毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

九年級(jí)數(shù)學(xué)優(yōu)秀教案

時(shí)間:2022-04-14 17:40:43 教案 我要投稿

九年級(jí)數(shù)學(xué)優(yōu)秀教案范文5篇

  作為一名教學(xué)工作者,編寫教案是必不可少的,借助教案可以提高教學(xué)質(zhì)量,收到預(yù)期的教學(xué)效果。那么寫教案需要注意哪些問題呢?以下是小編幫大家整理的九年級(jí)數(shù)學(xué)優(yōu)秀教案范文5篇,希望能夠幫助到大家。

九年級(jí)數(shù)學(xué)優(yōu)秀教案范文5篇

九年級(jí)數(shù)學(xué)優(yōu)秀教案范文5篇1

  教學(xué)目標(biāo)

  (一)教學(xué)知識(shí)點(diǎn)

  1.能夠利用二次函數(shù)的圖象求一元二次方程的近似根.

  2.進(jìn)一步發(fā)展估算能力.

  (二)能力訓(xùn)練要求

  1.經(jīng)歷用圖象法求一元二次方程的近似根的過程,獲得用圖象法求方程近似根的體驗(yàn).

  2.利用圖象法求一元二次方程的近似根,重要的是讓學(xué)生懂得這種求解方程的思路,體驗(yàn)數(shù)形結(jié)合思想.

  (三)情感與價(jià)值觀要求

  通過利用二次函數(shù)的圖象估計(jì)一元二次方程的根,進(jìn)一步掌握二次函數(shù)圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程的根的關(guān)系,提高估算能力.

  教學(xué)重點(diǎn)

  1.經(jīng)歷探索二次函數(shù)與一元二次方程的關(guān)系的過程,體會(huì)方程與函數(shù)之間的聯(lián)系.

  2.能夠利用二次函數(shù)的圖象求一元二次方程的近似根.

  教學(xué)難點(diǎn)

  利用二次函數(shù)的圖象求一元二次方程的近似根.

  教學(xué)方法

  學(xué)生合作交流學(xué)習(xí)法.

  教具準(zhǔn)備

  投影片三張

  第一張:(記作§2.8.2A)

  第二張:(記作§2.8.2B)

  第三張:(記作§2.8.2C)

  教學(xué)過程

  Ⅰ.創(chuàng)設(shè)問題情境,引入新課

  [師]上節(jié)課我們學(xué)習(xí)了二次函數(shù)y=ax2+bx+c(a≠0)的圖象與x軸的交點(diǎn)坐標(biāo)和一元二次方程ax2+bx+c=0(a≠0)的根的關(guān)系,懂得了二次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo),就是y=0時(shí)的一元二次方程的根,于是,我們?cè)诓唤夥匠痰那闆r下,只要知道二次函數(shù)與x軸交點(diǎn)的橫坐標(biāo)即可.但是在圖象上我們很難準(zhǔn)確地求出方程的解,所以要進(jìn)行估算.本節(jié)課我們將學(xué)習(xí)利用二次函數(shù)的圖象估計(jì)一元二次方程的根.

九年級(jí)數(shù)學(xué)優(yōu)秀教案范文5篇2

  教學(xué)目標(biāo)

  1、知道解一元二次方程的基本思路是“降次”化一元二次方程為一元一次方程。

  2、學(xué)會(huì)用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。

  3、引導(dǎo)學(xué)生體會(huì)“降次”化歸的思路。

  重點(diǎn)難點(diǎn)

  重點(diǎn):掌握用因式分解法和直接開平方法解形如(ax+b)2-k=0(k≥0)的方程。

  難點(diǎn):通過分解因式或直接開平方將一元二次方程降次為一元一次方程。

  教學(xué)過程

  (一)復(fù)習(xí)引入

  1、判斷下列說法是否正確

  (1)若p=1,q=1,則pq=l( ),若pq=l,則p=1,q=1( );

  (2)若p=0,g=0,則pq=0( ),若pq=0,則p=0或q=0( );

  (3)若x+3=0或x-6=0,則(x+3)(x-6)=0( ),

  若(x+3)(x-6)=0,則x+3=0或x-6=0( );

  (4)若x+3=或x-6=2,則(x+3)(x-6)=1( ),

  若(x+3)(x-6)=1,則x+3=或x-6=2( )。

  答案:(1)√,×。(2)√,√。(3)√,√。(4)√,×。

  2、填空:若x2=a;則x叫a的,x=;若x2=4,則x=;

  若x2=2,則x=。

  答案:平方根,±,±2,±。

  (二)創(chuàng)設(shè)情境

  前面我們已經(jīng)學(xué)了一元一次方程和二元一次方程組的解法,解二元一次方程組的基本思路是什么?(消元、化二元一次方程組為一元一次方程)。由解二元一次方程組的基本思路,你能想出解一元二次方程的基本思路嗎?

