毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

函數(shù)數(shù)學教案

時間:2022-05-12 09:43:47 教案 我要投稿

函數(shù)數(shù)學教案(精選7篇)

  在教學工作者實際的教學活動中,常常需要準備教案,編寫教案有利于我們準確把握教材的重點與難點,進而選擇恰當?shù)慕虒W方法。那么問題來了,教案應該怎么寫?以下是小編整理的函數(shù)數(shù)學教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

函數(shù)數(shù)學教案(精選7篇)

  函數(shù)數(shù)學教案 篇1

  一、目的要求

  1、使學生初步理解一次函數(shù)與正比例函數(shù)的概念。

  2、使學生能夠根據(jù)實際問題中的條件,確定一次函數(shù)與正比例函數(shù)的解析式。

  二、內容分析

  1、初中主要是通過幾種簡單的函數(shù)的初步介紹來學習函數(shù)的,前面三小節(jié),先學習函數(shù)的概念與表示法,這是為學習后面的幾種具體的函數(shù)作準備的,從本節(jié)開始,將依次學習一次函數(shù)(包括正比例函數(shù))、二次函數(shù)與反比例函數(shù)的有關知識,大體上,每種函數(shù)是按函數(shù)的解析式、圖象及性質這個順序講述的,通過這些具體函數(shù)的學習,學生可以加深對函數(shù)意義、函數(shù)表示法的認識,并且,結合這些內容,學生還會逐步熟悉函數(shù)的知識及有關的數(shù)學思想方法在解決實際問題中的應用。

  2、舊教材在講幾個具體的函數(shù)時,是按先講正反比例函數(shù),后講一次、二次函數(shù)順序編排的,這是適當照顧了學生在小學數(shù)學中學了正反比例關系的知識,注意了中小學的銜接,新教材則是安排先學習一次函數(shù),并且,把正比例函數(shù)作為一次函數(shù)的特例予以介紹,而最后才學習反比例函數(shù),為什么這樣安排呢?第一,這樣安排,比較符合學生由易到難的認識規(guī)津,從函數(shù)角度看,一次函數(shù)的解析式、圖象與性質都是比較簡單的,相對來說,反比例函數(shù)就要復雜一些了,特別是,反比例函數(shù)的圖象是由兩條曲線組成的,先學習反比例函數(shù)難度可能要大一些。第二,把正比例函數(shù)作為一次函數(shù)的特例介紹,既可以提高學習效益,又便于學生了解正比例函數(shù)與一次函數(shù)的關系,從而,可以更好地理解這兩種函數(shù)的概念、圖象與性質。

  3、“函數(shù)及其圖象”這一章的重點是一次函數(shù)的概念、圖象和性質,一方面,在學生初次接觸函數(shù)的有關內容時,一定要結合具體函數(shù)進行學習,因此,全章的主要內容,是側重在具體函數(shù)的講述上的。另一方面,在大綱規(guī)定的幾種具體函數(shù)中,一次函數(shù)是最基本的,教科書對一次函數(shù)的討論也比較全面。通過一次函數(shù)的學習,學生可以對函數(shù)的研究方法有一個初步的認識與了解,從而能更好地把握學習二次函數(shù)、反比例函數(shù)的學習方法。

  三、教學過程

  復習提問:

  1、什么是函數(shù)?

  2、函數(shù)有哪幾種表示方法?

  3、舉出幾個函數(shù)的例子。

  新課講解:

  可以選用提問時學生舉出的例子,也可以直接采用教科書中的四個函數(shù)的例子。然后讓學生觀察這些例子(實際上均是一次函數(shù)的解析式),y=x,s=3t等。觀察時,可以按下列問題引導學生思考:

  (1)這些式子表示的是什么關系?(在學生明確這些式子表示函數(shù)關系后,可指出,這是函數(shù)。)

  (2)這些函數(shù)中的自變量是什么?函數(shù)是什么?(在學生分清后,可指出,式子中等號左邊的y與s是函數(shù),等號右邊是一個代數(shù)式,其中的字母x與t是自變量。)

  (3)在這些函數(shù)式中,表示函數(shù)的自變量的式子,分別是關于自變量的什么式呢?(這題牽扯到有關整式的基本概念,表示函數(shù)的自變量的式子也就是等號右邊的式子,都是關于自變量的一次式。)

  (4)x的一次式的一般形式是什么?(結合一元一次方程的有關知識,可以知道,x的一次式是kx+b(k≠0)的形式。)

