毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

有理數(shù)的加法教案

時間:2022-03-02 10:11:34 教案 我要投稿

有理數(shù)的加法教案

  作為一名老師,可能需要進行教案編寫工作,教案有助于學生理解并掌握系統(tǒng)的知識。那么優(yōu)秀的教案是什么樣的呢?以下是小編幫大家整理的有理數(shù)的加法教案,希望能夠幫助到大家。

有理數(shù)的加法教案

有理數(shù)的加法教案1

  學習目標

  1. 理解有理數(shù)的加法法則.

  2. 能夠應用有理數(shù)的加法法則,將有理數(shù)的加法轉化為非負數(shù)的加減運算.

  3. 掌握異號兩數(shù)的加法運算的規(guī)律.

  [知識講解]

  正有理數(shù)及0的加法運算,小學已經學過,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,可以把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫做凈勝球數(shù)。如果,紅隊進4個球,失2個球;藍隊進1個球,失1個球.于是紅隊的凈勝球數(shù)為

  4+(-2),

  藍隊的凈勝球數(shù)為

  1+(-1)。

  這里用到正數(shù)和負數(shù)的加法。

  下面借助數(shù)軸來討論有理數(shù)的加法。

  一、負數(shù)+負數(shù)

  如果規(guī)定向東為正,向西為負,那么一個人向西走2米,再向西走3米,兩次共向西走多少米?很明顯,兩次共向西走了6米.

  這個問題用算式表示就是:(-2)+(-4)=-6.

  這個問題用數(shù)軸表示就是如圖1所示:

  二、負數(shù)+正數(shù)

  如果向西走2米,再向東走4米, 那么兩次運動后 這個人從起點向東走2米,寫成算式就是

 。ā2)+4=2。

  這個問題用數(shù)軸表示就是如圖2所示:

  探究

  利用數(shù)軸,求以下情況時這個人兩次運動的結果:

 。ㄒ唬┫认驏|走3米,再向西走5米,物體從起點向()運動了()米;

  (二)先向東走5米,再向西走5米,物體從起點向()運動了()米;

 。ㄈ┫认蛭髯5米,再向東走5米,物體從起點向()運動了()米。 這三種情況運動結果的算式如下:

  3+(—5)= —2;

  5+(—5)= 0;

 。ā5)+5= 0。

  如果這個人第一秒向東(或向西)走5米,第二秒原地不動,兩秒后這個人

  從起點向東(或向西)運動了5米。寫成算式就是

  5+0=5或(—5)+0= —5。

  你能從以上7個算式中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?

  三、有理數(shù)加法法則

  1. 同號的兩數(shù)相加,取相同的符號,并把絕對值相加.

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值. 互為相反數(shù)的兩個數(shù)相加得零.

  3一個數(shù)同0相加,仍得這個數(shù)。

  四、例題

  例1 計算(-3)+(-9);(2)(-4·7)+3·

  分析:解此題要利用有理數(shù)的加法法則. 解:(1) (-3)+(-9)= -(3+9)= -12:

  (2) (-4·7)+3·9=-(4·7-3·9)= -0·8.

  例2足球循環(huán)賽中,

  紅隊勝黃隊4: 1,黃隊勝藍隊1 :0,藍隊勝紅隊1: 0,計算各隊的凈勝球數(shù)。 解:每個隊的進球總數(shù)記為正數(shù),失球總數(shù)記為負數(shù),這兩數(shù)的和為這隊的凈勝球數(shù)。 三場比賽中,紅隊共進4球,失2球,凈勝球數(shù)為

 。+4)+(—2)=+(4—2)=2;

  黃隊共進2球,失4球,凈勝球數(shù)為

  (+2)+(—4)= —(4—2)= ();藍隊共進()球,失()球,凈勝球數(shù)為

 。ǎ=()。

  五、課堂練習1.填空:

 。1)(-3)+(-5)=;(2)3+(-5)=;

