毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

八年級數(shù)學(xué)教案

時(shí)間:2022-12-30 09:20:57 教案 我要投稿
  • 相關(guān)推薦

【熱】八年級數(shù)學(xué)教案

  作為一名人民教師,編寫教案是必不可少的,教案有利于教學(xué)水平的提高,有助于教研活動的開展。我們應(yīng)該怎么寫教案呢?下面是小編幫大家整理的八年級數(shù)學(xué)教案,僅供參考,大家一起來看看吧。

【熱】八年級數(shù)學(xué)教案

八年級數(shù)學(xué)教案1

  【教學(xué)目標(biāo)】

  1.了解分式概念.

  2.理解分式有意義的條件,分式的值為零的條件;能熟練地求出分式有意義的條件,分式的值為零的條件.

  【教學(xué)重難點(diǎn)】

  重點(diǎn):理解分式有意義的條件,分式的值為零的條件.

  難點(diǎn):能熟練地求出分式有意義的條件,分式的值為零的條件.

  【教學(xué)過程】

  一、課堂導(dǎo)入

  1.讓學(xué)生填寫[思考],學(xué)生自己依次填出:,,,.

  2.問題:一艘輪船在靜水中的最大航速為20千米/時(shí),它沿江以最大航速順流航行100千米所用實(shí)踐,與以最大航速逆流航行60千米所用時(shí)間相等,江水的流速為多少?

  設(shè)江水的流速為x千米/時(shí).

  輪船順流航行100千米所用的時(shí)間為小時(shí),逆流航行60千米所用時(shí)間小時(shí),所以=.

  3.以上的式子,,,,有什么共同點(diǎn)?它們與分?jǐn)?shù)有什么相同點(diǎn)和不同點(diǎn)?可以發(fā)現(xiàn),這些式子都像分?jǐn)?shù)一樣都是A÷B的形式.分?jǐn)?shù)的分子A與分母B都是整數(shù),而這些式子中的A、B都是整式,并且B中都含有字母.

  [思考]引發(fā)學(xué)生思考分式的分母應(yīng)滿足什么條件,分式才有意義?由分?jǐn)?shù)的分母不能為零,用類比的方法歸納出:分式的分母也不能為零.注意只有滿足了分式的分母不能為零這個(gè)條件,分式才有意義.即當(dāng)B≠0時(shí),分式才有意義.

  二、例題講解

  例1:當(dāng)x為何值時(shí),分式有意義.

  【分析】已知分式有意義,就可以知道分式的分母不為零,進(jìn)一步解出字母x的取值范圍.

  (補(bǔ)充)例2:當(dāng)m為何值時(shí),分式的值為0?

  (1);(2);(3).

  【分析】分式的值為0時(shí),必須同時(shí)滿足兩個(gè)條件:①分母不能為零;②分子為零,這樣求出的m的解集中的公共部分,就是這類題目的解.

  三、隨堂練習(xí)

  1.判斷下列各式哪些是整式,哪些是分式?

  9x+4,,,,,

  2.當(dāng)x取何值時(shí),下列分式有意義?

  3.當(dāng)x為何值時(shí),分式的值為0?

  四、小結(jié)

  談?wù)勀愕氖斋@.

  五、布置作業(yè)

  課本128~129頁練習(xí).

八年級數(shù)學(xué)教案2

  教學(xué)目標(biāo)

  1.知識與技能

  領(lǐng)會運(yùn)用完全平方公式進(jìn)行因式分解的方法,發(fā)展推理能力.

  2.過程與方法

  經(jīng)歷探索利用完全平方公式進(jìn)行因式分解的過程,感受逆向思維的意義,掌握因式分解的基本步驟.

  3.情感、態(tài)度與價(jià)值觀

  培養(yǎng)良好的推理能力,體會“化歸”與“換元”的思想方法,形成靈活的應(yīng)用能力.

  重、難點(diǎn)與關(guān)鍵

  1.重點(diǎn):理解完全平方公式因式分解,并學(xué)會應(yīng)用.

  2.難點(diǎn):靈活地應(yīng)用公式法進(jìn)行因式分解.

  3.關(guān)鍵:應(yīng)用“化歸”、“換元”的思想方法,把問題進(jìn)行形式上的轉(zhuǎn)化,達(dá)到能應(yīng)用公式法分解因式的目的

  教學(xué)方法

  采用“自主探究”教學(xué)方法,在教師適當(dāng)指導(dǎo)下完成本節(jié)課內(nèi)容.

  教學(xué)過程

  一、回顧交流,導(dǎo)入新知

  【問題牽引】

  1.分解因式:

  (1)-9x2+4y2;(2)(x+3y)2-(x-3y)2;

  (3)x2-0.01y2.

  【知識遷移】

  2.計(jì)算下列各式:

  (1)(m-4n)2;(2)(m+4n)2;

  (3)(a+b)2;(4)(a-b)2.

  【教師活動】引導(dǎo)學(xué)生完成下面兩道題,并運(yùn)用數(shù)學(xué)“互逆”的思想,尋找因式分解的規(guī)律.

  3.分解因式:

  (1)m2-8mn+16n2(2)m2+8mn+16n2;

  (3)a2+2ab+b2;(4)a2-2ab+b2.

  【學(xué)生活動】從逆向思維的角度入手,很快得到下面答案:

  解:

  (1)m2-8mn+16n2=(m-4n)2;

  (2)m2+8mn+16n2=(m+4n)2;

  (3)a2+2ab+b2=(a+b)2;

  (4)a2-2ab+b2=(a-b)2.

  【歸納公式】完全平方公式a2±2ab+b2=(a±b)2.

  二、范例學(xué)習(xí),應(yīng)用所學(xué)

  【例1】把下列各式分解因式:

  (1)-4a2b+12ab2-9b3;

  (2)8a-4a2-4;

  (3)(x+y)2-14(x+y)+49;(4)+n4.

  【例2】如果x2+axy+16y2是完全平方,求a的值.

  【思路點(diǎn)撥】根據(jù)完全平方式的定義,解此題時(shí)應(yīng)分兩種情況,即兩數(shù)和的平方或者兩數(shù)差的平方,由此相應(yīng)求出a的值,即可求出a3.

  三、隨堂練習(xí),鞏固深化

  課本P170練習(xí)第1、2題.

  【探研時(shí)空】

  1.已知x+y=7,xy=10,求下列各式的值.

