有理數(shù)的乘法教案
作為一位杰出的教職工,就不得不需要編寫教案,編寫教案有利于我們科學(xué)、合理地支配課堂時間。那么大家知道正規(guī)的教案是怎么寫的嗎?以下是小編整理的有理數(shù)的乘法教案,歡迎大家借鑒與參考,希望對大家有所幫助。
有理數(shù)的乘法教案1
教學(xué)目的:
1、要求學(xué)生會進行有理數(shù)的加法運算;
2、使學(xué)生更多經(jīng)歷有關(guān)知識發(fā)生、規(guī)律發(fā)現(xiàn)過程。
教學(xué)分析:
重點:對乘法運算法則的運用,對積的確定。
難點:如何在該知識中注重知識體系的延續(xù)。
教學(xué)過程:
一、知識導(dǎo)向:
有理數(shù)的乘法是小學(xué)所學(xué)乘法運算的延續(xù),也是在學(xué)習(xí)了有理數(shù)的加法法則與有理數(shù)的減法法則的基礎(chǔ)上所學(xué)習(xí)的,所以應(yīng)注意到各種法則間的必然聯(lián)系,在本節(jié)中應(yīng)注重學(xué)生學(xué)習(xí)的過程,多讓學(xué)生經(jīng)歷知識、規(guī)律發(fā)現(xiàn)的過程。在學(xué)習(xí)中應(yīng)掌握有理數(shù)的乘法法則。
二、新課:
1、知識基礎(chǔ):
其一:小學(xué)所學(xué)過的乘法運算方法;
其二:有關(guān)在加法運算中結(jié)果的確定方法與步驟。
2、知識形成:
(引例)一只小蟲沿一條東西向的跑道,以每分鐘3米的速度爬行。
情形1:小蟲向東爬行2分鐘,那么它現(xiàn)在位于原來位置的哪個方向?相距出發(fā)地點多少米?
列式:
即:小蟲位于原來出發(fā)位置的東方6米處
拓展:如果規(guī)定向東為正,向西為負(fù)
情形2:小蟲向西爬行2分鐘,那么它現(xiàn)在位于原來位置的哪個方向?相距出發(fā)地點多少米?
列式:
即:小蟲位于原來出發(fā)位置的西方6米處
發(fā)現(xiàn):當(dāng)我們把中的一個因數(shù)3換成它的相反數(shù)-3時,所得的積是原來的積6的相反數(shù)-6
同理,如果我們把中的一個因數(shù)2換成它的相反數(shù)-2時,所得的積是原來的積6的相反數(shù)-6
概括:把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù)
3、設(shè)疑:
如果我們把中的一個因數(shù)2換成它的相
反數(shù)-2時,所得的積又會有什么變化?
當(dāng)然,當(dāng)其中的一個因數(shù)為0時,所得的積還是等于0。
綜合:有理數(shù)乘法法則:
兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;
任何數(shù)與零相乘,都得零。
例:計算:
(1)(2)
三、鞏固訓(xùn)練:
P52.1、2、3
四、知識小結(jié):
本節(jié)課從實際情形入手,對多種情形進行分析,從一般中找到規(guī)律,從而得到有關(guān)有理數(shù)乘法的運算法則。在運算中應(yīng)強調(diào)注意如何正確得到積的結(jié)果。
五、家庭作業(yè):
P57.1、2,3
六、每日預(yù)題:
1、小學(xué)多學(xué)過哪些乘法的運算律?
2、在對有理數(shù)的簡便運算中,一般應(yīng)考慮到哪些可能的情況?
有理數(shù)的乘法教案2
教學(xué)目標(biāo)
1.知識與技能
、俳(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展觀察、歸納、猜想、驗證的能力.
②會進行有理數(shù)的乘法運算.
2.過程與方法
通過對問題的變式探索,培養(yǎng)觀察、分析、抽象的能力.
3.情感、態(tài)度與價值觀
通過觀察、歸納、類比、推斷獲得數(shù)學(xué)猜想,體驗數(shù)學(xué)活動中的探索性和創(chuàng)造性.
教學(xué)重點難點
重點:能按有理數(shù)乘法法則進行有理數(shù)乘法運算.
難點:含有負(fù)因數(shù)的乘法.
教與學(xué)互動設(shè)計
(一)創(chuàng)設(shè)情境,導(dǎo)入新課
做一做 出示一組算式,請同學(xué)們用計算器計算并找出它們的規(guī)律.
例1 (1)(+5)(+3)=_______;(2)(+5)(-3)=________
(3)(-5)(+3)=________;(4)(-5)(-3)=________
例2 (1)(+6)(+4)=________;(2)(+6)(-4)=________
(3)(-6)(+4)=________;(4)(-6)(-4)=________
(二)合作交流,解讀探究
想一想 你們發(fā)現(xiàn)積的符號與因數(shù)的符號之間的關(guān)系如何?
學(xué)生活動:計算、討論
總結(jié) 一正一負(fù)的兩個數(shù)的乘積為負(fù);兩正或兩負(fù)的乘積是正數(shù).
兩數(shù)相乘,同號得正,異號得負(fù).
想一想 兩數(shù)相乘,積的絕對值是怎么得到的呢?
學(xué)生:是兩因數(shù)的絕對值的積.
有理數(shù)的乘法教案3
教學(xué)目標(biāo)
1理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;
2能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;
3三個或三個以上不等于0的有理數(shù)相乘時,能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡化運算過程;
4通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學(xué)生的運算能力;
5本節(jié)課通過行程問題說明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
教學(xué)建議
(一)重點、難點分析
重點:
是否能夠熟練進行有理數(shù)的乘法運算。依據(jù)有理數(shù)的乘法法則和運算律靈活進行有理數(shù)乘法運算是進一步學(xué)習(xí)除法運算和乘方運算的基礎(chǔ)。有理數(shù)的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負(fù)號的個數(shù)。當(dāng)負(fù)號的個數(shù)為奇數(shù)時,積的符號為負(fù)號;當(dāng)負(fù)號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當(dāng)?shù)慕Y(jié)合因數(shù)可以簡化運算過程。
難點:
理解有理數(shù)的乘法法則。有理數(shù)的乘法法則中的同號得正,異號得負(fù)只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負(fù)號。積的絕對值是這兩個因數(shù)的絕對值的積。
(二)知識結(jié)構(gòu)
(三)教法建議
1有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。
2兩數(shù)相乘時,確定符號的 依據(jù)是同號得正,異號得負(fù)。絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法。
3基礎(chǔ)較差的同學(xué),要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。
4幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0。反之,如果積為0,那么,至少有一個因數(shù)為0。
5小學(xué)學(xué)過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負(fù)有理數(shù)。
6如果因數(shù)是帶分?jǐn)?shù),一般要將它化為假分?jǐn)?shù),以便于約分。
教學(xué)設(shè)計示例
有理數(shù)的乘法(第一課時)
教學(xué)目標(biāo)
1使學(xué)生在了解有理數(shù)的乘法意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;
2通過有理數(shù)的乘法運算,培養(yǎng)學(xué)生的運算能力;
3通過教材給出的行程問題,認(rèn)識數(shù)學(xué)來源于實踐并反作用于實踐。
教學(xué)重點和難點
重點:依據(jù)有理數(shù)的乘法法則,熟練進行有理數(shù)的乘法運算;
難點:有理數(shù)乘法法則的理解。
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題
1計算(—2)+(—2)+(—2)。
2有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習(xí)四則運算是在有理數(shù)的什么范圍中進行的?(非負(fù)數(shù))
3有理數(shù)加減運算中,關(guān)鍵問題是什么?和小學(xué)運算中最主要的不同點是什么?(符號問題)[
4根據(jù)有理數(shù)加減運算中引出的新問題 主要是負(fù)數(shù)加減,運算的關(guān)鍵是確定符號問題,你能不能猜出在有 理數(shù)乘法以及以后學(xué)習(xí)的除法中將引出的新內(nèi)容以及關(guān)鍵問題是什么?(負(fù)數(shù)問題,符號的確定)
二、師生共同研究有理數(shù)乘法法則
問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解:32=6(厘米) ①
答:上升了6厘米。
問題2 水庫的水位平均每小時下降3厘米,2小時上升多少厘米?