 。3)5+(-3)=;(4)7+(-7)=;

  (5)8+(-1)=;(6)(-8)+1 =;

 。7)(-6)+0 =;(8)0+(-2) =;

  2.計算:

 。1)(-13)+(-18);(2)20+(-14);

 。3)1.7 + 2.8 ;(4)2.3 + (-3.1);

  121)+(-);(6)1+(-1.5); 332

  12(7)(-3.04)+ 6 ;(8)+(-). 23(5)(-

  3.想一想,兩個數(shù)的和一定大于每個加數(shù)嗎?請你舉例說明.

  4. 第23頁練習 1、2。

  課堂練習答案

  1.(1)-8; (2)-2; (3)2; (4)0; (5)7; (6)-7;

 。7)-6; (8)-2.

  2.(1)-31; (2)7; (3)4.5; (4)-0.7; (5)-1 ;

 。6)0 ; (7)2.96; (8)-1. 6

  3.不一定,例如兩個負數(shù)的和小于這兩個加數(shù).

  課外作業(yè):第31頁1題.

  課外選做題

  1.判斷題:

 。1)兩個負數(shù)的和一定是負數(shù);

 。2)絕對值相等的兩個數(shù)的和等于零;

 。3)若兩個有理數(shù)相加時的和為負數(shù),這兩個有理數(shù)一定都是負數(shù);

 。4)若兩個有理數(shù)相加時的和為正數(shù),這兩個有理數(shù)一定都是正數(shù).

  2.當a = -1.6,b = 2.4時,求a+b和a+(-b)的值.

  3.已知│a│= 8,│b│= 2.

 。1)當a、b同號時,求a+b的值;

  (2)當a、b異號時,求a+b的值.

  課外選做題答案

  1.(1)對;(2)錯;(3)錯;(4)錯.

  2.a+b和a+(-b)的值分別為0.8、-4.

  3.(1)當a、b同號時,a+b的值為10或-10;

有理數(shù)的加法教案2

  【教學目標】

  1. 通過學習,能感受到數(shù)學知識來源于生活又可應用于實際生活,激發(fā)學習的興趣。

  2.通過探索,能歸納總結出有理數(shù)加法法則,理解有理數(shù)加法的意義滲透分類思想。

  3.掌握有理數(shù)加法法則,并能準確地進行有理數(shù)加法運算。

  【學習重點、難點】

  重點:了解有理數(shù)加法的意義,會根據(jù)有理數(shù)加法法則進行有理數(shù)加法計算;

  難點:異號兩數(shù)如何相加的法則。

  【學習過程】

  一、 預習自學:

  1.蛋糕店上半年掙5萬,下半年掙3萬,請問一年共掙多少錢?

  2.蛋糕店上半年賠5萬,下半年賠3萬,請問一年共掙多少錢?

  3.蛋糕店上半年掙5萬,下半年賠3萬,請問一年共掙多少錢?

  4.蛋糕店上半年賠5萬,下半年掙3萬,請問一年共掙多少錢?

  5.蛋糕店上半年掙5萬,下半年賠5萬,請問一年共掙多少錢?

  6.蛋糕店上半年賠5萬,下半年掙0萬,請問一年共掙多少錢?

  請你列式計算,并引導學生對前面的七個加法運算進行合理的分類探討:和的符號怎樣確定?和的絕對值怎樣確定?(小組討論展示)

  二、 教師點撥

  知識點一:引導學生對前面的七個加法運算進行合理的分類

  同號兩數(shù)相加: (+5)+(+3)= ______.(-5)+(-3)= ______

  異號兩數(shù)相加:(+5)+(-3)= ______;(-5)+(+3)= ______;

  (+5)+(-5)=______

  一數(shù)與零相加: (-5)+0=______;

  知識點二:探討:和的符號怎樣確定?和的絕對值怎樣確定?