  (1)x2+y2;(2)(x-y)2

  2.已知x+=-3,求x4+的值.

  四、課堂總結(jié),發(fā)展?jié)撃?/p>

  由于多項(xiàng)式的因式分解與整式乘法正好相反,因此把整式乘法公式反過來寫,就得到多項(xiàng)式因式分解的公式,主要的有以下三個(gè):

  a2-b2=(a+b)(a-b);

  a2±ab+b2=(a±b)2.

  在運(yùn)用公式因式分解時(shí),要注意:

  (1)每個(gè)公式的形式與特點(diǎn),通過對多項(xiàng)式的項(xiàng)數(shù)、次數(shù)等的總體分析來確定,是否可以用公式分解以及用哪個(gè)公式分解,通常是,當(dāng)多項(xiàng)式是二項(xiàng)式時(shí),考慮用平方差公式分解;當(dāng)多項(xiàng)式是三項(xiàng)時(shí),應(yīng)考慮用完全平方公式分解;(2)在有些情況下,多項(xiàng)式不一定能直接用公式,需要進(jìn)行適當(dāng)?shù)慕M合、變形、代換后,再使用公式法分解;(3)當(dāng)多項(xiàng)式各項(xiàng)有公因式時(shí),應(yīng)該首先考慮提公因式,然后再運(yùn)用公式分解.

  五、布置作業(yè),專題突破

八年級數(shù)學(xué)教案3

  學(xué)習(xí)重點(diǎn):函數(shù)的概念 及確定自變量的取值范圍。

  學(xué)習(xí)難點(diǎn):認(rèn)識函數(shù),領(lǐng)會函數(shù)的意義。

  【自主復(fù)習(xí)知識準(zhǔn)備】

  請你舉出生活中含有兩個(gè)變量的變化過程,說明其中的常量和變量。

  【自主探究知識應(yīng)用】

  請看書72——74頁內(nèi)容,完成下列問題:

  1、 思考書中第72頁的問題,歸納出變量之間的關(guān)系。

  2、 完成書上第73頁的思考,體會圖形中體現(xiàn)的變量和變量之間的關(guān)系。

  3、 歸納出函數(shù)的定義,明確函數(shù)定義中必須要滿足的條件。

  歸納:一般的,在一個(gè)變化過程中,如果有______變量x和y,并且對于x的_______,y都有_________與其對應(yīng),那么我們就說x是__________,y是x的________。如果當(dāng)x=a時(shí),y=b,那么b叫做當(dāng)自變量的值為a時(shí)的函數(shù)值。

  補(bǔ)充小結(jié):

  (1)函數(shù)的定義:

  (2)必須是一個(gè)變化過程;

  (3)兩個(gè)變量;其中一個(gè)變量每取一個(gè)值 ,另一個(gè)變量有且有唯一值對它對應(yīng)。

  三、鞏固與拓展:

  例1:一輛汽車的油箱中現(xiàn)有汽油50L,如果不再加油,那么油箱中的油量y(單位:L)隨行駛里程x(單位:千米)的增加而減少,平均耗油量為0.1L/千米。

  (1)寫出表示y與x的函數(shù)關(guān)系式.

  (2)指出自變量x的取值范圍.

  (3) 汽車行駛200千米時(shí),油箱中還有多少汽油?

  【當(dāng)堂檢測知識升華】

  1、判斷下列變量之間是不是函數(shù)關(guān)系:

  (1)長方形的寬一定時(shí),其長與面積;

  (2)等腰三角形的底邊長與面積;

  (3)某人的年齡與身高;

  2、寫出下列函數(shù)的解析式.

  (1)一個(gè)長方體盒子高3cm,底面是正方形,這個(gè)長方體的體積為y(cm3),底面邊長為x(cm),寫出表示y與x的函數(shù)關(guān)系的式子.

  (2)汽車加油時(shí),加油槍的流量為10L/min.

  ①如果加油前,油箱里還有5 L油,寫出在加油過程中,油箱中的油量y(L)與加油時(shí)間x(min)之間的函數(shù)關(guān)系;

 、谌绻佑蜁r(shí),油箱是空的,寫出在加油過程中,油箱中的油量y(L)與加油時(shí)間x(min) 之間的函數(shù)關(guān)系.

  (3)某種活期儲蓄的月利率為0.16%,存入10000元本金,按國家規(guī)定,取款時(shí),應(yīng)繳納利息部分的20%的利息稅,求這種活期儲蓄扣除利息稅后實(shí)得的本息和y(元)與所存月數(shù)x之間的關(guān)系式.

  (4)如圖,每個(gè)圖中是由若干個(gè)盆花組成的圖案,每條邊(包括兩個(gè)頂點(diǎn))有n盆花,每個(gè)圖案的花盆總數(shù)是S,求S與n之間的關(guān)系式.

  八年級變量與函數(shù)(2)數(shù)學(xué)教案的全部內(nèi)容由數(shù)學(xué)網(wǎng)提供,教材中的每一個(gè)問題,每一個(gè)環(huán)節(jié),都有教師依據(jù)學(xué)生學(xué)習(xí)的實(shí)際和教材的實(shí)際進(jìn)行有針對性的設(shè)置,希望大家喜歡!

八年級數(shù)學(xué)教案4

  一、教學(xué)目標(biāo)

  1、理解分式的基本性質(zhì)。

  2、會用分式的基本性質(zhì)將分式變形。

  二、重點(diǎn)、難點(diǎn)

  1、重點(diǎn):理解分式的基本性質(zhì)。

  2、難點(diǎn):靈活應(yīng)用分式的基本性質(zhì)將分式變形。

  3、認(rèn)知難點(diǎn)與突破方法

  教學(xué)難點(diǎn)是靈活應(yīng)用分式的基本性質(zhì)將分式變形。突破的方法是通過復(fù)習(xí)分?jǐn)?shù)的通分、約分總結(jié)出分?jǐn)?shù)的基本性質(zhì),再用類比的方法得出分式的基本性質(zhì)。應(yīng)用分式的基本性質(zhì)導(dǎo)出通分、約分的概念,使學(xué)生在理解的基礎(chǔ)上靈活地將分式變形。