解:—32=—6(厘米) ②
答:上升—6厘米(即下降6厘米)。
引導(dǎo)學(xué)生 比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù)。
這是一條很重要的結(jié)論,應(yīng)用此結(jié) 論 ,3(—2)=?(—3)(—2)=?(學(xué)生答)
把3(—2)和①式對比,這里把一個因數(shù)2換成了它的相反數(shù)—2,所得的積應(yīng)是原來的積6的相反數(shù)—6,即3(—2)=—6
把(—3)(—2)和②式對比,這里把一個因數(shù)2換成了它的相反數(shù)—2,所得的積應(yīng)是原來的積—6的相反數(shù)6,即(—3)(—2)=6
此外,(—3)0=0。
綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:
兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;
任何數(shù)同0相乘,都得0。
繼而教師強調(diào)指出:
同號得正中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習(xí)的乘法,有理數(shù)中特別注意負(fù)負(fù)得正和異號得負(fù)。
用有理數(shù)乘法法則與小學(xué)學(xué)習(xí)的乘法相比,由于介入了負(fù)數(shù),使乘法較小學(xué)當(dāng)然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號法則:同號得正,異號得負(fù),符號一旦確定,就歸結(jié)為小學(xué)的乘法了。
因此,在進行有理數(shù)乘法時,需要時時強調(diào):先定符號后定值。
三、運用舉例,變式練習(xí)
例 某一物體溫度每小時上升a度,現(xiàn)在溫度是0度。
(1)t小時后溫度是多少?
。2)當(dāng)a,t分別是下列各數(shù)時的結(jié)果:
、賏=3,t=2;②a =—3,t=2;
、赼=3,t=—2;④a=—3,t=—2;
教師引導(dǎo)學(xué)生檢驗一下(2)中各結(jié)果是否合乎實際。
課堂練習(xí)
1口答:
。1)6 (2)(—6) (3)(—6)
。4)(—6) (5)(—6) (6) 6
(7)(—6) (8)0
2 口答:
。1)1 (2)(—1) (3)+(—5);
。4)—(—5); (5)1 (6)(—1)a。
這一組題做完后讓學(xué)生自己總結(jié):一個數(shù)乘以1都等于它本身;一個數(shù)乘以—1都等于它的相反數(shù)。+(—5)可以看成是1(—5),—(—5)可以看成是(—1)(—5)。同時教師強調(diào)指出,a可以是正數(shù),也可以是負(fù)數(shù)或0;—a未必是負(fù) 數(shù),也可以是正數(shù)或0。
3填空:
(1)1(—6)=______;(2)1+(—6)=____ ___;
(3)(—1)6=________;(4)(—1)+6=______;
。5)(—1)(—6)=______;(6)(—1)+(—6)=_____;
(9)|—7||—3|=_______;(10)(—7)(—3)=______。
4判斷下列方程的解是正數(shù)還是負(fù)數(shù)或0:
。1)4x=—16; (2)—3x=18; (3)—9x=—36; (4)—5x=0。
四、小結(jié)
今天主要學(xué)習(xí)了有理數(shù)乘法 法則,大家要牢記,兩個負(fù)數(shù)相乘得正數(shù),簡單地說:負(fù)負(fù)得正。
五、作業(yè)
1計算:
。1)(—16) (2)(—9)(—14); (3)(—36)
。4)100(—0。001); (5) —48(—125); (6)—45(—0。32)。
2填空(用或號連接):
。1)如果 a0,b0,那么 ab _______ _0;
。2)如果 a0,b0,那么ab _______0;
(3)如果a0時,那么a ____________2a;
。 4)如果a0時,那么a __________2a。
探究活動
問題: 桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?
答案: 1將告訴你:不管你翻轉(zhuǎn)多少次,總是無法使這7只杯口全部朝下。道理很簡單,用+1表示杯口朝上,—1表示杯口朝下,問題就變成:把7個+1每次改變其中4個的符號,若干次后能否都變成—1 ?考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠(yuǎn)不變(為+1)。而7個杯口全部朝下時,7個數(shù)的乘積等于—1,這是不可能的。
有理數(shù)的乘法教案4
目標(biāo):
1、知識與技能
使學(xué)生理解有理數(shù)乘法的意義,掌握有理數(shù)的乘法法則,能熟練地進行有理數(shù)的乘法運算。
2、過程與方法
經(jīng)歷探索有理數(shù)乘法法則的過程,理解有理數(shù)乘法法則,發(fā)展觀察、探究、合情推理等能力,會進行有理數(shù)和乘法運算。
重點、難點:
1、重點:有理數(shù)乘法法則。
2、難點:有理數(shù)乘法意義的理解,確定有理數(shù)乘法積的符號。
過程:
一、創(chuàng)設(shè)情景,導(dǎo)入新
1、由前面的學(xué)習(xí)我們知道,正數(shù)的加減法可以擴充到有理數(shù)的加減法,那么乘法是可也可以擴充呢?
乘法是加法的特殊運算,例如5+5+5=5×3,那么請思考:
(-5)+(-5)+(-5)與(-5)×3是否有相同的結(jié)果呢?本節(jié)我們就探究這個問題。
3、在一條由西向東的筆直的馬路上,取一點O,以向東的路程為正,則向西的路程為負(fù),如果小玫從點O出發(fā),以5千米的向西行走,那么經(jīng)過3小時,她走了多遠(yuǎn)?
二、合作交流,解讀探究
1、小學(xué)學(xué)過的乘法的意義是什么?
乘法的分配律:a×(b+c)=a×b+a×c
如果兩個數(shù)的和為0,那么這兩個數(shù) 互為相反數(shù) 。
2、由前面的問題3,根據(jù)小學(xué)學(xué)過的乘法意義,小玫向西一共走了 (5×3)千米,即(-5)×3=-(5×3)
3、學(xué)生活動:計算3×(-5)+3×5,注意運用簡便運算
通過計算表明3×(-5)與3×5互為相反數(shù),從而有
3×(-5)=-(3×5),由此看出,3×(-5)得負(fù)數(shù),并且把絕對值3與5相乘。
類似的,(-5)×(-3)+(-5)×3=(-5)×[(-3)+3]=0
由此看出(-5)×(-3)得正數(shù),并且把絕對值5與3相乘。
4、提出:從以上的運算中,你能總結(jié)出有理數(shù)的乘法法則嗎?
鼓勵學(xué)生自己歸納,并用自己的語舞衫歌扇,并與同伴交流。
在學(xué)生猜測、歸納、交流的過程中及時引導(dǎo)、肯定
兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘。
任何數(shù)與0相乘,積仍為0
。ò鍟┯欣頂(shù)乘法法則:
三、應(yīng)用遷移,鞏固提高
1、計算
。ǎ5)×(-4) 2×(-3.5) × (-0.75)×0
。1)學(xué)生根據(jù)乘法法則,在練習(xí)本上完成。指定四位同學(xué)到黑板演習(xí)。
。2)教師:要求學(xué)生明確算理,學(xué)生做練習(xí)時,教師巡視,及時引導(dǎo)。
2、計算下列各題
、 (-4)×5×(-0.25) ② ×( )×(-2)
、 ×( )×0×( )
指定三名同學(xué)在黑板上做,使學(xué)生明確,做有理數(shù)的乘法時,要先確定積的符號,再求出積的絕對值。
教師提出問題:幾個有理數(shù)相乘時,因數(shù)都不為0時,積是多少?
學(xué)生小結(jié)后,教師歸納:
幾個不為0的有理數(shù)相乘,積的符號由負(fù)因數(shù)的符號決定,負(fù)因數(shù)有奇數(shù)個時,積為負(fù);負(fù)因數(shù)有偶數(shù)個時,積為正;只要有一個因數(shù)為0,則積為0
練習(xí):本P31練習(xí)
四、總結(jié)反思(學(xué)生先小結(jié))
1、有理數(shù)乘法法則
2、有理數(shù)乘法的一般步驟是:
。1)確定積的符號; (2)把絕對值相乘。
五、作業(yè):P39習(xí)題1.5 A組 1、2
有理數(shù)的乘法教案5
一、學(xué)情分析:
在此之前,本班學(xué)生已有探索有理數(shù)加法法則的經(jīng)驗,多數(shù)學(xué)生能在教師指導(dǎo)下探索問題。由于學(xué)生已了解利用數(shù)軸表示加法運算過程,不太熟悉水位變化,故改為用數(shù)軸表示乘法運算過程。
二、課前準(zhǔn)備
把學(xué)生按組間同質(zhì)、組內(nèi)異質(zhì)分為10個小組,以便組內(nèi)合作學(xué)習(xí)、組間競爭學(xué)習(xí),形成良好的學(xué)習(xí)氣氛。
三、教學(xué)目標(biāo)
1、知識與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、能力與過程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。
3、情感與態(tài)度目標(biāo)
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
四、教學(xué)重點、難點
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
五、教學(xué)過程
1、創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?