  結論:有理數(shù)加法法則:

  1.同號兩數(shù)相加,取相同的符號,并把絕對值相加。

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)的符號,并用較大的絕對值減去較小的絕對值;橄喾磾(shù)的兩個數(shù)相加得0。

  3.一個數(shù)同0相加,仍得這個數(shù)。

  三.例題精講;例1(學生自學,教師示范。注意解題步驟)

  四、課堂練習;36頁隨堂練習與習題(小組展示交流)

  五、當堂檢測;

  1.用生活中的事例說明下列算是的意義,并計算出結果:

 。-2)+(-3);(-3)+2

  2.有理數(shù)加法法則:

  絕對值不相等的兩數(shù)相加,取絕對值的加數(shù)的符號,并用較大的絕對值較小的絕對值. 互為相反數(shù)的兩個數(shù)相加得.

  3.計算:(+15)+(-7);(-39)+(-21);

 。-37)+22;(-3)+(+3)

有理數(shù)的加法教案3

  一.教學目標

  1.知識與技能

 。1)通過足球賽中的凈勝球數(shù),使學生掌握有理數(shù)加法法則,并能運用法則進行計算;

  (2)在有理數(shù)加法法則的教學過程中,注意培養(yǎng)學生的運算能力.

  2.過程與方法

  通過觀察,比較,歸納等得出有理數(shù)加法法則。能運用有理數(shù)加法法則解決實際問題。

  3.情感態(tài)度與價值觀

  認識到通過師生合作交流,學生主動叁與探索獲得數(shù)學知識,從而提高學生學習數(shù)學的積極性。

  二、教學重難點及關鍵:

  重點:會用有理數(shù)加法法則進行運算.

  難點:異號兩數(shù)相加的法則.

  關鍵:通過實例引入,循序漸進,加強法則的應用.

  三、教學方法

  發(fā)現(xiàn)法、歸納法、與師生轟動緊密結合.

  四、教材分析

  “有理數(shù)的加法”是人教版七年級數(shù)學上冊第一章有理數(shù)的第三節(jié)內容,本節(jié)內容安排四個課時,本課時是本節(jié)內容的第一課時,本課設計主要是通過球賽中凈勝球數(shù)的實例來明確有理數(shù)加法的意義,引入有理數(shù)加法的法則,為今后學習“有理數(shù)的減法”做鋪墊。

  五、教學過程

 。ㄒ唬﹩栴}與情境

  我們已經熟悉正數(shù)的運算,然而實際問題中做加法運算的數(shù)有可能超出正數(shù)范圍。例如,足球循環(huán)賽中,通常把進球數(shù)記為正數(shù),失球數(shù)記為負數(shù),它們的和叫作凈勝球數(shù)。章前言中,紅隊進4個球,失2個球;藍隊進1個球,失1個球。于是紅隊的凈勝球為4+(-2),黃隊的凈勝球為1+(-1),這里用到正數(shù)與負數(shù)的加法。

 。ǘ⿴熒餐骄坑欣頂(shù)加法法則

  前面我們學習了有關有理數(shù)的一些基礎知識,從今天起開始學習有理數(shù)的運算.這節(jié)課我們來研究兩個有理數(shù)的加法.兩個有理數(shù)相加,有多少種不同的情形?為此,我們來看一個大家熟悉的實際問題:

  足球比賽中贏球個數(shù)與輸球個數(shù)是相反意義的量.若我們規(guī)定贏球為“正”,輸球為“負”,打平為“0”.比如,贏3球記為+3,輸1球記為-1.學校足球隊在一場比賽中的勝負可能有以下各種不同的情形:

  (1)上半場贏了3球,下半場贏了1球,那么全場共贏了4球.也就是

  (+3)+(+1)=+4.

  (2)上半場輸了2球,下半場輸了1球,那么全場共輸了3球.也就是

  (-2)+(-1)=-3.

  現(xiàn)在,請同學們說出其他可能的情形.