  由以上的層層設問,最后給出一次函數(shù)的定義。

  一般地,如果y=kx+b(k,b是常數(shù),k≠0)那么,y叫做x的一次函數(shù)。

  對這個定義,要注意:

  (1)x是變量,k,b是常數(shù);

  (2)k≠0(當k=0時,式子變形成y=b的形式。b是x的0次式,y=b叫做常數(shù)函數(shù),這點,不一定向學生講述。)

  由一次函數(shù)出發(fā),當常數(shù)b=0時,一次函數(shù)kx+b(k≠0)就成為:y=kx(k是常數(shù),k≠0)我們把這樣的函數(shù)叫正比例函數(shù)。

  在講述正比例函數(shù)時,首先,要注意適當復習小學學過的正比例關系,小學數(shù)學是這樣陳述的:

  兩種相關聯(lián)的量,一種量變化,另一種量也隨著變化,如果這兩種量中相對應的兩個數(shù)的比值(也就是商)一定,這兩種量就叫做成正比例的量,它們的關系叫做正比例關系。

  函數(shù)數(shù)學教案 篇2

  一、知識與技能

  1、能靈活列反比例函數(shù)表達式解決一些實際問題。

  2、能綜合利用物理杠桿知識、反比例函數(shù)的知識解決一些實際問題。

  二、過程與方法

  1、經(jīng)歷分析實際問題中變量之間的關系,建立反比例函數(shù)模型,進而解決問題。

  2、體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識,提高運用代數(shù)方法解決問題的能力。

  三、情感態(tài)度與價值觀

  1、積極參與交流,并積極發(fā)表意見。

  2、體驗反比例函數(shù)是有效地描述物理世界的重要手段,認識到數(shù)學是解決實際問題和進行交流的重要工具。

  教學重點

  掌握從物理問題中建構反比例函數(shù)模型。

  教學難點

  從實際問題中尋找變量之間的關系,關鍵是充分運用所學知識分析物理問題,建立函數(shù)模型,教學時注意分析過程,滲透數(shù)形結合的思想。

  教具準備

  多媒體課件。

  教學過程

  一、創(chuàng)設問題情境,引入新課

  活動1

  問屬:在物理學中,有很多量之間的變化是反比例函數(shù)的關系,因此,我們可以借助于反比例函數(shù)的圖象和性質解決一些物理學中的問題,這也稱為跨學科應用。下面的例子就是其中之一。

  在某一電路中,保持電壓不變,電流I(安培)和電阻R(歐姆)成反比例,當電阻R=5歐姆時,電流I=2安培。

  (1)求I與R之間的函數(shù)關系式;

  (2)當電流I=0.5時,求電阻R的值。

  設計意圖:

  運用反比例函數(shù)解決物理學中的一些相關問題,提高各學科相互之間的綜合應用能力。

  師生行為:

  可由學生獨立思考,領會反比例函數(shù)在物理學中的綜合應用。

  教師應給“學困生”一點物理學知識的引導。

  師:從題目中提供的信息看變量I與R之間的反比例函數(shù)關系,可設出其表達式,再由已知條件(I與R的一對對應值)得到字母系數(shù)k的值。

  生:(1)解:設I=kR∵R=5,I=2,于是

  2=k5,所以k=10,I=10R。

  (2)當I=0.5時,R=10I=100.5=20(歐姆)。

  師:很好!“給我一個支點,我可以把地球撬動!边@是哪一位科學家的名言?這里蘊涵著什么樣的原理呢?

  生:這是古希臘科學家阿基米德的名言。

  師:是的。公元前3世紀,古希臘科學家阿基米德發(fā)現(xiàn)了著名的“杠桿定律”:若兩物體與支點的距離反比于其重量,則杠桿平衡,通俗一點可以描述為;

  阻力阻力臂=動力動力臂

  下面我們就來看一例子。

  二、講授新課

  活動2

  小偉欲用撬棍橇動一塊大石頭,已知阻力和阻力臂不變,分別為1200牛頓和0.5米。

  (1)動力F與動力臂l有怎樣的函數(shù)關系?當動力臂為1.5米時,撬動石頭至少需要多大的力?

  (2)若想使動力F不超過題(1)中所用力的一半,則動力臂至少要加長多少?

