- 初中教案 推薦度:
- 英語初中教案 推薦度:
- 初中體育教案 推薦度:
- 初中數(shù)學教案 推薦度:
- 初中音樂教案 推薦度:
- 相關(guān)推薦
初中一次函數(shù)面試教案
作為一位不辭辛勞的人民教師,通常需要用到教案來輔助教學,編寫教案有利于我們科學、合理地支配課堂時間。那要怎么寫好教案呢?以下是小編整理的初中一次函數(shù)面試教案,希望對大家有所幫助。
初中一次函數(shù)面試教案1
一、素質(zhì)教育目標
(一)知識教學點
使學生知道當直角三角形的銳角固定時,它的對邊、鄰邊與斜邊的比值也都固定這一事實。
。ǘ┠芰τ(xùn)練點
逐步培養(yǎng)學生會觀察、比較、分析、概括等邏輯思維能力。
。ㄈ┑掠凉B透點
引導(dǎo)學生探索、發(fā)現(xiàn),以培養(yǎng)學生獨立思考、勇于創(chuàng)新的精神和良好的學習習慣。
二、教學重點、難點
1。重點:使學生知道當銳角固定時,它的對邊、鄰邊與斜邊的比值也是固定的這一事實。
2。難點:學生很難想到對任意銳角,它的對邊、鄰邊與斜邊的比值也是固定的事實,關(guān)鍵在于教師引導(dǎo)學生比較、分析,得出結(jié)論。
三、教學步驟
。ㄒ唬┟鞔_目標
1.如圖6—1,長5米的梯子架在高為3米的墻上,則A、B間距離為多少米?
2.長5米的梯子以傾斜角∠CAB為30°靠在墻上,則A、B間的距離為多少?
3.若長5米的梯子以傾斜角40°架在墻上,則A、B間距離為多少?
4.若長5米的梯子靠在墻上,使A、B間距為2米,則傾斜角∠CAB為多少度?
前兩個問題學生很容易回答。這兩個問題的設(shè)計主要是引起學生的回憶,并使學生意識到,本章要用到這些知識。但后兩個問題的設(shè)計卻使學生感到疑惑,這對初三年級這些好奇、好勝的學生來說,起到激起學生的學習興趣的作用。同時使學生對本章所要學習的內(nèi)容的特點有一個初步的了解,有些問題單靠勾股定理或含30°角的直角三角形和等腰直角三角形的知識是不能解決的,解決這類問題,關(guān)鍵在于找到一種新方法,求出一條邊或一個未知銳角,只要做到這一點,有關(guān)直角三角形的其他未知邊角就可用學過的知識全部求出來。
通過四個例子引出課題。
。ǘ┱w感知
1.請每一位同學拿出自己的三角板,分別測量并計算30°、45°、60°角的對邊、鄰邊與斜邊的比值。
學生很快便會回答結(jié)果:無論三角尺大小如何,其比值是一個固定的值。程度較好的學生還會想到,以后在這些特殊直角三角形中,只要知道其中一邊長,就可求出其他未知邊的長。
2.請同學畫一個含40°角的直角三角形,并測量、計算40°角的對邊、鄰邊與斜邊的比值,學生又高興地發(fā)現(xiàn),不論三角形大小如何,所求的比值是固定的大部分學生可能會想到,當銳角取其他固定值時,其對邊、鄰邊與斜邊的比值也是固定的嗎?這樣做,在培養(yǎng)學生動手能力的同時,也使學生對本節(jié)課要研究的知識有了整體感知,喚起學生的求知欲,大膽地探索新知。
。ㄈ┲攸c、難點的學習與目標完成過程
1.通過動手實驗,學生會猜想到“無論直角三角形的銳角為何值,它的對邊、鄰邊與斜邊的比值總是固定不變的”。但是怎樣證明這個命題呢?學生這時的思維很活躍。對于這個問題,部分學生可能能解決它。因此教師此時應(yīng)讓學生展開討論,獨立完成。
2.學生經(jīng)過研究,也許能解決這個問題。若不能解決,教師可適當引導(dǎo):