  答:上半場贏了3球,下半場輸了2球,全場贏了1球,也就是

  (+3)+(-2)=+1;

  上半場輸了3球,下半場贏了2球,全場輸了1球,也就是

  (-3)+(+2)=-1;

  上半場贏了3球下半場不輸不贏,全場仍贏3球,也就是

  (+3)+0=+3;

  上半場輸了2球,下半場兩隊都沒有進球,全場仍輸2球,也就是

  (-2)+0=-2;

  上半場打平,下半場也打平,全場仍是平局,也就是

  0+0=0.

  上面我們列出了兩個有理數(shù)相加的7種不同情形,并根據(jù)它們的具體意義得出了它們相加的和.但是,要計算兩個有理數(shù)相加所得的和,我們總不能一直用這種方法.現(xiàn)在請同學們仔細觀察比較這7個算式,你能從中發(fā)現(xiàn)有理數(shù)加法的運算法則嗎?也就是結果的符號怎么定?絕對值怎么算?

  這里,先讓學生思考,師生交流,再由學生自己歸納出有理數(shù)加法法則:

  1.同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0;

  3.一個數(shù)同0相加,仍得這個數(shù).

 。ㄈ⿷门e例 變式練習&&</p>

  例1 口答下列算式的結果

  (1)(+4)+(+3);(2)(-4)+(-3);(3)(+4)+(-3);(4)(+3)+(-4);

  (5)(+4)+(-4);(6)(-3)+0;(7)0+(+2);(8)0+0.

  學生逐題口答后,師生共同得出:進行有理數(shù)加法,先要判斷兩個加數(shù)是同號還是異號,有一個加數(shù)是否為零;再根據(jù)兩個加數(shù)符號的具體情況,選用某一條加法法則.進行計算時,通常應該先確定“和”的符號,再計算“和”的絕對值.

  例2(教科書的例1)

  解:(1)(-3)+(-9) (兩個加數(shù)同號,用加法法則的第1條計算)

  =-(3+9) (和取負號,把絕對值相加)

  =-12.

 。2)(-4.7)+3.9 (兩個加數(shù)異號,用加法法則的第2條計算)

  =-(4.7-3.9) (和取負號,把大的絕對值減去小的絕對值)

  =-0.8

  例3(教科書的例2)教師在算出紅隊的凈勝球數(shù)后,學生自己算黃隊和藍隊的凈勝球數(shù)

  下面請同學們計算下列各題以及教科書第23頁練習第1與第2題

  (1)(-0.9)+(+1.5); (2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

  學生書面練習,四位學生板演,教師巡視指導,學生交流,師生評價。

  (四)小結

  1.本節(jié)課你學到了什么?

  2.本節(jié)課你有什么感受?(由學生自己小結)

 。ㄎ澹┳鳂I(yè)設計

  1.計算:

  (1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);(4)(+6)+(+9);

  (5)67+(-73);(6)(-84)+(-59);(7)-33+48;(8)(-56)+37.

  2.計算:

  (1)(-0.9)+(-2.7); (2)3.8+(-8.4);(3)(-0.5)+3;(4)3.29+1.78;

  (5)7+(-3.04);(6)(-2.9)+(-0.31)(7)(-9.18)+6.18; (8)(-0.78)+0.

  3.用“>”或“<”號填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b ______0

 。┌鍟O計

  1.3.1有理數(shù)加法

  一、加法法則二、例1例2例3

有理數(shù)的加法教案4

  【目標預覽】

  知識技能:1、通過實例,了解有理數(shù)加法的意義,掌握有理數(shù)加法法則,并能運用法則進行計算;

  2、在有理數(shù)加法法則的教學過程中,培養(yǎng)觀察、比較、歸納及運算能力。 數(shù)學思考:1、正確地進行有理數(shù)的加法運算;