  設計意圖:

  物理學中的很多量之間的變化是反比例函數(shù)關系。因此,在這兒又一次借助反比例函數(shù)的圖象和性質解決一些物理學中的問題,即跨學科綜合應用。

  師生行為:

  先由學生根據(jù)“杠桿定律”解決上述問題。

  教師可引導學生揭示“杠桿乎衡”與“反比例函數(shù)”之間的關系。

  函數(shù)數(shù)學教案 篇3

  一、學生起點分析

  在七年級上期學習了用字母表示數(shù),體會了字母表示數(shù)的意義,學會了探索具體事物之間的關系和變化的規(guī)律,并用符號進行了表示;在七年級下期又學習了“變量之間的關系”,使學生在具體的情境中,體會了變量之間的相依關系的普遍性,感受了學習變量之間的關系的必要性和重要性,并且積累了一定的研究變量之間關系的一些方法和初步經(jīng)驗,為學習本章的函數(shù)知識奠定了一定的基礎。

  二、教學任務分析

  《函數(shù)》是義務教育課程標準北師大版實驗教科書八年級(上)第四章《一次函數(shù)》第一節(jié)的內容。教材中的函數(shù)是從具體實際問題的數(shù)量關系和變化規(guī)律中抽象出來的,主要是通過學生探索實際問題中存在的大量的變量之間關系,進而抽象出函數(shù)的概念。與原傳統(tǒng)教材相比,新教材更注重感性材料,讓學生分析了大量的問題,感受到在實際問題中存在兩個變量,而且這兩個變量之間存在一定的關系,它們的表示方式是多樣地,如可以通過列表的方法表示,可以通過畫圖像的方法表示,還可以通過列解析式的方法表示,但都有著共性:其中一個變量依賴于另一個變量。

  本節(jié)內容是在七年級知識的基礎上,繼續(xù)通過對變量間的關系的考察,讓學生初步體會函數(shù)的概念,為后續(xù)學習打下基礎。同時,函數(shù)的學習可以使學生體會到數(shù)形結合的思想方法,感受事物是相互聯(lián)系和規(guī)律的變化。一次本節(jié)課教學目標定位為:

  1、初步掌握函數(shù)概念,能判斷兩個變量間的關系是否可以看成函數(shù);

  2、根據(jù)兩個變量之間的關系式,給定其中一個量,相應的會求出另一個量的值;

  3、了解函數(shù)的三種表示方法。

  4、通過函數(shù)概念的學習,初步形成學生利用函數(shù)觀點認識現(xiàn)實世界的意識和能力;

  5、在函數(shù)概念形成的過程中,培養(yǎng)學生聯(lián)系實際、善于觀察、樂于探索和勤于思考的精神

  對學生來講本節(jié)課的難點在于對函數(shù)概念的理解;

  四、教學準備

  教具:教材,課件,電腦

  學具:教材,筆,練習本

  五、教學過程設計

  本節(jié)課設計了六個教學環(huán)節(jié):第一環(huán)節(jié):創(chuàng)設情境、導入新課;第二環(huán)節(jié):展現(xiàn)背景,提供概念抽象的素材;第三環(huán)節(jié):概念的抽象;第四環(huán)節(jié):概念辨析與鞏固;第五環(huán)節(jié):課時小結;第六環(huán)節(jié):布置作業(yè)

  第一環(huán)節(jié):創(chuàng)設情境、導入新課

  內容:

  展示一些與學生實際生活有關的圖片,如心電圖片,天氣隨時間的變化圖片,拋擲鉛球球形成的軌跡,k線圖等,提請學生思考問題。

  意圖:

  承接上一學期變量關系的學習,讓學生感受到變量之間關系的是通過多種形式表現(xiàn)出來的,感受研究函數(shù)的必要性。

  效果:

  生活實例,激發(fā)了學生的研究熱情,起到很好的導入效果。

  第二環(huán)節(jié):展現(xiàn)背景,提供概念抽象的素材

  內容:

  問題1、你去過游樂園嗎?你坐過摩天輪嗎?你能描述一下坐摩天輪的感覺嗎?

  當人坐在摩天輪上時,人的高度隨時間在變化,那么變化有規(guī)律嗎?

  摩天輪上一點的高度h與旋轉時間t之間有一定的關系,右圖就反映了時間t(分)與摩天輪上一點的高度h(米)之間的關系。你能從上圖觀察出,有幾個變化的量嗎?當t分別取3,6,10時,相應的h是多少?給定一個t值,你都能找到相應的h值嗎?

  問題2、瓶子或罐頭盒等圓柱形的物體,常常如下圖這樣堆放。隨著層數(shù)的增加,物體的總數(shù)是如何變化的?