學(xué)生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題(教師板書課題)
2、小組探索、歸納法則
(1)教師出示以下問題,學(xué)生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負(fù)方向。
a.2×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
2×3=
b.-2×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
-2×3=
c.2×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
2×(-3)=
d.(-2)×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
(-2)×(-3)=
e.被乘數(shù)是零或乘數(shù)是零,結(jié)果是人仍在原處。
(2)學(xué)生歸納法則
a.符號:在上述4個式子中,我們只看符號,有什么規(guī)律?
(+)×(+)=同號得
(-)×(+)=異號得
(+)×(-)=異號得
(-)×(-)=同號得
b.積的絕對值等于 。
c.任何數(shù)與零相乘,積仍為 。
(3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。
3、運用法則計算,鞏固法則。
(1)教師按課本P75例1板書,要求學(xué)生述說每一步理由。
(2)引導(dǎo)學(xué)生觀察、分析例1中(3)(4)小題兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
(3)學(xué)生做P76練習(xí)1(1)(3),教師評析。
(4)教師引導(dǎo)學(xué)生做P75例2,讓學(xué)生說出每步法則,使之進一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。多個因數(shù)相乘,積的符號由 決定,當(dāng)負(fù)因數(shù)個數(shù)有 ,積為 ;當(dāng)負(fù)因數(shù)個數(shù)有 ,積為 ;只要有一個因數(shù)為零,積就為 。
4、討論對比,使學(xué)生知識系統(tǒng)化。
有理數(shù)乘法有理數(shù)加法
同號得正取相同的符號
把絕對值相乘
(-2)×(-3)=6把絕對值相加
(-2)+(-3)=-5
異號得負(fù)取絕對值大的加數(shù)的符號
把絕對值相乘
(-2)×3=-6(-2)+3=1
用較大的絕對值減小的絕對值
任何數(shù)與零得零得任何數(shù)
5、分層作業(yè),鞏固提高。
六、教學(xué)反思:
本節(jié)課由情景引入,使學(xué)生迅速進入角色,很快投入到探究有理數(shù)乘法法則上來,提高了本節(jié)課的教學(xué)效率。在本節(jié)課的教學(xué)實施中自始至終引導(dǎo)學(xué)生探索、歸納,真正體現(xiàn)了以學(xué)生為主體的教學(xué)理念。本節(jié)課特別注重過程教學(xué),有利于培養(yǎng)學(xué)生的分析歸納能力。教學(xué)效果令人比較滿意。如果是在法則運用時,編制一些訓(xùn)練符號法則的口算題,把例2放在下一課時處理,效果可能更好。
有理數(shù)的乘法教案6
學(xué)習(xí)目標(biāo):
1、要熟記有理數(shù)除法的法則,會進行有理數(shù)除法的運算。
2、掌握求有理數(shù)倒數(shù)的方法,并能熟練地求出一個給定的有理數(shù)的倒數(shù)。
3、能熟練地進行簡單的有理數(shù)的加減乘除混合運算。
4、體會比較、轉(zhuǎn)化、分類的思想方法,在探索有理數(shù)除法法則時的應(yīng)有
學(xué)習(xí)重點:有理數(shù)除法的法則及應(yīng)用;求一個有理數(shù)的倒數(shù)。
學(xué)習(xí)難點:在進行有理數(shù)除法運算時,能根據(jù)題目特點,恰當(dāng)?shù)剡x擇有理數(shù)的除法法則。
學(xué)習(xí)過程:
一 前置復(fù)習(xí) :
1、有理數(shù)的乘法法則是:
舉例說明。
2、多個有理數(shù)乘法:(1)幾個不等于0的有理數(shù)相乘,積的符號由 決定,當(dāng) 時積為正;當(dāng) 時積為負(fù)。
(2)幾個有理數(shù)相乘, ,積就為零。
二 探究新知:(教師寄語: 現(xiàn)實世界中的事物都是既相互聯(lián)系又可以相互轉(zhuǎn)化的,在數(shù)學(xué)上加與減,乘與除也是可以相互轉(zhuǎn)化的.)
自學(xué)課本58頁至59頁例4之前的內(nèi)容,并且認(rèn)真體會在探索除法與乘法的關(guān)系時,用到的比較、轉(zhuǎn)化、分類的思想方法。,一定要熟記:
(1) 有理數(shù)除法運算轉(zhuǎn)化為乘法運算的法則:除以一個數(shù),________________________。
____________________。
(2) 有理數(shù)的除法法則:兩數(shù)相除,_____________,_____________,_____________。
0除以任何_______________________________。
(3) 與以前學(xué)過的倒數(shù)的概念一樣,___________兩個有理數(shù)互為倒數(shù)。
如,3與____互為倒數(shù),-6與_____互為倒數(shù),2.25是____的倒數(shù),___是 的倒數(shù)。
三 新知應(yīng)用:
例1、獨立完成課本58頁例4,然后對比課本上的解答,思考交流:在兩個________數(shù)相除時,可選擇法則(1),在兩個_______數(shù)相除時,可選擇法則(2)
學(xué)以致用 計算:
(1) (42)7 (2) ( )( )
例2、計算(1) ( )( )( ) (2) ( )( )
(溫馨提示:1、 有理數(shù)的乘除混合運算,應(yīng)把除以一個數(shù)轉(zhuǎn)化成乘這個數(shù)的倒數(shù),然后統(tǒng)一成乘法來進行計算。2、 加減乘除混合運算的運算順序和小學(xué)一樣。)
四 課堂練習(xí):獨立完成課本P59練習(xí)2,3題。(將完整的計算過程寫在下面空白處)
五 達標(biāo)測試:(獨立完成)
1 填空:(1)2 的倒數(shù)與 的相反數(shù)的積是_______。
(2)(1)(3)( )=______。
(3)兩個數(shù)的商為正數(shù),那么這兩個數(shù)一定是_________。
(4)一個數(shù)的倒數(shù)是它本身,則這個數(shù)是____________。
2、計算:(1) (2)
(3)、 (4) ( + )
六 總結(jié)反思:
1、說一說:
本節(jié)課我學(xué)會了 ;
使我感觸最深的是 ;
我感到最困難的是 ;
我想進一步探究的問題是 。
2、:評一評
自我評價 小組評價 教師評價
七 布置作業(yè)
1(必做題) 課本60頁習(xí)題A組3,4題。(要求:做在作業(yè)本上)
2(選做題) 課本60頁習(xí)題B組1,2題。(要求:將答案直接寫在課本上,明天課堂上用5分鐘時間討論交流)
有理數(shù)的乘法教案7
一、知識與能力
掌握有理數(shù)乘法以及乘法運算律,熟練進行有理數(shù)乘除運算,發(fā)展觀察,歸納等方面的能力,用相關(guān)知識解決實際問題的能力
二、過程與方法
經(jīng)歷歸納,總結(jié)有理數(shù)乘法,除法法則及乘法運算律的過程,會觀察,選擇適當(dāng)?shù)、較簡便的方法進行有理數(shù)乘除運算
三、情感、態(tài)度、價值觀
培養(yǎng)學(xué)生學(xué)習(xí)的自信心,上進心,通過用乘除運算解決簡單的實際問題,讓學(xué)生明確學(xué)習(xí)教學(xué)的目的是學(xué)以致用,從而培養(yǎng)學(xué)生的主動性、積極性
四、教學(xué)重難點
一、重點:熟練進行有理數(shù)的乘除運算
二、難點:正確進行有理數(shù)的乘除運算
預(yù)習(xí)導(dǎo)學(xué)
通過看課本§1.4的內(nèi)容,歸納有理數(shù)的乘法法則以及乘法運算律
五、教學(xué)過程
一、創(chuàng)設(shè)情景,談話導(dǎo)入
我們已經(jīng)學(xué)習(xí)了有理數(shù)的乘除法,同學(xué)們歸納,總結(jié)一下有理數(shù)的乘法法則以及乘法運算律
二、精講點撥質(zhì)疑問難
根據(jù)預(yù)習(xí)內(nèi)容,同學(xué)們回答以下問題:
1.有理數(shù)的乘法法則:
(1)同號兩數(shù)相乘___________________________________
(2)異號兩數(shù)相乘_____________________________________
(3)0與任何自然數(shù)相乘,得____
2.有理數(shù)的乘法運算律:
(1)乘法交換律:ab=_________
(2)乘法結(jié)合律:(ab)c=_______
(3)乘法分配律:(a+b)c=________
3.有理數(shù)的除法法則:
除以一個不等于0的數(shù),等于乘這個數(shù)的__________
比較有理數(shù)的乘法,除法法則,發(fā)現(xiàn)_________可能轉(zhuǎn)化為__________
三、課堂活動強化訓(xùn)練
某公司去年1~3月份平均每月虧損1.5萬元,4~6月份平均每月盈利2萬元,7~10月份平均每月盈利1.7萬元,11~12月份平均每月虧損2.3萬元,這個公司去年總的盈虧情況如何?