  三、練習(xí)題的意圖分析

  1.P7的例2是使學(xué)生觀察等式左右的已知的分母(或分子),乘以或除以了什么整式,然后應(yīng)用分式的基本性質(zhì),相應(yīng)地把分子(或分母)乘以或除以了這個(gè)整式,填到括號里作為答案,使分式的值不變。

  2.P9的例3、例4地目的是進(jìn)一步運(yùn)用分式的基本性質(zhì)進(jìn)行約分、通分。值得注意的是:約分是要找準(zhǔn)分子和分母的公因式,最后的結(jié)果要是最簡分式;通分是要正確地確定各個(gè)分母的最簡公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

  教師要講清方法,還要及時(shí)地糾正學(xué)生做題時(shí)出現(xiàn)的錯誤,使學(xué)生在做提示加深對相應(yīng)概念及方法的理解。

  3.P11習(xí)題16.1的第5題是:不改變分式的值,使下列分式的分子和分母都不含“-”號。這一類題教材里沒有例題,但它也是由分式的基本性質(zhì)得出分子、分母和分式本身的符號,改變其中任何兩個(gè),分式的值不變。

  “不改變分式的值,使分式的分子和分母都不含‘-’號”是分式的基本性質(zhì)的應(yīng)用之一,所以補(bǔ)充例5。

  四、課堂引入

  1、請同學(xué)們考慮:與相等嗎?與相等嗎?為什么?

  2、說出與之間變形的過程,與之間變形的過程,并說出變形依據(jù)?

  3、提問分?jǐn)?shù)的基本性質(zhì),讓學(xué)生類比猜想出分式的基本性質(zhì)。

  五、例題講解

  P7例2.填空:

  [分析]應(yīng)用分式的基本性質(zhì)把已知的分子、分母同乘以或除以同一個(gè)整式,使分式的值不變。

  P11例3.約分:

  [分析]約分是應(yīng)用分式的基本性質(zhì)把分式的分子、分母同除以同一個(gè)整式,使分式的值不變。所以要找準(zhǔn)分子和分母的公因式,約分的結(jié)果要是最簡分式。

  P11例4.通分:

  [分析]通分要想確定各分式的公分母,一般的取系數(shù)的最小公倍數(shù),以及所有因式的次冪的積,作為最簡公分母。

八年級數(shù)學(xué)教案5

  教學(xué)目標(biāo):

  1、知識目標(biāo):了解圖案最常見的構(gòu)圖方式:軸對稱、平移、旋轉(zhuǎn)……,理解簡單圖案設(shè)計(jì)的意圖。認(rèn)識和欣賞平移,旋轉(zhuǎn)在現(xiàn)實(shí)生活中的應(yīng)用,能夠靈活運(yùn)用軸對稱、平移、旋轉(zhuǎn)的組合,設(shè)計(jì)出簡單的圖案。

  2、能力目標(biāo):經(jīng)歷收集、欣賞、分析、操作和設(shè)計(jì)的過程,培養(yǎng)學(xué)生收集和整理信息的能力,分析和解決問題的能力,合作和交流的能力以及創(chuàng)新能力。

  3、情感體驗(yàn)點(diǎn):經(jīng)歷對典型圖案設(shè)計(jì)意圖的分析,進(jìn)一步發(fā)展學(xué)生的空間觀念,增強(qiáng)審美意識,培養(yǎng)學(xué)生積極進(jìn)取的生活態(tài)度。

  重點(diǎn)與難點(diǎn):

  重點(diǎn):靈活運(yùn)用軸對稱、平移、旋轉(zhuǎn)……等方法及它們的組合進(jìn)行的圖案設(shè)計(jì)。

  難點(diǎn):分析典型圖案的設(shè)計(jì)意圖。

  疑點(diǎn):在設(shè)計(jì)的圖案中清晰地表現(xiàn)自己的設(shè)計(jì)意圖

  教具學(xué)具準(zhǔn)備:

  提前一周布置學(xué)生以小組為單位,通過各種渠道收集到的圖案、圖標(biāo)的剪貼、臨摹以及。多種常見的圖案及其形成過程的動畫演示。

  教學(xué)過程設(shè)計(jì):

  1、情境導(dǎo)入:在優(yōu)美的音樂中,逐個(gè)展示生活中常見的典型圖案,并讓學(xué)生試著說一說每種圖案標(biāo)志的對象。(展示課本圖3—23)

  明確在欣賞了圖案后,簡單地復(fù)習(xí)平移、旋轉(zhuǎn)的概念,為下面圖案的設(shè)計(jì)作好理論準(zhǔn)備。對教材給出的六個(gè)圖案通過觀察、分析進(jìn)行議論交流,讓學(xué)生初步了解圖案的設(shè)計(jì)中常常運(yùn)用圖形變換的思想方法,為學(xué)生自己設(shè)計(jì)圖案指明方向。其中圖(1)、(2)、(3)、(4)、(5)、(6)都可以通過旋轉(zhuǎn)適合角度形成(可以讓學(xué)生自己說說每個(gè)旋轉(zhuǎn)的角度和旋轉(zhuǎn)的次數(shù)及旋轉(zhuǎn)中心的位置),另外圖(2)、(3)、(5)也可以通過軸對稱變換形成(可以讓學(xué)生指出對軸對稱及對稱軸的條數(shù)),而圖(2)可以通過平移形成。

  2、課本

  1 欣賞課本75頁圖3—24的圖案,并分析這個(gè)圖案形成過程。

  評注:圖案是密鋪圖案的代表,旨在通過對典型圖案的分析欣賞,使學(xué)生逐步能夠進(jìn)行圖案設(shè)計(jì),同時(shí)了解軸對稱、平移、旋轉(zhuǎn)變換是圖案制作的基本手段。例題解答的關(guān)鍵是確定“基本圖案”,然后再運(yùn)用平移、旋轉(zhuǎn)關(guān)系加以說明,注意旋轉(zhuǎn)中心可以為圖形上某一特征的點(diǎn)。

  評注:可以取其中的任何一個(gè)為基本圖案,然后通過變換得到。而且變化方式也可以是:左下角的圖案通過軸對稱變換得到左上圖和右下圖。

  (二)課內(nèi)練習(xí)

  (1) 以小組為單位,由每組指定一個(gè)同學(xué)展示該組搜集得到的圖案,并在全班交流。

  (2) 利用下面提供的基本圖形,用平移、旋轉(zhuǎn)、軸對稱、中心對稱等方法進(jìn)行圖案設(shè)計(jì),并簡要說明自己的設(shè)計(jì)意圖。