若一組直角三角形有一個銳角相等,可以把其
頂點A1,A2,A3重合在一起,記作A,并使直角邊AC1,AC2,AC3……落在同一條直線上,則斜邊AB1,AB2,AB3……落在另一條直線上。這樣同學們能解決這個問題嗎?引導(dǎo)學生獨立證明:易知,B1C1∥B2C2∥B3C3……,∴△AB1C1∽△AB2C2∽△AB3C3∽……,∴
形中,∠A的對邊、鄰邊與斜邊的`比值,是一個固定值。
通過引導(dǎo),使學生自己獨立掌握了重點,達到知識教學目標,同時培養(yǎng)學生能力,進行了德育滲透。
而前面導(dǎo)課中動手實驗的設(shè)計,實際上為突破難點而設(shè)計。這一設(shè)計同時起到培養(yǎng)學生思維能力的作用。
練習題為作了孕伏同時使學生知道任意銳角的對邊與斜邊的比值都能求出來。
。ㄋ模┛偨Y(jié)與擴展
1.引導(dǎo)學生作知識總結(jié):本節(jié)課在復(fù)習勾股定理及含30°角直角三角形的性質(zhì)基礎(chǔ)上,通過動手實驗、證明,我們發(fā)現(xiàn),只要直角三角形的銳角固定,它的對邊、鄰邊與斜邊的比值也是固定的
教師可適當補充:本節(jié)課經(jīng)過同學們自己動手實驗,大膽猜測和積極思考,我們發(fā)現(xiàn)了一個新的結(jié)論,相信大家的邏輯思維能力又有所提高,希望大家發(fā)揚這種創(chuàng)新精神,變被動學知識為主動發(fā)現(xiàn)問題,培養(yǎng)自己的創(chuàng)新意識。
2.擴展:當銳角為30°時,它的對邊與斜邊比值我們知道。今天我們又發(fā)現(xiàn),銳角任意時,它的對邊與斜邊的比值也是固定的如果知道這個比值,已知一邊求其他未知邊的問題就迎刃而解了?磥磉@個比值很重要,下節(jié)課我們就著重研究這個“比值”,有興趣的同學可以提前預(yù)習一下。通過這種擴展,不僅對正、余弦概念有了初步印象,同時又激發(fā)了學生的興趣。
四、布置作業(yè)
本節(jié)課內(nèi)容較少,而且是為正、余弦概念打基礎(chǔ)的,因此課后應(yīng)要求學生預(yù)習正余弦概念。
五、板書設(shè)計
初中一次函數(shù)面試教案2
一、素質(zhì)教育目標
。ㄒ唬┲R教學點
使學生初步了解正弦、余弦概念;能夠較正確地用sinA、cosA表示直角三角形中兩邊的比;熟記特殊角30°、45°、60°角的正、余弦值,并能根據(jù)這些值說出對應(yīng)的銳角度數(shù)。
。ǘ┠芰τ(xùn)練點
逐步培養(yǎng)學生觀察、比較、分析、概括的思維能力。
(三)德育滲透點
滲透教學內(nèi)容中普遍存在的運動變化、相互聯(lián)系、相互轉(zhuǎn)化等觀點。
二、教學重點、難點
1.教學重點:使學生了解正弦、余弦概念。
2.教學難點:用含有幾個字母的符號組sinA、cosA表示正弦、余弦;正弦、余弦概念。
三、教學步驟
(一)明確目標
1。引導(dǎo)學生回憶“直角三角形銳角固定時,它的對邊與斜邊的比值、鄰邊與斜邊的比值也是固定的”
2。明確目標:這節(jié)課我們將研究直角三角形一銳角的對邊、鄰邊與斜邊的比值——正弦和余弦。
。ǘ┱w感知
只要知道三角形任一邊長,其他兩邊就可知。
而上節(jié)課我們發(fā)現(xiàn):只要直角三角形的銳角固定,它的對邊與斜邊、鄰邊與斜邊的比值也固定。這樣只要能求出這個比值,那么求直角三角形未知邊的問題也就迎刃而解了。