注:學(xué)生分組討論練習(xí),教師在巡視過程中,引導(dǎo)、輔導(dǎo)部分基礎(chǔ)較差的學(xué)生后,各小組進行交流,總結(jié)
四、延伸拓展,鞏固內(nèi)化
例2.(1)若ab=1,則a、b的關(guān)系為()
(2)下列說法中正確的個數(shù)為( )
0除以任何數(shù)都得0
②如果=-
1,那么a是非負(fù)數(shù)若若⑤(c≠0)⑥()⑦1的倒數(shù)等于本身
A 1個B 2個C 3個D 4個
(3)兩個不為零的有理數(shù)相除,如果交換被除數(shù)與除數(shù)的關(guān)系,它們的商不變( )
A兩數(shù)相等B兩數(shù)互為相反數(shù)
C兩數(shù)互為倒數(shù)D兩數(shù)相等或互為相反數(shù)
有理數(shù)的乘法教案8
三維目標(biāo)
一、知識與技能
經(jīng)歷探索有理數(shù)乘法法則過程,掌握有理數(shù)的乘法法則,能用法則進行有理數(shù)的乘法。
二、過程與方法
經(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展學(xué)生歸納、猜想、驗證等能力。
三、情感態(tài)度與價值觀
培養(yǎng)學(xué)生積極探索精神,感受數(shù)學(xué)與實際生活的聯(lián)系。
教學(xué)重、難點與關(guān)鍵
1.重點:應(yīng)用法則正確地進行有理數(shù)乘法運算。
2.難點:兩負(fù)數(shù)相乘,積的符號為正與兩負(fù)數(shù)相加和的符號為負(fù)號容易混淆。
3.關(guān)鍵:積的符號的確定。
教具準(zhǔn)備
投影儀。
四、教學(xué)過程
一、引入新課
在小學(xué),我們學(xué)習(xí)了正有理數(shù)有零的乘法運算,引入負(fù)數(shù)后,怎樣進行有理數(shù)的乘法運算呢?
五、新授
課本第28頁圖1.4-1,一只蝸牛沿直線L爬行,它現(xiàn)在的位置恰在L上的點O.
(1)如果蝸牛一直以每分2cm的速度向右爬行,3分后它在什么位置?
(2)如果蝸牛一直以每分2cm的速度向左爬行,3分后它在什么位置?
(3)如果蝸牛一直以每分2cm的速度向右爬行,3分前它在什么位置?
(4)如果蝸牛一直以每分2cm的速度向左爬行,3分前它在什么位置?
分析:以上4個問題涉及2組相反意義的量:向右和向左爬行,3分鐘后與3分鐘前,為了區(qū)分方向,我們規(guī)定:向左為負(fù),向右為正;為區(qū)分時間,我們規(guī)定:現(xiàn)在前為負(fù),現(xiàn)在后為正,那么(1)中2cm記作+2cm,3分后記作+3分。
有理數(shù)的乘法教案9
一、學(xué)情分析:
1、學(xué)生的知識技能基礎(chǔ):學(xué)生在小學(xué)已經(jīng)學(xué)習(xí)過非負(fù)有理數(shù)的四則運算以及運算律。在本章的前面幾節(jié)課中,又學(xué)習(xí)了數(shù)軸、相反數(shù)、絕對值的有關(guān)概念,并掌握了有理數(shù)的加減運算法則及其混和運算的方法,學(xué)會了由運算解決簡單的實際問題,具備了學(xué)習(xí)有理數(shù)乘法的知識技能基礎(chǔ)。
2、學(xué)生的活動經(jīng)驗基礎(chǔ):在相關(guān)知識的學(xué)習(xí)過程中,學(xué)生已經(jīng)歷了探索加法運算法則的活動,并且通過觀察"水位的變化",運用有理數(shù)的加法法則解決了一些實際問題,從而獲得了較為豐富的數(shù)學(xué)活動經(jīng)驗,同時在以前的學(xué)習(xí)中,學(xué)生曾經(jīng)歷了合作學(xué)習(xí)和探索學(xué)習(xí)的過程,具有了合作和探索的意識。
二、 教材分析:
教科書基于學(xué)生已掌握了有理數(shù)加法、減法運算法則的基礎(chǔ)上,提出了本節(jié)課的具體學(xué)習(xí)任務(wù):發(fā)現(xiàn)探索有理數(shù)的乘法法則,了解倒數(shù)的概念,會進行有理數(shù)的運算。
本節(jié)課的數(shù)學(xué)目標(biāo)是:
。、經(jīng)歷探索有理數(shù)乘法法則的過程,發(fā)展觀察、歸納、猜想、驗證能力;
。病W(xué)會進行有理數(shù)的乘法運算,掌握確定多個不等于零的有理數(shù)相乘的積的符號方法以及有一個數(shù)為零積是零的情況:
三、教學(xué)過程設(shè)計:
本節(jié)課設(shè)計了六個環(huán)節(jié):第一環(huán)節(jié):問題情境,引入新課;第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論;第三環(huán)節(jié):驗證明確結(jié)論;第四環(huán)節(jié):運用鞏固,練習(xí)提高;第五環(huán)節(jié):課堂;第六環(huán)節(jié):布置作業(yè)。
第一環(huán)節(jié):問題情境,引入新課
問題:(1)觀察教科書給出的圖片,分析教科書提出的問題,弄清題意,明確已知是什么,所求是什么,讓學(xué)生討論思考如何解答。
。ǎ玻┤绻谜柋硎舅簧仙,用負(fù)號表示水位下降,討論四天后,甲水庫水位的變化量的表示法和乙水庫水位變化量的表示法。
設(shè)計意圖:培養(yǎng)學(xué)生從圖形語言和文字語言中獲取信息的能力,感受用數(shù)學(xué)知識解決實際問題,體驗算法多樣化,并從第二種算法中得到算式3+3+3+3=3×4=12(厘米);(-3)+(-3)+(-3)+(-3)=(-3)×4=-12(厘米)從而引出課題:有理數(shù)的乘法。
第二環(huán)節(jié):探索猜想,發(fā)現(xiàn)結(jié)論
問題:(1)由課題引入中知道:4個-3相加等于-12,可以寫成算式
。ǎ场粒矗剑保玻敲聪铝幸唤M算式的結(jié)果應(yīng)該如何計算?請同學(xué)們思考:
(-3)×3=_____;
。ǎ常粒玻剑撸撸撸撸撸
。ǎ常粒保剑撸撸撸撸;
。ǎ常粒埃剑撸撸撸撸摺
。ǎ玻┊(dāng)同學(xué)們寫出結(jié)果并說明道理時,讓學(xué)生通過觀察這組算式等號兩邊的特點去發(fā)現(xiàn)積的變化規(guī)律,然后再出示一組算式猜想其積的結(jié)果:
。ǎ常粒ǎ保剑撸撸撸撸撸
。ǎ常粒ǎ玻剑撸撸撸撸撸
。ǎ常粒ǎ常剑撸撸撸撸撸
。ǎ常粒ǎ矗剑撸撸撸撸摺
教前設(shè)計意圖:以算式求解和探究問題的形式引導(dǎo)學(xué)生逐步深入的觀察思考,從負(fù)數(shù)與非負(fù)數(shù)相乘的一組算式中發(fā)現(xiàn)規(guī)律后,猜想負(fù)數(shù)與負(fù)數(shù)相乘的積是多少,通過對兩組算式的觀察,歸納,概括出有理數(shù)的乘法法則,并用語言表述之,以培養(yǎng)學(xué)生的觀察能力,猜想能力,抽象能力和表述能力。
教后反思事項:(1)本環(huán)節(jié)的設(shè)計理念是學(xué)生通過觀察思考,親身經(jīng)歷感受乘法法則的發(fā)現(xiàn)過程,并在合作交流中互相補充,完善結(jié)論。但在實際過程中,學(xué)生對結(jié)論的表述有困難,或者表達不準(zhǔn)確,不全面,對于這些問題,不能求全責(zé)備,而應(yīng)循循善誘,順勢引導(dǎo),幫助學(xué)生盡可能簡練準(zhǔn)確的表述,也不要擔(dān)心時間不足而代替學(xué)生直接表述法則。
。ǎ玻┱故緝山M算式時,注意板書藝術(shù),把算式豎排,并對齊書寫,這樣易于學(xué)生觀察特點,發(fā)現(xiàn)規(guī)律。
第三環(huán)節(jié):驗證明確結(jié)論
問題:針對上一環(huán)節(jié)探究發(fā)現(xiàn)的有理數(shù)乘法法則:兩數(shù)相乘,同號得正,異號得負(fù),絕對值相乘,任何數(shù)與零相乘,積仍為零。進行驗證活動,出示一組算式由學(xué)生完成。
4×(-4)=_____;
4×(-3)=_____;
4×(-2)=_____;
。础粒ǎ保剑撸撸撸撸撸
。ā矗粒埃剑撸撸撸撸撸
。ā矗粒保剑撸撸撸撸;
(—4)×2=_____;
。ā矗粒ǎ保剑撸撸撸撸;
。ā矗粒ǎ玻剑撸撸撸撸。
教前設(shè)計意圖:這個環(huán)節(jié)的設(shè)計一方面是因為它是合情推理的必要環(huán)節(jié),另一方面是為了讓學(xué)生知道從特例歸納得到的結(jié)論不一定適合
一般情況,所以要加以驗證和證明它的正確性。同時,驗證的過程本身就是對有理數(shù)乘法法則的練習(xí)和熟悉過程。
教后反思事項:(1)教科書中沒有這個環(huán)節(jié)的要求,但在教學(xué)中應(yīng)該設(shè)計這個環(huán)節(jié),確實讓學(xué)生體驗經(jīng)歷驗證過程。
。ǎ玻┍经h(huán)節(jié)的重點是驗證乘法法則的正確性而不是運用乘法法則計算。所以在驗證過程中,既要用乘法法則計算,又要加法法則計算,真正體現(xiàn)驗證的作用和過程。
。ǎ常┰谟贸朔ǚ▌t計算時,要注意其運算步驟與加法運算一樣,都是先確定結(jié)果的符號,再進行絕對值的運算。另外還應(yīng)注意:法則中的“同號得正,異號得負(fù)”是專指“兩數(shù)相乘而言的,”不可以運用到加法運算中去。
第四環(huán)節(jié):運用鞏固,練習(xí)提高
活動內(nèi)容:
(1)1。計算:
⑴(-4)×5; ⑵(5-)×(-7);
⑶(-3÷8)×(-8÷3);⑷(-3)×(-1÷3);
。ǎ玻。計算:
、牛ǎ矗粒怠粒ǎ。25); ⑵(-3÷5)×(-5÷6)×(-2);
3!白h一議”:幾個有理數(shù)相乘,因數(shù)都不為零時,積的符號怎樣確定?有一個因數(shù)為零時,積是多少?