  (三)議一議

  生活中還有那些圖案用到了平移或旋轉(zhuǎn)?分析其中的一個(gè),并與同伴進(jìn)行交流。

  (四)課時(shí)小結(jié)

  本課時(shí)的重點(diǎn)是了解平移、旋轉(zhuǎn)和軸對稱變換是圖案設(shè)計(jì)的基本方法,并能運(yùn)用這些變換設(shè)計(jì)出一些簡單的圖案。

  通過今天的學(xué)習(xí),你對圖案的設(shè)計(jì)又增加了哪些新的認(rèn)識?(可以利用平移、旋轉(zhuǎn)、軸對稱等多種方法來設(shè)計(jì),而且設(shè)計(jì)的圖案要能表達(dá)自己的創(chuàng)作意圖,再就是圖案的設(shè)計(jì)一定要新穎,獨(dú)特,這樣才能使人過目不忘,達(dá)到標(biāo)志的效果。)

  八年級數(shù)學(xué)上冊教案(五)延伸拓展

  進(jìn)一步搜集身邊的各種標(biāo)志性圖案,嘗試著重新設(shè)計(jì)它,并結(jié)合實(shí)際背景分析它的設(shè)計(jì)意圖。

八年級數(shù)學(xué)教案6

  一、內(nèi)容和內(nèi)容解析

  1.內(nèi)容

  三角形高線、中線及角平分線的概念、幾何語言表達(dá)及它們的畫法.

  2.內(nèi)容解析

  本節(jié)內(nèi)容概念較多,有三角形的高、中線、角平分線和重心等有關(guān)概念;需要學(xué)生動手的頻率也較高,要掌握任意三角形的高、中線、角平分線的畫法,培養(yǎng)學(xué)生動手操作及解決問題的能力;鼓勵學(xué)生主動參與,體驗(yàn)幾何知識在現(xiàn)實(shí)生活中的真實(shí)性,激發(fā)學(xué)生熱愛生活、勇于探索的思想感情。

  理解三角形高、角平分線及中線概念到用幾何語言精確表述,這是學(xué)生在幾何學(xué)習(xí)上的一個(gè)深入.學(xué)習(xí)了這一課,對于學(xué)生增長幾何知識,運(yùn)用幾何知識解決生活中的有關(guān)問題,起著十分重要的作用.它也是學(xué)習(xí)三角形的角、邊的延續(xù)以及三角形全等、相似等后繼知識一個(gè)準(zhǔn)備.

  本節(jié)的重點(diǎn)是了解三角形的高、中線及角平分線概念的同時(shí)還要掌握它們的畫法,難點(diǎn)是鈍角三角形的高的畫法及不同類型的三角形高線的位置關(guān)系.

  二、目標(biāo)和目標(biāo)解析

  1.教學(xué)目標(biāo)

  (1)理解三角形的高、中線與角平分線等概念;

  (2)會用工具畫三角形的高、中線與角平分線;

  2.教學(xué)目標(biāo)解析

  (1)經(jīng)歷畫圖實(shí)踐過程,理解三角形的高、中線與角平分線等概念.

  (2)能夠熟練用幾何語言表達(dá)三角形的高、中線與角平分線的性質(zhì).

  (3)掌握三角形的高、中線與角平分線的畫法.

  (4)了解三角形的三條高、三條中線與三條角平分線分別相交于一點(diǎn).

  三、教學(xué)問題診斷分析

  三角形的高線的理解:三角形的高是線段,不是直線,它的一個(gè)端點(diǎn)是三角形的.頂點(diǎn),另一個(gè)端點(diǎn)在這個(gè)頂點(diǎn)的對邊或?qū)吽诘闹本上.

  三角形的中線的理解:三角形的中線也是線段,它是一個(gè)頂點(diǎn)和對邊中點(diǎn)的連線,它的一個(gè)端點(diǎn)是三角形的頂點(diǎn),另一個(gè)端點(diǎn)是這個(gè)頂點(diǎn)的對邊中點(diǎn).

  三角形的角平分線的理解:三角形的角平分線也是一條線段,角的頂點(diǎn)是一個(gè)端點(diǎn),另一個(gè)端點(diǎn)在對邊上.而角的平分線是一條射線,即就是說三角形的角平分線與通常的角平線有一定的聯(lián)系又有本質(zhì)的區(qū)別.

八年級數(shù)學(xué)教案7

  一、教材分析教材的地位和作用:

  本節(jié)內(nèi)容是第一課時(shí)《軸對稱》,本節(jié)立足于學(xué)生已有的生活經(jīng)驗(yàn)和數(shù)學(xué)活動經(jīng)歷,從觀察生活中的軸對稱現(xiàn)象開始,從整體的角度認(rèn)識軸對稱的特征;同時(shí)本節(jié)內(nèi)容與圖形的三種變換操作(平移、翻折、旋轉(zhuǎn))之一的“翻折”有著不可分割的聯(lián)系,通過對這一節(jié)課的學(xué)習(xí),使學(xué)生從對圖形的感性認(rèn)識上升到對軸對稱的理性認(rèn)識,為進(jìn)一步學(xué)習(xí)軸對稱性質(zhì)及后面學(xué)習(xí)等腰三角形和圓等有關(guān)知識奠定基礎(chǔ)。同時(shí)這一節(jié)也是聯(lián)系數(shù)學(xué)與生活的橋梁。

  二、學(xué)情分析

  八年級學(xué)生有一定的知識水平,已經(jīng)初步形成了一定觀察能力、語言表達(dá)能力,這節(jié)課是在學(xué)生學(xué)習(xí)了“全等三角形”相關(guān)內(nèi)容之后安排的一節(jié)課,學(xué)生已經(jīng)具備了一定的推理能力,因此,這節(jié)課通過觀察生活中的實(shí)例和動手實(shí)踐,讓學(xué)生自己去發(fā)現(xiàn)和總結(jié)軸對稱圖形和軸對稱的概念及它們之間的區(qū)別與聯(lián)系是切實(shí)可行的。

  三、教學(xué)目標(biāo)及重點(diǎn)、難點(diǎn)的確定

  根據(jù)新課程標(biāo)準(zhǔn)、教材內(nèi)容特點(diǎn)、和學(xué)生已有的認(rèn)知結(jié)構(gòu)、心理特征,我確定本節(jié)教學(xué)目標(biāo)、重點(diǎn)、難點(diǎn)如下:

  (一)教學(xué)目標(biāo):

  1、知識技能

  (1)理解并掌握軸對稱圖形的概念,對稱軸;能準(zhǔn)確判斷哪些事物是軸對稱圖形;找出軸對稱圖形的對稱軸.