  引導(dǎo)學(xué)生思考得出結(jié)論:解一元二次方程的基本思路是“降次”化一元二次方程為一元一次方程。

  給出1.1節(jié)問題一中的方程:(35-2x)2-900=0。

  問:怎樣將這個(gè)方程“降次”為一元一次方程?

  (三)探究新知

  讓學(xué)生對(duì)上述問題展開討論,教師再利用“復(fù)習(xí)引入”中的內(nèi)容引導(dǎo)學(xué)生,按課本P.6那樣,用因式分解法和直接開平方法,將方程(35-2x)2-900=0“降次”為兩個(gè)一元一次方程來解。讓學(xué)生知道什么叫因式分解法和直接開平方法。

  (四)講解例題

  展示課本P.7例1,例2。

  按課本方式引導(dǎo)學(xué)生用因式分解法和直接開平方法解一元二次方程。

  引導(dǎo)同學(xué)們小結(jié):對(duì)于形如(ax+b)2-k=0(k≥0)的方程,既可用因式分解法解,又可用直接開平方法解。

  因式分解法的基本步驟是:把方程化成一邊為0,另一邊是兩個(gè)一次因式的乘積(本節(jié)課主要是用平方差公式分解因式)的形式,然后使每一個(gè)一次因式等于0,分別解兩個(gè)一元一次方程,得到的兩個(gè)解就是原一元二次方程的解。

  直接開平方法的步驟是:把方程變形成(ax+b)2=k(k≥0),然后直接開平方得ax+b=和ax+b=-,分別解這兩個(gè)一元一次方程,得到的解就是原一元二次方程的解。

  注意:(1)因式分解法適用于一邊是0,另一邊可分解成兩個(gè)一次因式乘積的一元二次方程;

  (2)直接開平方法適用于形如(ax+b)2=k(k≥0)的方程,由于負(fù)數(shù)沒有平方根,所以規(guī)定k≥0,當(dāng)k<0時(shí),方程無實(shí)數(shù)解。

  (五)應(yīng)用新知

  課本P.8,練習(xí)。

  (六)課堂小結(jié)

  1、解一元二次方程的基本思路是什么?

  2、通過“降次”,把—元二次方程化為兩個(gè)一元一次方程的方法有哪些?基本步驟是什么?

  3、因式分解法和直接開平方法適用于解什么形式的一元二次方程?

  (七)思考與拓展

  不解方程,你能說出下列方程根的情況嗎?

  (1)-4x2+1=0;(2)x2+3=0;(3)(5-3x)2=0;(4)(2x+1)2+5=0。

  答案:

  (1)有兩個(gè)不相等的實(shí)數(shù)根;

  (2)和(4)沒有實(shí)數(shù)根;

  (3)有兩個(gè)相等的實(shí)數(shù)根

  通過解答這個(gè)問題,使學(xué)生明確一元二次方程的解有三種情況。

  布置作業(yè)

九年級(jí)數(shù)學(xué)優(yōu)秀教案范文5篇3

  教學(xué)目標(biāo)

  1、理解“配方”是一種常用的數(shù)學(xué)方法,在用配方法將一元二次方程變形的過程中,讓學(xué)生進(jìn)一步體會(huì)化歸的思想方法。

  2、會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。

  重點(diǎn)難點(diǎn)

  重點(diǎn):會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。

  難點(diǎn):用配方法將一元二次方程變形成可用因式分解法或直接開平方法解的方程。

  教學(xué)過程

  (一)復(fù)習(xí)引入

  1、a2±2ab+b2=?

  2、用兩種方法解方程(x+3)2-5=0。

  如何解方程x2+6x+4=0呢?

  (二)創(chuàng)設(shè)情境

  如何解方程x2+6x+4=0呢?