  2、用數(shù)形結合的思想方法得出有理數(shù)加法法則。

  解決問題:能運用有理數(shù)加法解決實際問題。

  情感態(tài)度:通過師生活動、學生自我探究,讓學生充分參與到數(shù)學學習的過程中來。

  【教學重點和難點】

  重點:了解有理數(shù)加法的意義,會根據(jù)有理數(shù)加法法則進行有理數(shù)加法計算; 難點:異號兩數(shù)如何相加的法則。

  【情景設計】

  我們來看一個大家熟悉的實際問題:

  足球比賽中進球個數(shù)與失球個數(shù)是相反意義的量.若我們規(guī)定進球為“正”,失球為“負”。比如,進3個球記為正數(shù):+3,失2個球記為負數(shù):-2。它們的和為凈勝球數(shù):(+3)+(-2)學校足球隊在一場比賽中的勝負情況如下:

  (1)紅隊進了3個球,失了2個球,那么凈勝球數(shù)是:(+3)+(-2)

  (2)藍隊進了1個球,失了1個球,那么凈勝球數(shù)是:(+1)+(-1)

  這里,就需要用到正數(shù)與負數(shù)的加法。

  下面,我們利用數(shù)軸一起來討論有理數(shù)的加法規(guī)律。

  【探求新知】

  一個物體作左右運動,我們規(guī)定向左為負,向右為正。向右運動5m,可以記作多少?向左運動5m呢?

 。1)如果物體先向右運動5m,再向右運動3m,那么兩次運動后總的結果是多少呢? 利用數(shù)軸演示(如圖1),把原點假設為運動起點。

  兩次運動后物體從起點向右運動了8m。寫成算式是:5+3=8①

  利用數(shù)軸依次討論如下問題,引導學生自己尋找算式的答案:

  (2)如果物體先向左運動5m,再向左運動3m,那么兩次運動后總的結果是多少呢?

  (3)如果物體先向右運動5m,再向左運動3m,那么兩次運動后總的結果是多少呢?

 。4)如果物體先向左運動5m,再向右運動3m,那么兩次運動后總的結果是多少呢?

 。5)如果物體先向左運動5m,再向右運動5m,那么兩次運動后總的結果是多少呢?

 。6)如果物體先向右運動5m,再向左運動5m,那么兩次運動后總的結果是多少呢?

 。7)如果物體第一分鐘向右(或向左)運動5m,第二分鐘原地不動,那么兩次運動后總的結果是多少呢?

  總結:依次可得

 。2)(-5)+(-3)=-8②

 。3)5+(-3)=2③

 。4)3+(-5)=-2④

 。5)5+(-5)=0⑤

 。6)(-5)+5=0⑥

  (7)5+0=5或(-5)+0=-5⑦

  觀察上述7個算式,自己歸納出有理數(shù)加法法則:

  1.同號兩數(shù)相加,取相同的符號,并把絕對值相加;

  2.絕對值不相等的異號兩數(shù)相加,取絕對值較大的加數(shù)符號,并用較大的絕對值減去較小的絕對值,互為相反數(shù)的兩個數(shù)相加得0;

  3.一個數(shù)同0相加,仍得這個數(shù)。

  【范例精析】

  例1計算下列算式的結果,并說明理由:

  (1)(+4)+(+7);(2)(-4)+(-7);

  (3)(+4)+(-7);(4)(+9)+(-4);

  (5)(+4)+(-4);(6)(+9)+(-2);

  (7)(-9)+(+2);(8)(-9)+0;

  (9)0+(+2);(10)0+0.

  學生逐題口答后,教師小結:

  進行有理數(shù)加法,先要判斷兩個加數(shù)是同號還是異號,有一個加數(shù)是否為零;再根據(jù)兩個加數(shù)符號的具體情況,選用某一條加法法則.進行計算時,通常應該先確定“和”的符號,再計算“和”的絕對值.

  解:(1)(-3)+(-9) (兩個加數(shù)同號,用加法法則的第2條計算)

  =-(3+9)(和取負號,把絕對值相加)

  =-12.