  (2)理解并掌握軸對稱的概念,對稱軸;了解對稱點(diǎn).

  (3)了解軸對稱圖形和軸對稱的聯(lián)系與區(qū)別.

  2、過程與方法目標(biāo)

  經(jīng)歷“觀察——比較——操作——概括——總結(jié)一應(yīng)用”的學(xué)習(xí)過程,培養(yǎng)學(xué)生的動手實(shí)踐能力、抽象思維和語言表達(dá)能力.

  3、情感、態(tài)度與價(jià)值觀

  通過對生活中數(shù)學(xué)問題的探究,進(jìn)一步提高學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識,在自主探究、合作交流的過程中,體會數(shù)學(xué)的重要作用,培養(yǎng)學(xué)生的學(xué)習(xí)興趣,熱愛生活的情感和欣賞圖形的對稱美。

  (二)教學(xué)重點(diǎn):軸對稱圖形和軸對稱的有關(guān)概念.

  (三)教學(xué)難點(diǎn):軸對稱圖形與軸對稱的聯(lián)系、區(qū)別

  .四、教法和學(xué)法設(shè)計(jì)

  本節(jié)課根據(jù)教材內(nèi)容的特點(diǎn)和八年級學(xué)生的知識結(jié)構(gòu)和心理特征。我選擇的:

  【教法策略】采用以直觀演示法和實(shí)驗(yàn)發(fā)現(xiàn)法為主,設(shè)疑誘導(dǎo)法為輔。教學(xué)中教學(xué)中通過豐富的圖片展示,創(chuàng)設(shè)出問題情景,誘導(dǎo)學(xué)生思考、操作,教師適時(shí)地演示,并運(yùn)用多媒體化靜為動,激發(fā)學(xué)生探求知識的欲望,逐步推導(dǎo)歸納得出結(jié)論,使學(xué)生始終處于主動探索問題的積極狀態(tài),使不同層次學(xué)生的知識水平得到恰當(dāng)?shù)陌l(fā)展和提高。

  【學(xué)法策略】:讓學(xué)生在“觀察----比較——操作——概括——檢驗(yàn)——應(yīng)用”的學(xué)習(xí)過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,使學(xué)生在自主探索和合作交流中理解和掌握本節(jié)課的有關(guān)內(nèi)容。

  【輔助策略】我利用多媒體課件輔助教學(xué),適時(shí)呈現(xiàn)問題情景,以豐富學(xué)生的感性認(rèn)識,增強(qiáng)直觀效果,提高課堂效率

  五、說程序設(shè)計(jì):

  新的課程標(biāo)準(zhǔn)指出學(xué)生的學(xué)習(xí)內(nèi)容應(yīng)該是現(xiàn)實(shí)的有意義的,有利于學(xué)生進(jìn)行觀察、試驗(yàn)、猜測、驗(yàn)證、推理與交流等數(shù)學(xué)活動。為了達(dá)到預(yù)期的教學(xué)目標(biāo),我對整個(gè)教學(xué)過程進(jìn)行了設(shè)計(jì)。

  (一)、觀圖激趣、設(shè)疑導(dǎo)入。

  出示圖片,設(shè)計(jì)故事。一日,春光明媚,蝴蝶和蜜蜂來到花叢中游玩,這時(shí)蝴蝶對蜜蜂說:“咱們長得真象”,蜜蜂百思不得其解。你能說出為什么長得象嗎?今天我們就來共同探討這一問題――軸對稱。

  [設(shè)計(jì)意圖]以興趣為先導(dǎo),創(chuàng)設(shè)學(xué)生喜聞樂見的故事情景,激發(fā)了學(xué)生濃厚的學(xué)習(xí)興趣,

  (二)、實(shí)踐探索、感悟特征.

  《活動一(課件演示)觀察這些圖形有什么特點(diǎn)?》在這個(gè)環(huán)節(jié)中我首先出示一組常見的具有代表性的典型的軸對稱圖形,出示后先讓學(xué)生自己觀察,并引導(dǎo)學(xué)生感知,無論是隨風(fēng)起舞的風(fēng)箏,凌空翱翔的飛機(jī),還是古今中外各式風(fēng)格的典型建筑很多圖形都給我們以美得感受。然后,教師適時(shí)提出問題:這些圖形有什么共同特征?是如何對稱?怎樣才能使對稱?部分重合呢?讓學(xué)生觀察、猜想、探究、討論,教師可以適當(dāng)?shù)匾龑?dǎo),讓學(xué)生發(fā)現(xiàn):把一個(gè)圖形的某一部分沿著一條直線翻折180度后能與這個(gè)圖形另一部分完全重合。從而引出軸對稱圖形和對稱軸的概念。在得出概念之后再引導(dǎo)學(xué)生例舉生活中的事例。以便加深對軸對稱圖形概念的理解。

  為了進(jìn)一步認(rèn)識軸對稱圖形的特點(diǎn)又出示了一組練習(xí)

  (練習(xí)1)這是一組常見幾何圖形,要求學(xué)生判斷是否是對稱圖形,若是對稱圖形的,畫出它的對稱軸

  [設(shè)計(jì)意圖]通過這個(gè)練習(xí)題不僅讓學(xué)生鞏固了軸對稱圖形的概念,而且讓學(xué)生認(rèn)識到我們常見的圖形,有些是軸對稱圖形,有些不是軸對稱圖形。并且還讓學(xué)生認(rèn)識軸對稱圖形的對稱軸不僅僅只一條,有可能有2條、3條、4條甚至無數(shù)條,對稱軸的方向不僅僅是垂直的,有可能是水平的或傾斜的。

  (練習(xí)2)國家的一個(gè)象征,觀察下面的國旗,哪些是軸對稱圖形?試找出它們的對稱軸。次題進(jìn)一步鞏固了軸對稱圖形的概念,培養(yǎng)了學(xué)生的觀察能力、想象能力,同時(shí)通過展示各國的國旗,不僅激發(fā)了學(xué)生的學(xué)習(xí)興趣,而且也拓展了學(xué)生的知識面。