  (三)探究新知

  1、利用“復(fù)習(xí)引入”中的內(nèi)容引導(dǎo)學(xué)生思考,得知:反過來把方程x2+6x+4=0化成(x+3)2-5=0的形式,就可用前面所學(xué)的因式分解法或直接開平方法解。

  2、怎樣把方程x2+6x+4=0化成(x+3)2-5=0的形式呢?讓學(xué)生完成課本P.10的“做一做”并引導(dǎo)學(xué)生歸納:當(dāng)二次項(xiàng)系數(shù)為“1”時(shí),只要在二次項(xiàng)和一次項(xiàng)之后加上一次項(xiàng)系數(shù)一半的平方,再減去這個(gè)數(shù),使得含未知數(shù)的項(xiàng)在一個(gè)完全平方式里,這種做法叫作配方.將方程一邊化為0,另一邊配方后就可以用因式分解法或直接開平方法解了,這樣解一元二次方程的方法叫作配方法。

  (四)講解例題

  例1(課本P.11,例5)

  [解](1)x2+2x-3(觀察二次項(xiàng)系數(shù)是否為“l(fā)”)

  =x2+2x+12-12-3(在一次項(xiàng)和二次項(xiàng)之后加上一次項(xiàng)系數(shù)一半的平方,再減去這個(gè)數(shù),使它與原式相等)

  =(x+1)2-4。(使含未知數(shù)的項(xiàng)在一個(gè)完全平方式里)

  用同樣的方法講解(2),讓學(xué)生熟悉上述過程,進(jìn)一步明確“配方”的意義。

  例2引導(dǎo)學(xué)生完成P.11~P.12例6的'填空。

  (五)應(yīng)用新知

  1、課本P.12,練習(xí)。

  2、學(xué)生相互交流解題經(jīng)驗(yàn)。

  (六)課堂小結(jié)

  1、怎樣將二次項(xiàng)系數(shù)為“1”的一元二次方程配方?

  2、用配方法解一元二次方程的基本步驟是什么?

  (七)思考與拓展

  解方程:(1)x2-6x+10=0;(2)x2+x+=0;(3)x2-x-1=0。

  說一說一元二次方程解的情況。

  [解](1)將方程的左邊配方,得(x-3)2+1=0,移項(xiàng),得(x-3)2=-1,所以原方程無解。

  (2)用配方法可解得x1=x2=-。

  (3)用配方法可解得x1=,x2=

  一元二次方程解的情況有三種:無實(shí)數(shù)解,如方程(1);有兩個(gè)相等的實(shí)數(shù)解,如方程(2);有兩個(gè)不相等的實(shí)數(shù)解,如方程(3)。

  課后作業(yè)

  課本習(xí)題

九年級(jí)數(shù)學(xué)優(yōu)秀教案范文5篇4

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能

  (1)會(huì)根據(jù)增長(zhǎng)率問題中的數(shù)量關(guān)系和等量關(guān)系,列出一元二次方程,并能對(duì)方程解的合理性作出解釋;

  2.過程與方法

  通過猜想、探討構(gòu)建一元二次方程模型.

  3.情感、態(tài)度與價(jià)值觀

  (1)通過自主、探究性學(xué)習(xí),使學(xué)生養(yǎng)成良好的思維習(xí)慣;

  (2)通過對(duì)方程解的合理性解釋,培養(yǎng)學(xué)習(xí)實(shí)事求是的作風(fēng).

  二、教學(xué)重點(diǎn)難點(diǎn)

  1.重點(diǎn)

  找出問題中的數(shù)量關(guān)系;

  2.難點(diǎn)

  找等量關(guān)系并列出相應(yīng)方程.

  三、教材分析

  本節(jié)課是從實(shí)際問題引入的基本概念,學(xué)習(xí)方程的基本解法之后所提出的一些實(shí)際問題,以及最后一節(jié)的實(shí)踐與探索,都是為了給與學(xué)生都創(chuàng)造一些探索交流的機(jī)會(huì),讓學(xué)生了解數(shù)學(xué)知識(shí)的發(fā)展,學(xué)會(huì)解決一些簡(jiǎn)單問題的方法,特別是從實(shí)際情景尋找所隱含的數(shù)量關(guān)系,建立適當(dāng)?shù)臄?shù)學(xué)模型.

  四、教學(xué)過程與互動(dòng)設(shè)計(jì)

  (一)溫故知新

  1.請(qǐng)同學(xué)們回憶并回答解一元一次方程應(yīng)用題的一般步驟:

  第一步:弄清題意和題目中的已知數(shù)、未知數(shù),用字母表示題目中的一個(gè)未知數(shù);

  第二步:找出能夠表示應(yīng)用題全部含義的相等關(guān)系;

  第三步:根據(jù)這些相等關(guān)系列出需要的代數(shù)式(簡(jiǎn)稱關(guān)系式),從而列出方程;

  第四步:解這個(gè)方程,求出未知數(shù)的值;

  第五步:在檢查求得的答數(shù)是否符合應(yīng)用題的實(shí)際意義后,寫出答案(包括單位名稱.)

  2.解一元二次方程的應(yīng)用題的步驟與解一元一次方程應(yīng)用題的步驟一樣.