  問題3、一定質量的氣體在體積不變時,假若溫度降低到—273℃,則氣體的壓強為零。因此,物理學把—273℃作為熱力學溫度的零度。熱力學溫度T(K)與攝氏溫度t(℃)之間有如下數(shù)量關系:T=t+273,T≥0。

 。1)當t分別等于—43,—27,0,18時,相應的熱力學溫度T是多少?

 。2)給定一個大于—273℃的t值,你能求出相應的T值嗎?

  意圖:

  通過上面三個問題的展示,使學生們初步感受到:現(xiàn)實生活中存在大量的變量間的關系,并且一個變量是隨著另一個變量的變化而變化的;變量之間的關系表示方式是多樣的(圖象、列表和解析式等)。

  效果:

  通過圖片展示和三個問題的探究,使學生感受生活中的確存在大量的兩個變量之間的關系,并且這兩個變量之間的關系可以通過三種不同的方式表現(xiàn),初步了解三種方式表示兩個變量之間關系的各自特點。

  第三環(huán)節(jié):概念的抽象

  內容:

  1、引導學生思考以上三個問題的共同點,進而揭示出函數(shù)的概念:

  在上面的問題中,都有兩個變量,給定其中一個變量(自變量)的值,相應的就確定了另一個變量(因變量)的.值。

  4、1函數(shù):同步檢測

  1、張爺爺晚飯以后外出散步,碰到老鄰居,交談了一會兒,返回途中在讀報欄前看了一會兒報,如圖是據(jù)此情境畫出的圖象,請你回答下面的問題:

 。1)張爺爺是在什么地方碰到老鄰居的,交談了多長時間?

 。2)讀報欄大約離家多遠?

 。3)圖中反映了哪些變量之間的關系?其中哪個是自變量?哪個是因變量?

  函數(shù)數(shù)學教案 篇4

  重點難點教學:

  1.正確理解映射的概念;

  2.函數(shù)相等的兩個條件;

  3.求函數(shù)的定義域和值域。

  一.教學過程:

  1.學生熟練掌握函數(shù)的概念和映射的定義;

  2.使學生能夠根據(jù)已知條件求出函數(shù)的定義域和值域;

  3.使學生掌握函數(shù)的三種表示方法。

  二.教學內容:1.函數(shù)的定義

  設A、B是兩個非空的數(shù)集,如果按照某種確定的對應關系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)()fx和它對應,那么稱:fAB為從集合A到集合B的一個函數(shù)(function),記作:

  (),yfxxA

  其中,x叫自變量,x的取值范圍A叫作定義域(domain),與x的值對應的y值叫函數(shù)值,函數(shù)值的集合{()|}fxxA叫值域(range)。顯然,值域是集合B的子集。

  注意:

 、佟皔=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;

  ②函數(shù)符號“y=f(x)”中的f(x)表示與x對應的函數(shù)值,一個數(shù),而不是f乘x.

  2.構成函數(shù)的三要素定義域、對應關系和值域。

  3、映射的定義

  設A、B是兩個非空的集合,如果按某一個確定的對應關系f,使對于集合A中的任意

  一個元素x,在集合B中都有唯一確定的元素y與之對應,那么就稱對應f:A→B為從集合A到集合B的一個映射。

  4.區(qū)間及寫法:

  設a、b是兩個實數(shù),且a

  (1)滿足不等式axb的實數(shù)x的集合叫做閉區(qū)間,表示為[a,b];

  (2)滿足不等式axb的實數(shù)x的集合叫做開區(qū)間,表示為(a,b);

  5.函數(shù)的三種表示方法①解析法②列表法③圖像法

  函數(shù)數(shù)學教案 篇5

  一、教學目的

  1.使學生初步理解二次函數(shù)的概念。

  2.使學生會用描點法畫二次函數(shù)y=ax2的圖象。

  3.使學生結合y=ax2的圖象初步理解拋物線及其有關的概念。

  二、教學重點、難點

  重點:對二次函數(shù)概念的初步理解。

  難點:會用描點法畫二次函數(shù)y=ax2的圖象。

  三、教學過程

  復習提問

  1.在下列函數(shù)中,哪些是一次函數(shù)?哪些是正比例函數(shù)?

  (1)y=x/4;(2)y=4/x;(3)y=2x—5;(4)y=x2—2。

  2.什么是一無二次方程?

  3.怎樣用找點法畫函數(shù)的圖象?