  (三)、動手操作、再度探索新知。

  將一張紙對折,用筆尖扎出一個(gè)圖案,然后將紙展開后,鋪平,觀察各自得到的圖案與軸對稱圖形的不同。教學(xué)中注重學(xué)生活動,鼓勵學(xué)生親自實(shí)踐,積極思考,在樂學(xué)的氛圍中,培養(yǎng)學(xué)生的動手能力,從而引出軸對稱概念。

  再次引導(dǎo)學(xué)生討論、歸納得出軸對稱的概念……。之后再結(jié)合動畫演示加深對軸對稱概念的理解,進(jìn)而引出對稱軸、對稱點(diǎn)的概念.并結(jié)合圖形加以認(rèn)識。

  (四)、鞏固練習(xí)、升華新知。

  出示幾幅圖形,請同學(xué)們辨別哪幅圖形是軸對稱圖形哪些圖形軸對稱,

  在這組練習(xí)中讓學(xué)生動手、動口、動眼、動腦,充分調(diào)動了學(xué)生的各種感官參與學(xué)習(xí),既加深了對兩個(gè)概念的理解,又鍛煉了同學(xué)的各方面能力。完成這組練習(xí)題后讓學(xué)生,歸納軸對稱圖形及軸對稱區(qū)別與聯(lián)系,先讓學(xué)生自己歸納,然后用多媒體展示。

  (課件演示)軸對稱圖形及兩個(gè)圖形成軸對稱區(qū)別與聯(lián)系

  (五)、綜合練習(xí)、發(fā)展思維。

  1、搶答;觀察周圍哪些事物的形狀是軸對稱圖形。

  2、判斷:

  生活中不僅有些物體的形狀是軸對稱圖形,我們所學(xué)的數(shù)字、字母和漢字中也有一些可以看成軸對稱圖形。

  (1)下面的數(shù)字或字母,哪些是軸對稱圖形?它們各有幾條對稱軸?

  0123456789ABCDEFGH

  3、像這樣寫法的漢字哪些是軸對稱圖形?

  口工用中由日直水清甲

  (這幾道題的練習(xí)做到了知識性、技能性、思想性和藝術(shù)性溶為一體。這樣設(shè)計(jì),不但活躍了課堂氣氛,又檢查了學(xué)生掌握新知的情況,而且激發(fā)了學(xué)生的學(xué)習(xí)興趣,又讓學(xué)生感到數(shù)學(xué)就在自己的身邊)

  (六)歸納小結(jié)、布置作業(yè)

  [設(shè)計(jì)意圖]培養(yǎng)學(xué)生歸納和語言表達(dá)能力,鼓勵學(xué)生從數(shù)學(xué)知識、數(shù)學(xué)方法和數(shù)學(xué)情感等方面進(jìn)行自我評價(jià)。作業(yè)布置要有層次,照顧學(xué)生個(gè)體差異使不同的人在數(shù)學(xué)上獲得不同的發(fā)展!

  六、設(shè)計(jì)說明

  這節(jié)課,我依據(jù)課程標(biāo)準(zhǔn)、教材特點(diǎn)、遵循學(xué)生的認(rèn)知規(guī)律。通過六個(gè)環(huán)節(jié)的教學(xué)設(shè)計(jì),通過觀察生活中的一些圖案以及動畫演示,由感性到理性,讓學(xué)生輕松掌握了軸對稱圖形與關(guān)于直線成軸對稱兩個(gè)概念,指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時(shí)注重培養(yǎng)學(xué)生的形象思維和抽象思維。在教學(xué)過程中讓學(xué)生動口、動手、動眼、動腦,使學(xué)生學(xué)有興趣、學(xué)有所獲。這就是我對本節(jié)課的理解和說明。

八年級數(shù)學(xué)教案8

  分式方程

  教學(xué)目標(biāo)

  1.經(jīng)歷分式方程的概念,能將實(shí)際問題中的等量關(guān)系用分式方程 表示,體會分式方程的模型作用.

  2.經(jīng)歷實(shí)際問題-分式方程方程模型的過程,發(fā)展學(xué)生分析問題、解決問題的能力,滲透數(shù)學(xué)的轉(zhuǎn)化思想人體,培養(yǎng)學(xué)生的應(yīng)用意識。

  3.在活動中培養(yǎng)學(xué)生樂于探究、合作學(xué)習(xí)的習(xí)慣,培養(yǎng)學(xué) 生努力尋找 解決問題的進(jìn)取心,體會數(shù)學(xué)的應(yīng)用價(jià)值.

  教學(xué)重點(diǎn):

  將實(shí)際問題中的等量 關(guān)系用分式方程表示

  教學(xué)難點(diǎn):

  找實(shí)際問題中的等量關(guān)系

  教學(xué)過程:

  情境導(dǎo)入:

  有兩塊面積相同的小麥試驗(yàn)田,第一塊使用原品種,第二 塊使用新品種,分別收獲小麥9000 kg和15000 kg。已知第一塊試驗(yàn)田每公頃的產(chǎn)量比第二塊少3000 kg,分別求這兩塊試驗(yàn)田每 公頃 的產(chǎn)量。你能找出這一問題中的所有等量關(guān)系嗎?(分組交流)

  如果設(shè)第一塊試驗(yàn)田 每公頃的產(chǎn)量為 kg,那么第二塊試驗(yàn)田每公頃的產(chǎn)量是________kg。

  根據(jù)題意,可得方程___________________

  二、講授新課

  從甲地到乙地有兩條公路:一條是全長600 km的普通 公路,另一條是全長480 km的高速公路。某客 車在 高速公路上行駛的平均速度比在普通公路上快45 km/h,由高速 公路從甲地到乙地所需的時(shí)間 是由普通公路從甲地到乙地所需時(shí)間的一半。求該客車由高速公路從 甲地到乙地所需的時(shí)間。

  這 一問題中有哪些等量關(guān)系?

  如果設(shè)客車由高速公路從甲地到乙地 所需的時(shí)間為 h,那么它由普通公路從甲地到乙地所需的時(shí)間為_________h。

  根據(jù)題意,可得方程_ _____________________。

  學(xué)生分組探討、交流,列出方程.