。ǎ矗┯嬎悖
、牛ǎ8)×21÷4 ; ⑵4÷5×(-25÷6)×(-7÷10);
⑶2÷3×(-5÷4); ⑷(-24÷13)×(-16÷7)×0×4÷3;
、5÷4×(-1。2)×(-1÷9); ⑹(-3÷7)×(-1÷2)×(-8÷15)。
教前設(shè)計意圖:對有理數(shù)乘法法則的鞏固和運用,練習(xí)和提高.
教后反思事項:(1)學(xué)生先自主嘗試解決,全班交流,教師點撥要注意格式規(guī)范,一開始對每一步運算應(yīng)注明理由,運算熟練后,可不要求書寫每一步的理由;
。2)例2講解之后,要啟發(fā)學(xué)生完成"議一議"的內(nèi)容,鼓勵學(xué)生通過對例2的運算結(jié)果觀察分析,用自己的語言表達所發(fā)現(xiàn)的規(guī)律,學(xué)生有困難時,教師可設(shè)置如下一組算式讓學(xué)生計算后觀察發(fā)現(xiàn)規(guī)律,而不應(yīng)代替學(xué)生完成這個任務(wù)。
。ǎ保粒病粒场粒矗剑撸撸撸撸;
。ǎ保粒ǎ玻粒场粒矗剑撸撸撸撸;
(-1)×(-2)×(-3)×4=_____;
。ǎ保粒ǎ玻粒ǎ常粒ǎ矗剑撸撸撸撸撸
。ǎ保粒ǎ玻粒ǎ常粒ǎ矗粒埃剑撸撸撸撸。
通過對以上算式的計算和觀察,學(xué)生不難得出結(jié)論:多個數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,當(dāng)負(fù)因數(shù)有奇數(shù)個時,積的符號為負(fù);當(dāng)負(fù)因數(shù)有偶數(shù)個時,積的符號為正。只要有一個數(shù)為零,積就為零。當(dāng)然這段語言,不需要讓學(xué)習(xí)背誦,只要理解會用即可。
第五環(huán)節(jié):感悟反思課堂
問題
1.本節(jié)課大家學(xué)會了什么?
2.有理數(shù)乘法法則如何敘述?”
3.有理數(shù)乘法法則的探索采用了什么方法?
4.你的困惑是什么
教前設(shè)計意圖:培養(yǎng)學(xué)生的口頭表達能力,提高學(xué)生的參與意識。激勵學(xué)生展示自我。
教后反思事項:學(xué)生時,可能會有語言表達障礙或表達不流暢,但只要不影響運算的正確性,則不必強調(diào)準(zhǔn)確記憶,而應(yīng)鼓勵學(xué)生大膽發(fā)言,同時教師可用準(zhǔn)確的語言適時的加以點撥。
第六環(huán)節(jié):布置作業(yè)
鞏固作業(yè):教科書知識技能1、2;問題解決1;聯(lián)系擴廣1
預(yù)習(xí)作業(yè);略
四、教學(xué)反思:
1、設(shè)計條理的問題串,使觀察、猜想、驗證水到渠成
2、相信學(xué)生的探索能力。本節(jié)課的內(nèi)容適合學(xué)生探索,只要教師適當(dāng)引導(dǎo),學(xué)生具有能力探索出有理數(shù)的乘法法則的,不需要教師代替,也不能代替。
3、合理使用多媒體教學(xué)手段可以彌補課堂時間的不足,但絕不能代替必要的板書。
有理數(shù)的乘法教案10
教學(xué)目標(biāo)
1。理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;
2。能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;
3。三個或三個以上不等于0的有理數(shù)相乘時,能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡化運算過程;
4。通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學(xué)生的運算能力;
5。本節(jié)課通過行程問題說明有理數(shù)的乘法法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
教學(xué)建議
(一)重點、難點分析
重點:
是否能夠熟練進行有理數(shù)的乘法運算。依據(jù)有理數(shù)的乘法法則和運算律靈活進行有理數(shù)乘法運算是進一步學(xué)習(xí)除法運算和乘方運算的'基礎(chǔ)。有理數(shù)的乘法運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負(fù)號的個數(shù)。當(dāng)負(fù)號的個數(shù)為奇數(shù)時,積的符號為負(fù)號;當(dāng)負(fù)號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當(dāng)?shù)慕Y(jié)合因數(shù)可以簡化運算過程。
難點:
理解有理數(shù)的乘法法則。有理數(shù)的乘法法則中的“同號得正,異號得負(fù)”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負(fù)號。積的絕對值是這兩個因數(shù)的絕對值的積。
(二)知識結(jié)構(gòu)
。ㄈ┙谭ńㄗh
1。有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。
2。兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負(fù)”。絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法。
3;A(chǔ)較差的同學(xué),要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。
4。幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0。反之,如果積為0,那么,至少有一個因數(shù)為0。
5。小學(xué)學(xué)過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負(fù)有理數(shù)。
6。如果因數(shù)是帶分?jǐn)?shù),一般要將它化為假分?jǐn)?shù),以便于約分。
教學(xué)設(shè)計示例
有理數(shù)的乘法(第一課時)
教學(xué)目標(biāo)
1。使學(xué)生在了解有理數(shù)的乘法意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;
2。通過有理數(shù)的乘法運算,培養(yǎng)學(xué)生的運算能力;
3。通過教材給出的行程問題,認(rèn)識數(shù)學(xué)來源于實踐并反作用于實踐。
教學(xué)重點和難點
重點:依據(jù)有理數(shù)的乘法法則,熟練進行有理數(shù)的乘法運算;
難點:有理數(shù)乘法法則的理解。
課堂教學(xué)過程設(shè)計
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題
1。計算(—2)+(—2)+(—2)。
2。有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習(xí)四則運算是在有理數(shù)的什么范圍中進行的?(非負(fù)數(shù))
3。有理數(shù)加減運算中,關(guān)鍵問題是什么?和小學(xué)運算中最主要的不同點是什么?(符號問題)[
4。根據(jù)有理數(shù)加減運算中引出的新問題主要是負(fù)數(shù)加減,運算的關(guān)鍵是確定符號問題,你能不能猜出在有理數(shù)乘法以及以后學(xué)習(xí)的除法中將引出的新內(nèi)容以及關(guān)鍵問題是什么?(負(fù)數(shù)問題,符號的確定)
二、師生共同研究有理數(shù)乘法法則
問題1水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解:3×2=6(厘米)①
答:上升了6厘米。
問題2水庫的水位平均每小時下降3厘米,2小時上升多少厘米?