  新課

  1.由具體問題引出二次函數(shù)的定義。

  (1)已知圓的面積是Scm2,圓的半徑是Rcm,寫出空上圓的面積S與半徑R之間的函數(shù)關系式。

  (2)已知一個矩形的周長是60m,一邊長是Lm,寫出這個矩形的面積S(m2)與這個矩形的一邊長L之間的函數(shù)關系式。

  (3)農機廠第一個月水泵的產(chǎn)量為50臺,第三個月的產(chǎn)量y(臺)與月平均增長率x之間的函數(shù)關系如何表示?

  解:(1)函數(shù)解析式是S=πR2;

 。2)函數(shù)析式是S=30L—L2;

 。3)函數(shù)解析式是y=50(1+x)2,即y=50x2+100x+50。

  由以上三例啟發(fā)學生歸納出:

 。1)函數(shù)解析式均為整式;

 。2)處變量的最高次數(shù)是2。

  我們說三個式子都表示的是二次函數(shù)。

  一般地,如果y=ax2+bx+c(a,b,c沒有限制而a≠0),那么y叫做x的二次函數(shù),請注意這里b,c沒有限制,而a≠0。

  2.畫二次函數(shù)y=x2的圖象。

  函數(shù)數(shù)學教案 篇6

  一、銳角三角函數(shù)

  正弦和余弦

  第一課時:正弦和余弦(1)

  教學目的

  1,使學生了解本章所要解決的新問題是:已知直角三角形的一條邊和另一個元素(一邊或一銳角),求這個直角三角形的其他元素。

  2,使學生了解“在直角三角形中,當銳角A取固定值時,它的對邊與斜邊的比值也是一個固定值。

  重點、難點、關鍵

  1,重點:正弦的概念。

  2,難點:正弦的概念。

  3,關鍵:相似三角形對應邊成比例的性質。

  教學過程

  一、復習提問

  1、什么叫直角三角形?

  2,如果直角三角形ABC中∠C為直角,它的直角邊是什么?斜邊是什么?這個直角三角形可用什么記號來表示?

  二、新授

  1,讓學生閱讀教科書第一頁上的插圖和引例,然后回答問題:

 。1)這個有關測量的實際問題有什么特點?(有一個重要的測量點不可能到達)

 。2)把這個實際問題轉化為數(shù)學模型后,其圖形是什么圖形?(直角三角形)

 。3)顯然本例不能用勾股定理求解,那么能不能根據(jù)已知條件,在地面上或紙上畫出另一個與它全等的直角三角形,并在這個全等圖形上進行測量?(不一定能,因為斜邊即水管的長度是一個較大的數(shù)值,這樣做就需要較大面積的平地或紙張,再說畫圖也不方便。)

 。4)這個實際問題可歸結為怎樣的數(shù)學問題?(在Rt△ABC中,已知銳角A和斜邊求∠A的對邊BC。)

  但由于∠A不一定是特殊角,難以運用學過的定理來證明BC的長度,因此考慮能否通過式子變形和計算來求得BC的值。

  2,在RT△ABC中,∠C=900,∠A=300,不管三角尺大小如何,∠A的對邊與斜邊的比值都等于1/2,根據(jù)這個比值,已知斜邊AB的長,就能算出∠A的對邊BC的長。

  類似地,在所有等腰的那塊三角尺中,由勾股定理可得∠A的對邊/斜邊=BC/AB=BC/=1/=/2這就是說,當∠A=450時,∠A的對邊與斜邊的比值等于/2,根據(jù)這個比值,已知斜邊AB的長,就能算出∠A的對邊BC的長。

  那么,當銳角A取其他固定值時,∠A的對邊與斜邊的比值能否也是一個固定值呢?

 。ㄒ龑W生回答;在這些直角三角形中,∠A的對邊與斜邊的比值仍是一個固定值。)

  三、鞏固練習:

  在△ABC中,∠C為直角。

  1,如果∠A=600,那么∠B的對邊與斜邊的比值是多少?

  2,如果∠A=600,那么∠A的對邊與斜邊的比值是多少?

  3,如果∠A=300,那么∠B的對邊與斜邊的比值是多少?

  4,如果∠A=450,那么∠B的對邊與斜邊的比值是多少?