  例3 足球循環(huán)比賽中,紅隊勝黃隊4﹕1,黃隊勝藍隊1﹕0,藍隊勝紅隊1﹕0,計算各隊的凈勝球數(shù)。

  解:我們規(guī)定進球為“正”,失球為“負”。它們的和為凈勝球數(shù)。

  三場比賽中,紅隊共進4球,失2球,凈勝球數(shù)為(+4)+(-2)=2;

  黃隊共進2球,失4球,凈勝球數(shù)為(+2)+(-4)= -2;

  藍隊共進1球,失1球,凈勝球數(shù)為(+1)+(-1)=0;

  【一試身手】

  下面請同學們計算下列各題:

  (1)(-0.9)+(+1.5);(2)(+2.7)+(-3); (3)(-1.1)+(-2.9);

  全班學生書面練,四位學生板演,教師對學生板演進行講評.

  【總結陳詞】

  1、這節(jié)課我們從實例出發(fā),經過比較、歸納,得出了有理數(shù)加法的法則.今后我們經常要用類似的思想方法研究其他問題。

  2、應用有理數(shù)加法法則進行計算時,要同時注意確定“和”的符號,計算“和”的絕對值兩件事。

  【實戰(zhàn)操練】

  1.計算:

  (1)(-10)+(+6);(2)(+12)+(-4);(3)(-5)+(-7);

  (4)(+6)+(+9);(5)67+(-73);(6)(-84)+(-59);

  (7)33+48;(8)(-56)+37.

  2.計算:

  (1)(-0.9)+(-2.7);(2)3.8+(-8.4);

  (3)(-0.5)+3;(4)3.29+1.78;

  (5)7+(-3.04);(6)(-2.9)+(-0.31);

  (7)(-9.18)+6.18;(8)4.23+(-6.77);(9)(-0.78)+0.

  3.計算:

  4*.用“>”或“<”號填空:

  (1)如果a>0,b>0,那么a+b ______0;

  (2)如果a<0,b<0,那么a+b ______0;

  (3)如果a>0,b<0,|a|>|b|,那么a+b ______0;

  (4)如果a<0,b>0,|a|>|b|,那么a+b ______0.

  5*.分別根據(jù)下列條件,利用|a|與|b|表示a與b的和:

  (1)a>0,b>0;(2) a<0,b<0;

  (3)a>0,b<0,|a|>|b|;(4)a>0,b<0,|a|<|b|.

有理數(shù)的`加法教案5

  一、學情及學習內容分析

  “有理數(shù)的加法與減法”是基于規(guī)則為主的新授課型

  有理數(shù)的加法與減法是在引入“負數(shù)”的基礎上,將數(shù)的范圍擴展到“有理數(shù)”范圍內的加、減法運算。本節(jié)課從學生的生活經歷和經驗出發(fā),創(chuàng)設情境,通過分析生活情境中的事理和觀察溫度計刻度的操作,得到了一些有理數(shù)減法的算式,用“化歸”的思想方法歸納出有理數(shù)減法法則,并應用所學的有理數(shù)減法解決實際問題,整節(jié)課的設計流程和總體思路可以用下圖表示: 生活情境,動手操作------有理數(shù)減法算式-------有理數(shù)減法法則-------有理數(shù)減法的應用

  二、教學目標及教學重(難)點

  教學目標:

  1.知識與技能:會根據(jù)減法的法則進行有理數(shù)減法的運算。

  2.過程與方法:經歷分析生活情境中的數(shù)學事例,提煉其中的數(shù)學算式,并從中歸納有理數(shù)減

  法法則;經歷將法則應用于解題的這一由一般到特殊的過程。

  3.情感態(tài)度與價值觀:在由實際情境提煉數(shù)學算式的過程中,感受數(shù)學在我們的生活中;在這

  一過程中,滲透轉化的思想方法,感受數(shù)學思想方法的導航作用。

  教學重點:有理數(shù)減法法則與運用

  教學難點:從實際情境到數(shù)學算式,從數(shù)學算式到法則的提煉,在法則的總結中體現(xiàn)化歸

  的思想方法的滲透。

  教學方法:觀察探究、合作交流。

  三、教學過程設計:

  在課前讓學生玩有理數(shù)加法中的撲克牌游戲。

  1.情境引入:

  師:同學們,大家都看過天氣預報,有沒有注意到里面有“溫差”之說呢?