  我們先來解一些具體的題目,然后總結(jié)一些規(guī)律或應(yīng)注意事項(xiàng).

  (二)創(chuàng)設(shè)情景,導(dǎo)入新課

  1.一個(gè)長(zhǎng)為10米的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8米.

  若梯子的頂端下滑1米,那么

  (1)猜一猜,底端也將滑動(dòng)

  1米嗎?

  (2)列出底端滑動(dòng)距離所滿足的方程.

  【答案】

 、俚锥藢⒒瑒(dòng)1米多

  ②提示:先利用勾股定理在實(shí)際問題中的應(yīng)用,說明數(shù)學(xué)來源于實(shí)際.

  2.【探究活動(dòng)】1.某商店1月份的利潤(rùn)是2500元,3月份的利潤(rùn)達(dá)到3000元,這兩個(gè)月的利潤(rùn)平均增長(zhǎng)的百分率是多少(精確到0.1%)?

  (1)學(xué)生討論:怎樣計(jì)算月利潤(rùn)增長(zhǎng)百分率?

  【點(diǎn)評(píng)】通過學(xué)生討論得出月利潤(rùn)增長(zhǎng)百分率=月增利潤(rùn)/月利潤(rùn)

  例8 某商品經(jīng)過兩次降價(jià),每瓶零售價(jià)由56元降為31.5元,已知兩次降價(jià)的百分率相同,求每次降價(jià)的百分率.

  分析:若一次降價(jià)百分率為x,則一次降價(jià)后零售價(jià)為原來的(1-x)倍,即56(1-x);第二次降價(jià)的百分率仍為31.5x,則第二次降價(jià)后零售價(jià)為原來的56(1-x)的(1-x)倍.

  解:設(shè)平均降價(jià)百分率為x,根據(jù)題意,得56(1-x)2=31.5

  解這個(gè)方程,得x 1 = 1.75,x2=0.25

  因?yàn)榻祪r(jià)的百分率不可能大于1,所以x1 = 1.75不符合題意,符合題意要求的是x=0.25=25%

  答每次降價(jià)百分率為25%.

  【跟蹤練習(xí)】

  某藥品經(jīng)兩次降價(jià),零售價(jià)降為原來的一半.已知兩次降價(jià)的百分率一樣,求每次降價(jià)的百分率(精確到0.1%).

  【友情提示】我們要牢牢把握列方程解決實(shí)際問題的三個(gè)重要環(huán)節(jié):①整體地,系統(tǒng)地審清問題;②把握問題中的等量關(guān)系;③正確求解方程并檢驗(yàn)解的合理性.

  (三)應(yīng)用遷移,鞏固提高

  1.某商品原價(jià)200元,連續(xù)兩次降價(jià)a%后售價(jià)為148元,下列所列方程正確的是( )

  A)200(1+a%)2=148 (B)200(1-a%)2=148

  (C)200(1-2a%)=148 (D)200(1-a2%)=148

  2.為綠化家鄉(xiāng),某中學(xué)在20_年植樹400棵,計(jì)劃到20_年底,使這三年的植樹總數(shù)達(dá)到1324棵,求此校植樹平均增長(zhǎng)的百分?jǐn)?shù)?

  (四)達(dá)標(biāo)測(cè)試

  1.某超市一月份的營(yíng)業(yè)額為100萬元,第一季度的營(yíng)業(yè)額共800萬元,如果平均每月增長(zhǎng)率為x,則所列方程應(yīng)為( )

  A、100(1+x)2=800 B、100+100×2x=800 C、100+100×3x=800 D、100[1+(1+x)+(1+x)2]=800

  2.某地開展植樹造林活動(dòng),兩年內(nèi)植樹面積由30萬畝增加到42萬畝,若設(shè)植樹面積年平均增長(zhǎng)率為,根據(jù)題意列方程.,一元二次方程的.解法

  3.某農(nóng)場(chǎng)的糧食產(chǎn)量在兩年內(nèi)從3000噸增加到3630噸,平均每年增產(chǎn)的百分率是多少?

  4.某小組計(jì)劃在一季度每月生產(chǎn)100臺(tái)機(jī)器部件,二月份開始每月實(shí)際產(chǎn)量都超過前月的產(chǎn)量,結(jié)果一季度超產(chǎn)20%,求二,三月份平均每月增長(zhǎng)率是多少?(精確到1%)

  5.某鋼鐵廠今年一月份的某種鋼產(chǎn)量是5000噸,此后每月比上個(gè)月產(chǎn)量提高的百分?jǐn)?shù)相同,且三月份比二月份的產(chǎn)量多1200噸,求這個(gè)相同的百分?jǐn)?shù)

  五、課堂小結(jié)

九年級(jí)數(shù)學(xué)優(yōu)秀教案范文5篇5

  教學(xué)目標(biāo)

  1、理解用配方法解一元二次方程的基本步驟。

  2、會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程。

  3、進(jìn)一步體會(huì)化歸的思想方法。

  重點(diǎn)難點(diǎn)

  重點(diǎn):會(huì)用配方法解一元二次方程.