解:—3×2=—6(厘米)②
答:上升—6厘米(即下降6厘米)。
引導(dǎo)學(xué)生比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù)。
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3×(—2)=?(—3)×(—2)=?(學(xué)生答)
把3×(—2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“—2”,所得的積應(yīng)是原來的積“6”的相反數(shù)“—6”,即3×(—2)=—6。
把(—3)×(—2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“—2”,所得的積應(yīng)是原來的積“—6”的相反數(shù)“6”,即(—3)×(—2)=6。
此外,(—3)×0=0。
綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:
兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;
任何數(shù)同0相乘,都得0。
繼而教師強調(diào)指出:
“同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習(xí)的乘法,有理數(shù)中特別注意“負(fù)負(fù)得正”和“異號得負(fù)”。
用有理數(shù)乘法法則與小學(xué)學(xué)習(xí)的乘法相比,由于介入了負(fù)數(shù),使乘法較小學(xué)當(dāng)然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號法則:“同號得正,異號得負(fù)”,符號一旦確定,就歸結(jié)為小學(xué)的乘法了。
因此,在進行有理數(shù)乘法時,需要時時強調(diào):先定符號后定值。
三、運用舉例,變式練習(xí)
例某一物體溫度每小時上升a度,現(xiàn)在溫度是0度。
。1)t小時后溫度是多少?
。2)當(dāng)a,t分別是下列各數(shù)時的結(jié)果:
、賏=3,t=2;②a=—3,t=2;
、赼=3,t=—2;④a=—3,t=—2;
教師引導(dǎo)學(xué)生檢驗一下(2)中各結(jié)果是否合乎實際。
課堂練習(xí)
1?诖穑
。1)6×(—9);(2)(—6)×(—9);(3)(—6)×9;
。4)(—6)×1;(5)(—6)×(—1);(6)6×(—1);
。7)(—6)×0;(8)0×(—6);
2?诖穑
(1)1×(—5);(2)(—1)×(—5);(3)+(—5);
(4)—(—5);(5)1×a;(6)(—1)×a。
這一組題做完后讓學(xué)生自己總結(jié):一個數(shù)乘以1都等于它本身;一個數(shù)乘以—1都等于它的相反數(shù)。+(—5)可以看成是1×(—5),—(—5)可以看成是(—1)×(—5)。同時教師強調(diào)指出,a可以是正數(shù),也可以是負(fù)數(shù)或0;—a未必是負(fù)數(shù),也可以是正數(shù)或0。
3。填空:
。1)1×(—6)=______;(2)1+(—6)=_______;
。3)(—1)×6=________;(4)(—1)+6=______;
。5)(—1)×(—6)=______;(6)(—1)+(—6)=_____;
(9)|—7|×|—3|=_______;(10)(—7)×(—3)=______。
4。判斷下列方程的解是正數(shù)還是負(fù)數(shù)或0:
。1)4x=—16;(2)—3x=18;(3)—9x=—36;(4)—5x=0。
四、小結(jié)
今天主要學(xué)習(xí)了有理數(shù)乘法法則,大家要牢記,兩個負(fù)數(shù)相乘得正數(shù),簡單地說:“負(fù)負(fù)得正”。
五、作業(yè)
1。計算:
(1)(—16)×15;(2)(—9)×(—14);(3)(—36)×(—1);
。4)100×(—0。001);(5)—4。8×(—1。25);(6)—4。5×(—0。32)。
2。填空(用“>”或“<”號連接):
。1)如果a<0,b<0,那么ab________0;
(2)如果a<0,b<0,那么ab_______0;
。3)如果a>0時,那么a____________2a;
。4)如果a<0時,那么a__________2a。
探究活動
問題:桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?
答案:“±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無法使這7只杯口全部朝下。道理很簡單,用“+1”表示杯口朝上,“—1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成—1?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠(yuǎn)不變(為+1)。而7個杯口全部朝下時,7個數(shù)的乘積等于—1,這是不可能的。
道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言。
有理數(shù)的乘法教案11
教學(xué)目標(biāo):
1、創(chuàng)設(shè)情境,在動腦、動手、動口中體會乘法的意義。
2、認(rèn)識乘號,初步掌握乘法算式的寫法和讀法。
教學(xué)重難點:
重點:乘法的意義,認(rèn)識乘號,會讀、寫乘法算式。
難點:把加法算式改寫為乘法算式。
教學(xué)策略:
在比較中認(rèn)識新知識
教學(xué)具準(zhǔn)備:
教學(xué)課件
教學(xué)過程:
。ㄒ唬┣榫硨(dǎo)入:同學(xué)們你們喜歡去哪兒玩?咱們一起看看這些小朋友在什么地方玩得這么開心?
課件出示主題圖:仔細(xì)觀察,他們在玩什么?讓學(xué)生觀察后說一說。
。ǘ┨剿餍轮
教學(xué)例1:
(1)整體感知,初步認(rèn)識乘法。
游樂園里的確很好玩,其實在這里還藏著很多數(shù)學(xué)秘密呢!根據(jù)咱們觀察到的`你能提出什么數(shù)學(xué)問題?
課件出示旋轉(zhuǎn)小飛機圖。問:每架小飛機里有多少人?(3人
一共有幾個同學(xué)在玩旋轉(zhuǎn)小飛機?
學(xué)生分小組討論。
指名上臺數(shù)一數(shù),列出加法算式。
3個3個地數(shù),一共有5個3,寫出加法算式是:3+3+3+3+3=15。課件出示旋轉(zhuǎn)小火車圖。
問:每個車廂里有多少人?(6人)有幾個這樣的車廂?(4人)你能列出加法算式嗎?(6+6+6+6=24)
課件出示過山車圖。
過山車?yán)锕灿卸嗌偃?(每排?人,有7排,那就是7個2,。)
你能列出加法算式嗎?(2+2+2+2+2+2+2=14)
(2)觀察這幾道算式,它們有什么共同的特點?(這些算式的加數(shù)都一樣。)3+3+3+3+3=15;6+6+6+6=24;2+2+2+2+2+2+2=14
師:數(shù)一數(shù),這是幾個幾相加?(5個3相加,4個6相加,7個2相加。
(3)在2+2+2+2+2+2+2=14中,你知道算式里面有幾個2,
。4)每人幾只眼睛?20人呢?怎樣列式?學(xué)生說老師寫?看到老師寫你們有什么感受?
為了簡便地表示像這樣的連加算式,人們就用乘法來計算.今天我們來學(xué)習(xí)一種新的計算方法——乘法。(板書課題。)
提問:2+2+2+2+2+2+2=14這個連加算式表示什么?(7個2相加,和是14。)指出:這種加數(shù)相同的加法,還可以用乘法表示。寫成乘法算式是2×7=14或7×2=14。
說明:“×”叫乘號,按照從左到右的順序讀乘法算式。
2×7=14,讀作:2乘7等于14;7×2=14,讀作7乘2等于14。(板書)
2、用乘號算式表示。
同學(xué)們數(shù)一數(shù)“3+3+3+3+3=15”里面有幾個3?(5個3相加。)你能寫出乘法算式嗎?學(xué)生試著寫出:5×3=15,3×5=15,并讀一讀。
6+6+6+6=24,這里面有幾個6,你能寫出乘法算式嗎?學(xué)生試著寫出:6×4=24,4×6=24,指名讀算式。
教學(xué)例2
1、出示教材第46頁游樂園圖
師:觀察,你還能找出那些物體的數(shù)量也是相同的加數(shù)的,能用乘法列算式的。
2、課件出示例2氣球圖。
。1)仔細(xì)看圖,一組氣球有幾個?(5個)有幾組(3個)你能連起來說成一句話嗎?(每組有5個氣球,一共有3組)讓學(xué)生多說幾遍。
那么一共有多少個氣球呢?
。2)討論:要求一共有多少個氣球,怎樣列示計算?