  有效性分析:通過設計“溫差”這一問題情境,進而順利的進入課題,并從列算式角度加以認識,得到一些有理數(shù)減法算式,為后面的化歸思想方法歸納出有理數(shù)減法法則做好素材和算式上的準備。

  2.建構活動

  活動1:計算溫差

  師:有理數(shù)加減3_百度文庫

  生1:利用溫度計的刻度直觀得到算式 5 + 3 = 8

  生2:利用日溫差的定義可得到算式:5 -(-3)= 8

  師: 比較兩式,我們有什么發(fā)現(xiàn)嗎?

  生:“-”變“+”,( -3)變3。

  活動2:通過舉例子驗證剛才的變化過程,加深對有理數(shù)減法算式的理解。

  有理數(shù)加減3_百度文庫

  有效性分析:從生活情境中,學生獲取了豐富的素材和有理數(shù)減法運算的算式,為下面觀察算式特點,總結運算方法做好準備。這種由算式到法則的過程,使學生從心理上更易接受,令算式更有實際背景和說服力,為有理數(shù)減法運算法則的提煉和數(shù)學化打下了良好的基礎。

  3. 數(shù)學化認識

  5 -(-3)=5 + 3( -3)-(-5)=(-3)+ 5

  3-(-5) =3 +5(-3)-5=(-3)+ (-5)

  師:綜合上面算式的共同特點即被減數(shù)不變,減號變加號,減數(shù)變成它的相反數(shù),我們就得到了有理數(shù)減法法則:減去一個數(shù),等于加上這個數(shù)的相反數(shù)。有理數(shù)減法概念_百度知道

  有效性分析:“化歸”的思想和方法是初中數(shù)學中最重要的方法之一,本節(jié)課的數(shù)學化過程正是通過觀察已有的算式來發(fā)現(xiàn)和總結“有理數(shù)的減法法則”的,在教學中滲透了“化歸”思想。此外,在化歸為加法運算時,進一步復習加法法則,強化了有理數(shù)的減法與小學學的減法之間的聯(lián)系和區(qū)別:即小學的減法是有理數(shù)減法中的一種特例,即減數(shù)比被減數(shù)小,;當減數(shù)比被減數(shù)大時,小學無法解決的問題現(xiàn)在可以解決了。

  4. 基礎性訓練

  例1計算下列各題

  ①0-(-22)②8.5-(-1.5)③(+4)-16

 、(?1

  2)?1

  4⑤15-(-7)⑥(+2)-(+8)

  基礎練 :1.課本p 322、3、4

  2. 求出數(shù)軸上兩點之間的距離:

 。1)表示數(shù)10的點與表示數(shù)4的點;

 。2)表示數(shù)2的點與表示數(shù)-4的點;

 。3)表示數(shù)-1的點與表示數(shù)-6的點。

  有效性分析:基礎性訓練中安排了典型例題,著重訓練學生利用剛學過的“有理數(shù)的減法法則”進行計算的正確性和熟練度,并規(guī)范了計算題目的格式,在格式中進一步熟悉法則,正確運用法則,讓學生明確有理數(shù)的減法的一般步驟是(1)變符號;(2)用加法法則進行計算