通過與“30°角所對的直角邊等于斜邊的一半”相類比,學生自然產(chǎn)生想學習的欲望,產(chǎn)生濃厚的學習興趣,同時對以下要研究的內(nèi)容有了大體印象。
。ㄈ┲攸c、難點的學習與目標完成過程
正弦、余弦的概念是全章知識的基礎(chǔ),對學生今后的學習與工作都十分重要,因此確定它為本課重點,同時正、余弦概念隱含角度與數(shù)之間具有一一對應(yīng)的函數(shù)思想,又用含幾個字母的符號組來表示,因此概念也是難點。
在上節(jié)課研究的基礎(chǔ)上,引入正、余弦,“把對邊、鄰邊與斜邊的比值稱做正弦、余弦”。如圖6—3:
請學生結(jié)合圖形敘述正弦、余弦定義,以培養(yǎng)學生概括能力及語言表達能力。教師板書:在△ABC中,∠C為直角,我們把銳角A的對邊與斜邊的比叫做∠A的正弦,記作sinA,銳角A的鄰邊與斜邊的比叫做∠A的余弦,記作cosA。
若把∠A的對邊BC記作a,鄰邊AC記作b,斜邊AB記作c,則
引導(dǎo)學生思考:當∠A為銳角時,sinA、cosA的值會在什么范圍內(nèi)?得結(jié)論0
教材例1的設(shè)置是為了鞏固正弦概念,通過教師示范,使學生會求正弦,這里不妨增問“cosA、cosB”,經(jīng)過反復(fù)強化,使全體學生都達到目標,更加突出重點。
例1求出圖6—4所示的Rt△ABC中的sinA、sinB和cosA、cosB的值。
學生練習1中1、2、3。
讓每個學生畫含30°、45°的直角三角形,分別求sin30°、sin45°、sin60°和cos30°、cos45°、cos60°。這一練習既用到以前的知識,又鞏固正弦、余弦的概念,經(jīng)過學習親自動筆計算后,對特殊角三角函數(shù)值印象很深刻。
例2求下列各式的值:
為了使學生熟練掌握特殊角三角函數(shù)值,這里還應(yīng)安排六個小題:
。1)sin45°+cos45;(2)sin30°?cos60°;
在確定每個學生都牢記特殊角的三角函數(shù)值后,引導(dǎo)學生思考,“請大家觀察特殊角的正弦和余弦值,猜測一下,sin20°大概在什么范圍內(nèi),cos50°呢?”這樣的引導(dǎo)不僅培養(yǎng)學生的觀察力、注意力,而且培養(yǎng)學生勇于思考、大膽創(chuàng)新的精神。還可以進一步請成績較好的同學用語言來敘述“銳角的正弦值隨角度增大而增大,余弦值隨角度增大而減小。”為查正余弦表作準備。
。ㄋ模┛偨Y(jié)、擴展
首先請學生作小結(jié),教師適當補充,“主要研究了銳角的正弦、余弦概念,已知直角三角形的兩邊可求其銳角的正、余弦值。知道任意銳角A的正、余弦值都在0~1之間,即
0 還發(fā)現(xiàn)Rt△ABC的兩銳角∠A、∠B,sinA=cosB,cosA=sinB。正弦值隨角度增大而增大,余弦值隨角度增大而減小! 四、布置作業(yè) 教材習題14.1中A組3。 預(yù)習下一課內(nèi)容。 五、板書設(shè)計 【初中一次函數(shù)面試教案】相關(guān)文章: 一次函數(shù)教案04-23 一次函數(shù)教案人教版03-18 初中一次函數(shù)說課稿04-11 一次函數(shù)復(fù)習課教學教案06-10 一次函數(shù)無生上課教案模板01-13 一次函數(shù)課件04-28 一次函數(shù)的說課稿04-09