  三.做一做:

  為了幫助遭受自然災(zāi)害的地區(qū)重建家園,某學(xué)校號召同學(xué)們自愿捐款。已知第一次捐款總額為4800元,第二次捐款總額為5000元,第二次捐款人數(shù)比第一次多20人,而且兩次人均捐款額恰好相等。如果設(shè)第一次捐款人數(shù)為 人,那么 滿足怎樣的方程?

  四.議一議:

  上面所得到的方程有什么共同特點(diǎn)?

  分母中含有未知數(shù)的方程叫做分式方程

  分式方程與整式方程有什么區(qū)別?

  五、 隨堂練習(xí)

  (1)據(jù)聯(lián)合國《20xx年全球投資 報(bào)告》指出,中國20xx年吸收外國投資額 達(dá)530億美元,比上一年增加了13%。設(shè)20xx年我國吸收外國投資額為 億美元,請你寫出 滿足的方程。你能寫出幾個(gè)方程?其中哪一個(gè)是分式方程?

  (2)輪船在順?biāo)泻叫?0千米與逆水航行10千米所用時(shí)間相同,水流速度為2. 5千米/小時(shí),求輪船的靜水速度

  (3)根據(jù)分式方程 編一道應(yīng)用題,然后同組交流,看誰編得好

  六、學(xué) 習(xí)小結(jié)

  本節(jié)課你學(xué)到了哪些知識?有什么感想?

  七.作業(yè)布置

八年級數(shù)學(xué)教案9

  一、教學(xué)目標(biāo)

  1.使學(xué)生理解并掌握分式的概念,了解有理式的概念;

  2.使學(xué)生能夠求出分式有意義的條件;

  3.通過類比分?jǐn)?shù)研究分式的教學(xué),培養(yǎng)學(xué)生運(yùn)用類比轉(zhuǎn)化的思想方法解決問題的能力;

  4.通過類比方法的教學(xué),培養(yǎng)學(xué)生對事物之間是普遍聯(lián)系又是變化發(fā)展的辨證觀點(diǎn)的再認(rèn)識.

  二、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法

  1.教學(xué)重點(diǎn)和難點(diǎn) 明確分式的分母不為零.

  2.疑點(diǎn)及解決辦法 通過類比分?jǐn)?shù)的意義,加強(qiáng)對分式意義的理解.

  三、教學(xué)過程

  【新課引入】

  前面所研究的因式分解問題是把整式分解成若干個(gè)因式的積的問題,但若有如下問題:某同學(xué)分鐘做了60個(gè)仰臥起坐,每分鐘做多少個(gè)?可表示為,問,這是不是整式?請一位同學(xué)給它試命名,并說一說怎樣想到的?(學(xué)生有過分?jǐn)?shù)的經(jīng)驗(yàn),可猜想到分式)

  【新課】

  1.分式的定義

  (1)由學(xué)生分組討論分式的定義,對于“兩個(gè)整式相除叫做分式”等錯誤,由學(xué)生舉反例一一加以糾正,得到結(jié)論:

  用、表示兩個(gè)整式,就可以表示成的形式.如果中含有字母,式子就叫做分式.其中叫做分式的分子,叫做分式的分母.

  (2)由學(xué)生舉幾個(gè)分式的例子.

  (3)學(xué)生小結(jié)分式的概念中應(yīng)注意的問題.

 、俜帜钢泻凶帜.

 、谌缤?jǐn)?shù)一樣,分式的分母不能為零.

  (4)問:何時(shí)分式的值為零?[以(2)中學(xué)生舉出的分式為例進(jìn)行討論]

  2.有理式的分類

  請學(xué)生類比有理數(shù)的分類為有理式分類:

  例1 當(dāng)取何值時(shí),下列分式有意義?

  (1);

  解:由分母得.

  ∴當(dāng)時(shí),原分式有意義.

  (2);

  解:由分母得.

  ∴當(dāng)時(shí),原分式有意義.

  (3);

  解:∵恒成立,

  ∴取一切實(shí)數(shù)時(shí),原分式都有意義.

  (4).

  解:由分母得.

  ∴當(dāng)且時(shí),原分式有意義.

  思考:若把題目要求改為:“當(dāng)取何值時(shí)下列分式無意義?”該怎樣做?

  例2 當(dāng)取何值時(shí),下列分式的值為零?

  (1);

  解:由分子得.

  而當(dāng)時(shí),分母.

  ∴當(dāng)時(shí),原分式值為零.

  小結(jié):若使分式的值為零,需滿足兩個(gè)條件:①分子值等于零;②分母值不等于零.

  (2);

  解:由分子得.

  而當(dāng)時(shí),分母,分式無意義.

  當(dāng)時(shí),分母.

  ∴當(dāng)時(shí),原分式值為零.

  (3);

  解:由分子得.

  而當(dāng)時(shí),分母.

  當(dāng)時(shí),分母.

  ∴當(dāng)或時(shí),原分式值都為零.

  (4).

  解:由分子得.

  而當(dāng)時(shí),,分式無意義.

  ∴沒有使原分式的值為零的的值,即原分式值不可能為零.

  (四)總結(jié)、擴(kuò)展

  1.分式與分?jǐn)?shù)的區(qū)別.

  2.分式何時(shí)有意義?

  3.分式何時(shí)值為零?

  (五)隨堂練習(xí)

  1.填空題:

  (1)當(dāng)時(shí),分式的值為零

  (2)當(dāng)時(shí),分式的值為零

  (3)當(dāng)時(shí),分式的值為零

  2.教材P55中1、2、3.

  八、布置作業(yè)

  教材P56中A組3、4;B組(1)、(2)、(3).

  九、板書設(shè)計(jì)

  課題 例1

  1.定義例2

  2.有理式分類

八年級數(shù)學(xué)教案10

  知識結(jié)構(gòu):

  重點(diǎn)與難點(diǎn)分析:

  本節(jié)內(nèi)容的重點(diǎn)是等腰三角形的判定定理.本定理是證明兩條線段相等的重要定理,它是把三角形中角的相等關(guān)系轉(zhuǎn)化為邊的相等關(guān)系的重要依據(jù),此定理為證明線段相等提供了又一種方法,這是本節(jié)的重點(diǎn).推論1、2提供證明等邊三角形的方法,推論3是直角三角形的一條重要性質(zhì),在直角三角形中找邊和角的等量關(guān)系經(jīng)常用到此推論.