  5. 拓展延伸

  [原創(chuàng)] 巧用撲克牌進行有理數(shù)簡單運算練習

  有效性分析:通過撲克牌的兩個活動,進一步調動學生學習有理數(shù)減法運算法則的積極性和主動性,寓教于樂,在活動中通過小組帶動班上所有學生學習的熱情,同時在活動中更加明確運算法則,做到熟練而準確地運用法則,感受并思考:“兩個有理數(shù)相減,差一定比兩個減數(shù)小嗎?”的問題,以區(qū)別于學生在小學中熟知的減法運算,更好的完成本節(jié)課的教學目標。

  四、教學反思

  “有理數(shù)的加法與減法”的教學,可以有多種不同的設計方案,但大體上可以分為兩類:一類是由老師較快的給出法(本站 推薦)則,用較多的時間組織學生練習,以求熟練的掌握法則;另一類是適當?shù)募訌姺▌t的形成過程,從而在此過程中著力培養(yǎng)學生的觀察、比較、歸納能力,相應的適當壓縮法則的練,如本教學設計。本節(jié)課注重學生自我學習的能力,學生在學習了有理數(shù)加法后,再學習有理數(shù)的減法,教師把學習的主動權歸還學生,不再是教師講,學生聽,現(xiàn)在變?yōu)閷W生講,教師聽,由學生自己發(fā)現(xiàn)問題,分析問題,解決問題。學生與教師分享彼此的思考,經驗和知識,交流彼此的情感,體驗與感悟,豐富教學內容,求的新的發(fā)展,從而達到共識,共享,共進。

有理數(shù)的加法教案6

  教學目標:

  1、使學生掌握有理數(shù)加法的運算律,并能運用加法運算律簡化運算。

  2、培養(yǎng)學生觀察、比較、歸納及運算能力。

  重點:有理數(shù)加法運算律及其運用。

  重點:靈活運用運算律

  教學過程:

  一、創(chuàng)設情境,引入新課

  1、小學時已學過的加法運算律有哪幾條?

  2、猜一猜:在有理數(shù)的加法中,這兩條運算律仍然適用嗎?

  3、(1)計算30+(-20)=__________=______,-20+30=___________=_____;

  (2)[8+(-5)]+(-4)=_______=______, 8+[(-5)+(-4)]=_______=______。

  二、講授新課

  教師:你會用文字表述加法的兩條運算律嗎?你會用字母表示加法的這兩條運算律嗎?

  (學生回答省略)

  師生共同歸納:加法交換律:兩個數(shù)相加,交換加數(shù)的位置,和不變。 即:a+b=b+a

  加法結合律:三個數(shù)相加,先把前兩個數(shù)相加,或者先把后兩個數(shù)相加,和不變。即(a+b)+c=a+(b+c)

  講解例3

  教師:例3中是怎樣使計算簡化的?這樣做的根據(jù)是什么?(請兩位同學起來回答)

  三、鞏固知識

  教師:例4中用了兩種方法,比較兩種解法,哪種方法比較好?解法2中使用了哪些運算律?

  師生共同得出:解法2比較好,因為它的運算量比較小。解法2中使用了加法交換律和加法結合律。

  四、總結

  本節(jié)課主要學習有理數(shù)加法運算律及其運用,主要用到的思想方法是類比思想,需要注意的是:有理數(shù)的加法運算律與小學學習的運算律相同,運用加法運算律的目的為了簡化運算。解題技巧是將正數(shù)分別相加,再把負數(shù)分別相加,然后再把它們的和相加。

  五、布置作業(yè)

【有理數(shù)的加法教案】相關文章:

《學習2的加法》教案02-25

有理數(shù)的加法第一課時說課11-12

大班數(shù)學《學習2的加法》教案02-25

向量的加法說課稿11-04

有理數(shù)的大小比較03-01

有理數(shù)的減法(說課稿)11-24

有理數(shù)的乘法說課稿11-02

《有理數(shù)》教學設計02-16

《有理數(shù)》教學設計02-16

大班數(shù)學優(yōu)質課教案及教學反思《10的加法》09-23