  難點(diǎn):使一元二次方程中含未知數(shù)的項(xiàng)在一個(gè)完全平方式里。

  教學(xué)過程

  (一)復(fù)習(xí)引入

  1、用配方法解方程x2+x-1=0,學(xué)生練習(xí)后再完成課本P.13的“做一做”.

  2、用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的基本步驟是什么?

  (二)創(chuàng)設(shè)情境

  現(xiàn)在我們已經(jīng)會(huì)用配方法解二次項(xiàng)系數(shù)為1的一元二次方程,而對(duì)于二次項(xiàng)系數(shù)不為1的一元二次方程能不能用配方法解?

  怎樣解這類方程:2x2-4x-6=0

  (三)探究新知

  讓學(xué)生議一議解方程2x2-4x-6=0的方法,然后總結(jié)得出:對(duì)于二次項(xiàng)系數(shù)不為1的一元二次方程,可將方程兩邊同除以二次項(xiàng)的系數(shù),把二次項(xiàng)系數(shù)化為1,然后按上一節(jié)課所學(xué)的方法來解。讓學(xué)生進(jìn)一步體會(huì)化歸的思想。

  (四)講解例題

  1、展示課本P.14例8,按課本方式講解。

  2、引導(dǎo)學(xué)生完成課本P.14例9的填空。

  3、歸納用配方法解一元二次方程的基本步驟:首先將方程化為二次項(xiàng)系數(shù)是1的一般形式;其次加上一次項(xiàng)系數(shù)的一半的平方,再減去這個(gè)數(shù),使得含未知數(shù)的項(xiàng)在一個(gè)完全平方式里;最后將配方后的一元二次方程用因式分解法或直接開平方法來解。

  (五)應(yīng)用新知

  課本P.15,練習(xí)。

  (六)課堂小結(jié)

  1、用配方法解一元二次方程的基本步驟是什么?

  2、配方法是一種重要的數(shù)學(xué)方法,它的重要性不僅僅表現(xiàn)在一元二次方程的解法中,在今后學(xué)習(xí)二次函數(shù),高中學(xué)習(xí)二次曲線時(shí)都要經(jīng)常用到。

  3、配方法是解一元二次方程的通法,但是由于配方的過程要進(jìn)行較繁瑣的運(yùn)算,在解一元二次方程時(shí),實(shí)際運(yùn)用較少。

  4、按圖1—l的框圖小結(jié)前面所學(xué)解一元二次方程的算法。

  (七)思考與拓展

  不解方程,只通過配方判定下列方程解的情況。

  (1)4x2+4x+1=0;(2)x2-2x-5=0;

  (3)–x2+2x-5=0;

  [解]把各方程分別配方得

  (1)(x+)2=0;

  (2)(x-1)2=6;

  (3)(x-1)2=-4

  由此可得方程(1)有兩個(gè)相等的實(shí)數(shù)根,方程(2)有兩個(gè)不相等的實(shí)數(shù)根,方程(3)沒有實(shí)數(shù)根。

  點(diǎn)評(píng):

  通過解答這三個(gè)問題,使學(xué)生能靈活運(yùn)用“配方法”,并強(qiáng)化學(xué)生對(duì)一元二次方程解的三種情況的認(rèn)識(shí)。

【九年級(jí)數(shù)學(xué)優(yōu)秀教案范文5篇】相關(guān)文章:

小學(xué)精選數(shù)學(xué)教案優(yōu)秀范文03-16

小學(xué)數(shù)學(xué)優(yōu)秀教案(15篇)04-06

小學(xué)數(shù)學(xué)優(yōu)秀教案15篇04-06

小學(xué)數(shù)學(xué)優(yōu)秀教案合集15篇04-07

小學(xué)數(shù)學(xué)優(yōu)秀教案(精選15篇)04-06

有關(guān)大班優(yōu)秀數(shù)學(xué)教案7篇03-16

大班數(shù)學(xué)優(yōu)秀教案及教學(xué)反思04-08

《木蘭詩》優(yōu)秀教案范文08-04

對(duì)數(shù)的數(shù)學(xué)教案范文03-22

幼兒園數(shù)學(xué)教案【優(yōu)秀9篇】04-11