合并同類項的方法的活動,培養(yǎng)學(xué)生觀察、歸納、探究的能力。

  2、通過合并同類項、整式加減運算的練習(xí)活動,提高學(xué)生運算技能,提升運算的準(zhǔn)確率培養(yǎng)學(xué)生化簡意識,發(fā)展學(xué)生的抽象概括能力。

  3、通過研究引例、探究例1的活動,發(fā)展學(xué)生的形象思維,初步培養(yǎng)學(xué)生的符號感。

  (三)情感價值目標(biāo):

  1、通過交流協(xié)商、分組探究,培養(yǎng)學(xué)生合作交流的意識和敢于探索未知問題的精神。

  2、通過學(xué)習(xí)活動培養(yǎng)學(xué)生科學(xué)、嚴(yán)謹(jǐn)?shù)膶W(xué)習(xí)態(tài)度。

  四、教學(xué)重、難點:

  合并同類項

  五、教學(xué)關(guān)鍵:

  同類項的概念

  六、教學(xué)準(zhǔn)備:

  教師:

  1、篩選數(shù)學(xué)題目,精心設(shè)置問題情境。

  2、制作大小不等的兩個長方體紙盒實物模型,并能展開。

  3、設(shè)計多媒體教學(xué)課件。(要凸顯①單項式中系數(shù)、字母、指數(shù)的特征②長方體紙盒立體圖、展開圖。)

  學(xué)生:

  1、復(fù)習(xí)有關(guān)單項式的概念、有理數(shù)四則運算及去括號的法則)

  2、每小組制作大小不等的兩個長方體紙盒模型。

  初中數(shù)學(xué)教案 篇9

  一、目的要求

  1、使學(xué)生初步理解一次函數(shù)與正比例函數(shù)的概念。

  2、使學(xué)生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。

  二、內(nèi)容分析

  1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學(xué)習(xí)函數(shù)的,前面三小節(jié),先學(xué)習(xí)函數(shù)的概念與表示法,這是為學(xué)習(xí)后面的幾種具體的函數(shù)作準(zhǔn)備的,從本節(jié)開始,將依次學(xué)習(xí)一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關(guān)知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質(zhì)這個順序講述的,通過這些具體函數(shù)的學(xué)習(xí),學(xué)生可以加深對函數(shù)意義、函數(shù)表示法的認(rèn)識,并且,結(jié)合這些內(nèi)容,學(xué)生還會逐步熟悉函數(shù)的知識及有關(guān)的數(shù)學(xué)思想方法在解決實際問題中的應(yīng)用。

  2、舊教材在講幾個具體的函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當(dāng)照顧了學(xué)生在小學(xué)數(shù)學(xué)中學(xué)了正反比例關(guān)系的知識,注意了中小學(xué)的銜接,新教材則是安排先學(xué)習(xí)一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學(xué)習(xí)反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學(xué)生由易到難的認(rèn)識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質(zhì)都是比較簡單的,相對來說,反比例函數(shù)就要復(fù)雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學(xué)習(xí)反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學(xué)習(xí)效益,又便于學(xué)生了解正比例函數(shù)與一次函數(shù)的關(guān)系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質(zhì)。

  3、“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質(zhì),一方面,在學(xué)生初次接觸函數(shù)的有關(guān)內(nèi)容時,一定要結(jié)合具體函數(shù)進(jìn)行學(xué)習(xí),因此,全章的主要內(nèi)容,是側(cè)重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學(xué)習(xí),學(xué)生可以對函數(shù)的研究方法有一個初步的認(rèn)識與了解,從而能更好地把握學(xué)習(xí)二次函數(shù)、反比例函數(shù)的學(xué)習(xí)方法。

  三、教學(xué)過程

  復(fù)習(xí)提問:

  1、什么是函數(shù)?

  2、函數(shù)有哪幾種表示方法?

  3、舉出幾個函數(shù)的例子。

  新課講解:

  可以選用提問時學(xué)生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學(xué)生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導(dǎo)學(xué)生思考:

  (1)這些式子表示的是什么關(guān)系?(在學(xué)生明確這些式子表示函數(shù)關(guān)系后,可指出,這是函數(shù)。)

  (2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學(xué)生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)

  (3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關(guān)于自變量的什么式呢?(這題牽扯到有關(guān)整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關(guān)于自變量的一次式。)

  (4)x的一次式的一般形式是什么?(結(jié)合一元一次方程的有關(guān)知識,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的層層設(shè)問,最后給出一次函數(shù)的定義。

  一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。

  對這個定義,要注意:

  (1)x是變量,k,b是常數(shù);

  (2)k≠0 (當(dāng)k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向?qū)W生講述。)

  由一次函數(shù)出發(fā),當(dāng)常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。

  在講述正比例函數(shù)時,首先,要注意適當(dāng)復(fù)習(xí)小學(xué)學(xué)過的正比例關(guān)系,小學(xué)數(shù)學(xué)是這樣陳述的:

  兩種相關(guān)聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應(yīng)的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關(guān)系叫做正比例關(guān)系。

  寫成式子是(一定)

  需指出,小學(xué)因為沒有學(xué)過負(fù)數(shù),實際的例子都是k>0的例子,對于正比例函數(shù),k也為負(fù)數(shù)。

  其次,要注意引導(dǎo)學(xué)生找出一次函數(shù)與正比例函數(shù)之間的關(guān)系:正比例函數(shù)是特殊的一次函數(shù)。

  課堂練習(xí):

  教科書13、4節(jié)練習(xí)第1題。

【初中數(shù)學(xué)教案(通用9篇)】相關(guān)文章:

精選小學(xué)數(shù)學(xué)教案模板(通用12篇)05-17

初中畢業(yè)感言(通用15篇)12-17

初中畢業(yè)贈言(通用15篇)12-13

初中畢業(yè)贈言通用15篇12-10

初中家長評價(通用10篇)05-08

初中畢業(yè)感言通用15篇11-14

初中勵志作文(通用30篇)05-30

分享初中作文通用15篇02-11

時間初中作文通用15篇02-15

風(fēng)初中作文(通用15篇)02-23