你能列加法算式嗎?5+5+5=15
有理數(shù)的乘法教案12
教學(xué)目的:
(一)知識點目標(biāo):有理數(shù)的乘法運算律。
(二)能力訓(xùn)練目標(biāo):1.經(jīng)歷探索有理數(shù)乘法的運算律的過程,發(fā)展觀察、歸納的能力。
2.能運用乘法運算律簡化計算。
(三)情感與價值觀要求:
1.在共同探索、共同發(fā)現(xiàn)、共同交流的過程中分享成功的喜悅。
2.在討論的過程中,使學(xué)生感受集體的力量,培養(yǎng)團隊意識。
教學(xué)重點:乘法運算律的運用。
教學(xué)難點:乘法運算律的運用。
教學(xué)方法:探究交流相結(jié)合。。
創(chuàng)設(shè)問題情境,引入新課
[活動1]
問題1:有理數(shù)的加法具有交換律和結(jié)合律,在以前學(xué)過的范圍內(nèi)乘法交換律、結(jié)合律,以及乘法對加法的分配律都是成立的,那么在有理數(shù)的范圍內(nèi),乘法的這些運算律成立嗎?
問題2:計算下列各題:
(1)(一7)×8;
(2)8×(一7);
(5)[3×(一4)]×(一5);
(6)3×[(一4)×(一5)];
[師生]由學(xué)生自主探索,教師可參與到學(xué)生的討論中。
像前面那樣規(guī)定有理數(shù)乘法法則后,乘法的交換律和結(jié)合律與分配律在有理數(shù)乘法中仍然成立。我們可以通過問題2來檢驗。(略)
[師]同學(xué)們自己采用上面的方法來探究一下分配律在有理數(shù)范圍內(nèi)成立嗎?
[生]例如:5×[3十(一7)]和5×3十5×(一7);(略)
[師](一5)×(3一7)和(一5)×3一5×7的結(jié)果相等嗎?
(注意:(一5)×(3一7)中的3一7應(yīng)看作3與(一7)的和,才能應(yīng)用分配律。否則不能直接應(yīng)用分配律,因為減法沒有分配律。)
講授新課:
[活動2]用文字語言和字母把乘法交換律、結(jié)合律、分配律表達出來。
應(yīng)得出:1.一般地,有理數(shù)乘法中,兩個數(shù)相乘,交換因數(shù)的位置,積相等.
2.三個數(shù)相乘,先把前兩個數(shù)相乘,或者先把后兩個數(shù)相乘,積相等。
3.一般地,一個數(shù)同兩個數(shù)的和相乘,等于這個數(shù)分別同這兩個數(shù)相乘,再把積相加。
[活動3][師生]教師引導(dǎo)學(xué)生討論、交流,從中體會學(xué)習(xí)的快樂。
3.用簡便方法計算:
[活動4]
練習(xí)(教科書第42頁)
課時小結(jié):
這節(jié)課我們學(xué)習(xí)乘法的運算律及它們的運用,使我們體驗到了掌握一般的正常運算外,還要靈活運用運算律,能簡便的一定要簡便,這樣做既快又準(zhǔn)。
課后作業(yè):課本習(xí)題1.4的第7題(3)、(6)。
活動與探究:
用簡便方法計算:
(1)6.868×(一5)十6.868×(一12)十6.868×(十17)
(2)[(4×8)×25一8]×125
有理數(shù)的乘法教案13
教學(xué)目標(biāo)
1.理解有理數(shù)乘法的意義,掌握有理數(shù)乘法法則中的符號法則和絕對值運算法則,并初步理解有理數(shù)乘法法則的合理性;
2.能根據(jù)有理數(shù)乘法法則熟練地進行有理數(shù)乘法運算,使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;
3.三個或三個以上不等于0的有理數(shù)相乘時,能正確應(yīng)用乘法交換律、結(jié)合律、分配律簡化運算過程;
4.通過有理數(shù)乘法法則及運算律在乘法運算中的運用,培養(yǎng)學(xué)生的運算能力;
5.本節(jié)課通過行程問題說明法則的合理性,讓學(xué)生感知到數(shù)學(xué)知識來源于生活,并應(yīng)用于生活。
教學(xué)建議
(一)重點、難點分析
本節(jié)的教學(xué)重點是能夠熟練進行運算。依據(jù)法則和運算律靈活進行有理數(shù)乘法運算是進一步學(xué)習(xí)除法運算和乘方運算的基礎(chǔ)。運算和加法運算一樣,都包括符號判定與絕對值運算兩個步驟。因數(shù)不包含0的乘法運算中積的符號取決于因數(shù)中所含負(fù)號的個數(shù)。當(dāng)負(fù)號的個數(shù)為奇數(shù)時,積的符號為負(fù)號;當(dāng)負(fù)號的個數(shù)為偶數(shù)時,積的符號為正數(shù)。積的絕對值是各個因數(shù)的絕對值的積。運用乘法交換律恰當(dāng)?shù)慕Y(jié)合因數(shù)可以簡化運算過程。
本節(jié)的難點是對法則的理解。法則中的“同號得正,異號得負(fù)”只是針對兩個因數(shù)相乘的情況而言的。乘法法則給出了判定積的符號和積的絕對值的方法。即兩個因數(shù)符號相同,積的符號是正號;兩個因數(shù)符號不同,積的符號是負(fù)號。積的絕對值是這兩個因數(shù)的絕對值的積。
。ǘ┲R結(jié)構(gòu)
(三)教法建議
1.有理數(shù)乘法法則,實際上是一種規(guī)定。行程問題是為了了解這種規(guī)定的合理性。
2.兩數(shù)相乘時,確定符號的依據(jù)是“同號得正,異號得負(fù)”.絕對值相乘也就是小學(xué)學(xué)過的算術(shù)乘法.
3.基礎(chǔ)較差的同學(xué),要注意乘法求積的符號法則與加法求和的符號法則的區(qū)別。
4.幾個數(shù)相乘,如果有一個因數(shù)為0,那么積就等于0.反之,如果積為0,那么,至少有一個因數(shù)為0.
5.小學(xué)學(xué)過的乘法交換律、結(jié)合律、分配律對有理數(shù)乘法仍適用,需注意的是這里的字母a、b、c既可以是正有理數(shù)、0,也可以是負(fù)有理數(shù)。
6.如果因數(shù)是帶分?jǐn)?shù),一般要將它化為假分?jǐn)?shù),以便于約分。
教學(xué)設(shè)計示例
(第一課時)
教學(xué)目標(biāo)
1.使學(xué)生在了解意義基礎(chǔ)上,理解有理數(shù)乘法法則,并初步理解有理數(shù)乘法法則的合理性;
2.通過運算,培養(yǎng)學(xué)生的運算能力;
3.通過教材給出的行程問題,認(rèn)識數(shù)學(xué)來源于實踐并反作用于實踐。
教學(xué)重點和難點
重點:依據(jù)法則,熟練進行運算;
難點:有理數(shù)乘法法則的理解.
課堂教學(xué)過程 設(shè)計
一、從學(xué)生原有認(rèn)知結(jié)構(gòu)提出問題
1.計算(-2)+(-2)+(-2).
2.有理數(shù)包括哪些數(shù)?小學(xué)學(xué)習(xí)四則運算是在有理數(shù)的什么范圍中進行的?(非負(fù)數(shù))
3.有理數(shù)加減運算中,關(guān)鍵問題是什么?和小學(xué)運算中最主要的不同點是什么?(符號問題)
4.根據(jù)有理數(shù)加減運算中引出的新問題主要是負(fù)數(shù)加減,運算的關(guān)鍵是確定符號問題,你能不能猜出在有理數(shù)乘法以及以后學(xué)習(xí)的除法中將引出的新內(nèi)容以及關(guān)鍵問題是什么?(負(fù)數(shù)問題,符號的確定)
二、師生共同研究有理數(shù)乘法法則
問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解:3×2=6(厘米) ①
答:上升了6厘米.
問題2 水庫的水位平均每小時下降3厘米,2小時上升多少厘米?
解:-3×2=-6(厘米) ②
答:上升-6厘米(即下降6厘米).
引導(dǎo)學(xué)生比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù).
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3×(-2)=?(-3)×(-2)=?(學(xué)生答)
把3×(-2)和①式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來的積“6”的相反數(shù)“-6”,即3×(-2)=-6.
把(-3)×(-2)和②式對比,這里把一個因數(shù)“2”換成了它的相反數(shù)“-2”,所得的積應(yīng)是原來的積“-6”的相反數(shù)“6”,即(-3)×(-2)=6.
此外,(-3)×0=0.
綜合上面各種情況,引導(dǎo)學(xué)生自己歸納出有理數(shù)乘法的法則:
兩數(shù)相乘,同號得正,異號得負(fù),并把絕對值相乘;
任何數(shù)同0相乘,都得0.
繼而教師強調(diào)指出:
“同號得正”中正數(shù)乘以正數(shù)得正數(shù)就是小學(xué)學(xué)習(xí)的乘法,有理數(shù)中中特別注意“負(fù)負(fù)得正”和“異號得負(fù)”.