  四、小結

  五、作業(yè)

  1,復習教科書第1-3頁的全部內容。

  2,選用課時作業(yè)設計。

  函數(shù)數(shù)學教案 篇7

  目標:

 。1)能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。

 。2)注重學生參與,聯(lián)系實際,豐富學生的感性認識,培養(yǎng)學生的良好的學習習慣

  重點難點:

  能夠根據(jù)實際問題,熟練地列出二次函數(shù)關系式,并求出函數(shù)的自變量的取值范圍。

  過程:

  一、試一試

  1.設矩形花圃的垂直于墻的一邊AB的長為xm,先取x的一些值,算出矩形的另一邊BC的長,進而得出矩形的面積ym2.試將計算結果填寫在下表的空格中,

  AB長x(m)123456789

  BC長(m)12

  面積y(m2)48

  2.x的值是否可以任意取?有限定范圍嗎?

  3.我們發(fā)現(xiàn),當AB的長(x)確定后,矩形的面積(y)也隨之確定,y是x的函數(shù),試寫出這個函數(shù)的關系式,

  對于1,可讓學生根據(jù)表中給出的AB的長,填出相應的BC的長和面積,然后引導學生觀察表格中數(shù)據(jù)的變化情況,提出問題:

  (1)從所填表格中,你能發(fā)現(xiàn)什么

  (2)對前面提出的問題的解答能作出什么猜想?讓學生思考、交流、發(fā)表意見,達成共識:當AB的長為5cm,BC的長為10m時,圍成的矩形面積最大;最大面積為50m2。

  對于2,可讓學生分組討論、交流,然后各組派代表發(fā)表意見。形成共識,x的值不可以任意取,有限定范圍,其范圍是0<x<10。

  對于3,教師可提出問題,(1)當AB=xm時,BC長等于多少m?(2)面積y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函數(shù)關系式.

  二、提出問題

  某商店將每件進價為8元的某種商品按每件10元出售,一天可銷出約100件.該店想通過降低售價、增加銷售量的辦法來提高利潤,經(jīng)過市場調查,發(fā)現(xiàn)這種商品單價每降低0.1元,其銷售量可增加10件。將這種商品的售價降低多少時,能使銷售利潤最大?

  在這個問題中,可提出如下問題供學生思考并回答:

  1.商品的利潤與售價、進價以及銷售量之間有什么關系?

  2.如果不降低售價,該商品每件利潤是多少元?一天總的利潤是多少元?

  3.若每件商品降價x元,則每件商品的利潤是多少元?一天可銷售約多少件商品?

  4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,

  5.若設該商品每天的利潤為y元,求y與x的函數(shù)關系式。

  將函數(shù)關系式y(tǒng)=x(20-2x)(0<x<10=化為:

  y=-2x2+20x(0<x<10)……………………………(1)

  將函數(shù)關系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:

  y=-100x2+100x+20D(0≤x≤2)……………………(2)

  三、觀察;概括

  1.教師引導學生觀察函數(shù)關系式(1)和(2),提出以下問題讓學生思考回答;

  (1)函數(shù)關系式(1)和(2)的自變量各有幾個?

  (各有1個)

  (2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?

  (分別是二次多項式)

  (3)函數(shù)關系式(1)和(2)有什么共同特點?

  (都是用自變量的二次多項式來表示的)

  (4)本章導圖中的問題以及P1頁的問題2有什么共同特點?

  讓學生討論、交流,發(fā)表意見,歸結為:自變量x為何值時,函數(shù)y取得最大值。

  2.二次函數(shù)定義:形如y=ax2+bx+c(a、b、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù),a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.

  四、課堂練習

  1.(口答)下列函數(shù)中,哪些是二次函數(shù)?

  (1)y=5x+1(2)y=4x2-1

  (3)y=2x3-3x2(4)y=5x4-3x+1

  2.P3練習第1,2題。

  五、小結

  1.請敘述二次函數(shù)的定義.

  2,許多實際問題可以轉化為二次函數(shù)來解決,請你聯(lián)系生活實際,編一道二次函數(shù)應用題,并寫出函數(shù)關系式。

【函數(shù)數(shù)學教案(精選7篇)】相關文章:

奇函數(shù)的反函數(shù)是奇函數(shù)嗎10-12

函數(shù)與反函數(shù)關于什么對稱10-12

常數(shù)函數(shù)是周期函數(shù)嗎?10-12

奇函數(shù)乘奇函數(shù)等于什么10-12

冪函數(shù)教案04-07

復合函數(shù)怎么分解10-12

一次函數(shù)和正比例函數(shù)的概念   10-12

函數(shù)及其表示說課11-26

余弦函數(shù)的性質說課稿11-06

《集合與函數(shù)》課件設計05-08