用有理數(shù)乘法法則與小學(xué)學(xué)習(xí)的乘法相比,由于介入了負(fù)數(shù),使乘法較小學(xué)當(dāng)然復(fù)雜多了,但并不難,關(guān)鍵仍然是乘法的符號法則:“同號得正,異號得負(fù)”,符號一旦確定,就歸結(jié)為小學(xué)的乘法了.
因此,在進行有理數(shù)乘法時,需要時時強調(diào):先定符號后定值.
三、運用舉例,變式練習(xí)
例1 計算:
例2 某一物體溫度每小時上升a度,現(xiàn)在溫度是0度.
(1)t小時后溫度是多少?
(2)當(dāng)a,t分別是下列各數(shù)時的結(jié)果:
、賏=3,t=2;②a=-3,t=2;
②a=3,t=-2;④a=-3,t=-2;
教師引導(dǎo)學(xué)生檢驗一下(2)中各結(jié)果是否合乎實際.
課堂練習(xí)
1.口答:
(1)6×(-9); (2)(-6)×(-9); (3)(-6)×9; (4)(-6)×1;
(5)(-6)×(-1); (6) 6×(-1); (7)(-6)×0; (8)0×(-6);
2.口答:
(1)1×(-5); (2)(-1)×(-5); (3)+(-5);
(4)-(-5); (5)1×a; (6)(-1)×a.
這一組題做完后讓學(xué)生自己總結(jié):一個數(shù)乘以1都等于它本身;一個數(shù)乘以-1都等于它的相反數(shù).+(-5)可以看成是1×(-5),-(-5)可以看成是(-1)×(-5).同時教師強調(diào)指出,a可以是正數(shù),也可以是負(fù)數(shù)或0;-a未必是負(fù)數(shù),也可以是正數(shù)或0.
3.當(dāng)a,b是下列各數(shù)值時,填寫空格中計算的積與和:
4.填空:
(1)1×(-6)=______;(2)1+(-6)=_______;
(3)(-1)×6=________;(4)(-1)+6=______;
(5)(-1)×(-6)=______;(6)(-1)+(-6)=_____;
(9)|-7|×|-3|=_______;(10)(-7)×(-3)=______.
5.判斷下列方程的解是正數(shù)還是負(fù)數(shù)或0:
(1)4x=-16; (2)-3x=18; (3)-9x=-36; (4)-5x=0.
四、小結(jié)
今天主要學(xué)習(xí)了有理數(shù)乘法法則,大家要牢記,兩個負(fù)數(shù)相乘得正數(shù),簡單地說:“負(fù)負(fù)得正”.
五、作業(yè)
1.計算:
(1)(-16)×15; (2)(-9)×(-14); (3)(-36)×(-1);
(4)100×(-0.001); (5)-4.8×(-1.25); (6)-4.5×(-0.32).
2.計算:
3.填空(用“>”或“<”號連接):
(1)如果 a<0,b<0,那么 ab ________0;
(2)如果 a<0,b<0,那么ab _______0;
(3)如果a>0時,那么a ____________2a;
(4)如果a<0時,那么a __________2a.
探究活動
問題: 桌上放7只茶杯,杯口全部朝上,每次翻轉(zhuǎn)其中的4只,能否經(jīng)過若干次翻轉(zhuǎn),把它們翻成杯口全部朝下?
答案: “±1”將告訴你:不管你翻轉(zhuǎn)多少次,總是無法使這7只杯口全部朝下.道理很簡單,用“+1”表示杯口朝上,“-1”表示杯口朝下,問題就變成:“把7個+1每次改變其中4個的符號,若干次后能否都變成-1?”考慮這7個數(shù)的乘積,由于每次都改變4個數(shù)的符號,所以它們的乘積永遠(yuǎn)不變(為+1).而7個杯口全部朝下時,7個數(shù)的乘積等于-1,這是不可能的.
道理竟是如此簡單,證明竟是如此巧妙,這要歸功于“±1”語言.
有理數(shù)的乘法教案14
三維目標(biāo)
一、知識與技能
(1)能確定多個因數(shù)相乘時,積的符號,并能用法則進行多個因數(shù)的乘積運算。
(2)能利用計算器進行有理數(shù)的乘法運算。
二、過程與方法
經(jīng)歷探索幾個不為0的數(shù)相乘,積的符號問題的過程,發(fā)展觀察、歸納驗證等能力。
三、情感態(tài)度與價值觀
培養(yǎng)學(xué)生主動探索,積極思考的學(xué)習(xí)興趣。
教學(xué)重、難點與關(guān)鍵
1.重點:能用法則進行多個因數(shù)的乘積運算。
2.難點:積的符號的確定。
3.關(guān)鍵:讓學(xué)生觀察實例,發(fā)現(xiàn)規(guī)律。
教具準(zhǔn)備
投影儀。
四、 教學(xué)過程
1.請敘述有理數(shù)的乘法法則。
2.計算:(1)│-5│(-2); (2)(-) (3)0(-99.9)。
五、新授
1.多個有理數(shù)相乘,可以把它們按順序依次相乘。
例如:計算:1(-1)(-7)=-(-7)=-2(-7)=14;
又如:(+2)[(-78)]=(+2)(-26)=-52.
我們知道計算有理數(shù)的乘法,關(guān)鍵是確定積的符號。
觀察:下列各式的積是正的還是負(fù)的?
(1)234 (2)234(-4)
(3)2(-3)(-4)(4)(-2)(-3)(-4)(-5)。
易得出:(1)、(3)式積為負(fù),(2)、(4)式積為正,積的符號與負(fù)因數(shù)的個數(shù)有關(guān)。
教師問:幾個不是0的數(shù)相乘,積的符號與負(fù)因數(shù)的個數(shù)之間有什么關(guān)系?
學(xué)生完成思考后,教師指出:幾個不是0的數(shù)相乘,積的符號由負(fù)因數(shù)的個數(shù)決定,與正因數(shù)的個數(shù)無關(guān),當(dāng)負(fù)因數(shù)的個數(shù)為負(fù)數(shù)時,積為負(fù)數(shù);當(dāng)負(fù)因數(shù)的個數(shù)為偶數(shù)時,積為正數(shù)。
2.多個不是0的有理數(shù)相乘,先由負(fù)因數(shù)的個數(shù)確定積的符號再求各個絕對值的積。
有理數(shù)的乘法教案15
一、教學(xué)目標(biāo)
1.使學(xué)生在了解有理數(shù)乘法的意義的基礎(chǔ)上,掌握有理數(shù)乘法法則,并初步掌握有理數(shù)乘法法則的合理性;
2.培養(yǎng)學(xué)生觀察、歸納、概括及運算能力
3 使學(xué)生掌握多個有理數(shù)相乘的積的符號法則;
二、教學(xué)重點和難點
重點:有理數(shù)乘法的運算.
難點:有理數(shù)乘法中的符號法則.
三.教學(xué)手段
現(xiàn)代課堂教學(xué)手段
四.教學(xué)方法
啟發(fā)式教學(xué)
五、教學(xué)過程
(一)、研究有理數(shù)乘法法則
問題1 水庫的水位每小時上升3厘米,2小時上升了多少厘米?
解①32=6
答:上升了6厘米.
問題2 水庫的水位平均每小時上升-3厘米,2小時上升多少厘米?
解:(-3)2=-6
答:上升-6厘米(即下降6厘米).
引導(dǎo)學(xué)生比較①,②得出:
把一個因數(shù)換成它的相反數(shù),所得的積是原來的積的相反數(shù).
這是一條很重要的結(jié)論,應(yīng)用此結(jié)論,3(-2)=?(-3)(-2)=?(學(xué)生答)
把3(-2)和①式對比,這里把一個因數(shù)2換成了它的相反數(shù)-2,所得的積應(yīng)是原來的積6的相反數(shù)-6,即3(-2)=-6.
把(-3)(-2)和②式對比,這里把一個因數(shù)2換成了它的相反數(shù)-2,所得的積應(yīng)是原來的積-6的相反數(shù)6,即(-3)(-2)=6.
【有理數(shù)的乘法教案】相關(guān)文章:
有理數(shù)乘法的教案01-12
有理數(shù)的乘法優(yōu)質(zhì)教案11-08
有理數(shù)的乘法教案范文01-11
數(shù)學(xué)有理數(shù)的乘法教案03-07
初中數(shù)學(xué)《有理數(shù)乘法》教案08-29
《有理數(shù)的乘法》數(shù)學(xué)教案10-12
有理數(shù)的乘法說課稿11-02