  本節(jié)內(nèi)容的難點(diǎn)是性質(zhì)與判定的區(qū)別。等腰三角形的性質(zhì)定理和判定定理是互逆定理,題設(shè)與結(jié)論正好相反.學(xué)生在應(yīng)用它們的時(shí)候,經(jīng)常混淆,幫助學(xué)生認(rèn)識判定與性質(zhì)的區(qū)別,這是本節(jié)的難點(diǎn).另外本節(jié)的文字?jǐn)⑹鲱}也是難點(diǎn)之一,和上節(jié)結(jié)合讓學(xué)生逐步掌握解題的思路方法.由于知識點(diǎn)的增加,題目的復(fù)雜程度也提高,一定要學(xué)生真正理解定理和推論,才能在解題時(shí)從條件得到用哪個(gè)定理及如何用.

  教法建議:

  本節(jié)課教學(xué)方法主要是“以學(xué)生為主體的討論探索法”。在數(shù)學(xué)教學(xué)中要避免過多告訴學(xué)生現(xiàn)成結(jié)論。提倡教師鼓勵學(xué)生討論解決問題的方法,引導(dǎo)他們探索數(shù)學(xué)的內(nèi)在規(guī)律。具體說明如下:

  (1)參與探索發(fā)現(xiàn),領(lǐng)略知識形成過程

  學(xué)生學(xué)習(xí)過互逆命題和互逆定理的概念,首先提出問題:等腰三角形性質(zhì)定理的逆命題的什么?找一名學(xué)生口述完了,接下來問:此命題是否為真命?等同學(xué)們證明完了,找一名學(xué)生代表發(fā)言.最后找一名學(xué)生用文字口述定理的內(nèi)容。這樣很自然就得到了等腰三角形的判定定理.這樣讓學(xué)生親自動手實(shí)踐,積極參與發(fā)現(xiàn),滿打滿算了學(xué)生的認(rèn)識沖突,使學(xué)生克服思維和探求的惰性,獲得鍛煉機(jī)會,對定理的產(chǎn)生過程,真正做到心領(lǐng)神會。

  (2)采用“類比”的學(xué)習(xí)方法,獲取知識。

  由性質(zhì)定理的學(xué)習(xí),我們得到了幾個(gè)推論,自然想到:根據(jù)等腰三角形的判定定理,我們能得到哪些特殊的結(jié)論或者說哪些推論呢?這里先讓學(xué)生發(fā)表意見,然后大家共同分析討論,把一些有價(jià)值的、甚至就是教材中的推論板書出來。如果學(xué)生提到的不完整,教師可以做適當(dāng)?shù)狞c(diǎn)撥引導(dǎo)。

  (3)總結(jié),形成知識結(jié)構(gòu)

  為了使學(xué)生對本節(jié)課有一個(gè)完整的認(rèn)識,便于今后的應(yīng)用,教師提出如下問題,讓學(xué)生思考回答:(1)怎樣判定一個(gè)三角形是等腰三角形?有哪些定理依據(jù)?(2)怎樣判定一個(gè)三角形是等邊三角形?

  一.教學(xué)目標(biāo):

  1.使學(xué)生掌握等腰三角形的判定定理及其推論;

  2.掌握等腰三角形判定定理的運(yùn)用;

  3.通過例題的學(xué)習(xí),提高學(xué)生的邏輯思維能力及分析問題解決問題的能力;

  4.通過自主學(xué)習(xí)的發(fā)展體驗(yàn)獲取數(shù)學(xué)知識的感受;

  5.通過知識的縱橫遷移感受數(shù)學(xué)的辯證特征.

  二.教學(xué)重點(diǎn):等腰三角形的判定定理

  三.教學(xué)難點(diǎn):性質(zhì)與判定的區(qū)別

  四.教學(xué)用具:直尺,微機(jī)

  五.教學(xué)方法:以學(xué)生為主體的討論探索法

  六.教學(xué)過程:

  1、新課背景知識復(fù)習(xí)

  (1)請同學(xué)們說出互逆命題和互逆定理的概念

  估計(jì)學(xué)生能用自己的語言說出,這里重點(diǎn)復(fù)習(xí)怎樣分清題設(shè)和結(jié)論。

  (2)等腰三角形的性質(zhì)定理的內(nèi)容是什么?并檢驗(yàn)它的逆命題是否為真命題?

  啟發(fā)學(xué)生用自己的語言敘述上述結(jié)論,教師稍加整理后給出規(guī)范敘述:

  1.等腰三角形的判定定理:如果一個(gè)三角形有兩個(gè)角相等,那么這兩個(gè)角所對的邊也相等.

  (簡稱“等角對等邊”).

  由學(xué)生說出已知、求證,使學(xué)生進(jìn)一步熟悉文字轉(zhuǎn)化為數(shù)學(xué)語言的方法.

  已知:如圖,△ABC中,∠B=∠C.

  求證:AB=AC.

  教師可引導(dǎo)學(xué)生分析:

  聯(lián)想證有關(guān)線段相等的知識知道,先需構(gòu)成以AB、AC為對應(yīng)邊的全等三角形.因?yàn)橐阎螧=∠C,沒有對應(yīng)相等邊,所以需添輔助線為兩個(gè)三角形的公共邊,因此輔助線應(yīng)從A點(diǎn)引起.再讓學(xué)生回想等腰三角形中常添的輔助線,學(xué)生可找出作∠BAC的平分線AD或作BC邊上的高AD等證三角形全等的不同方法,從而推出AB=AC.

  注意:(1)要弄清判定定理的條件和結(jié)論,不要與性質(zhì)定理混淆.

  (2)不能說“一個(gè)三角形兩底角相等,那么兩腰邊相等”,因?yàn)檫未判定它是一個(gè)等腰三角形.

  (3)判定定理得到的結(jié)論是三角形是等腰三角形,性質(zhì)定理是已知三角形是等腰三角形,得到邊邊和角角關(guān)系.

  2.推論1:三個(gè)角都相等的三角形是等邊三角形.

  推論2:有一個(gè)角等于60°的等腰三角形是等邊三角形.

  要讓學(xué)生自己推證這兩條推論.

  小結(jié):證明三角形是等腰三角形的方法:①等腰三角形定義;②等腰三角形判定定理.

  證明三角形是等邊三角形的方法:①等邊三角形定義;②推論1;③推論2.

  3.應(yīng)用舉例

  例1.求證:如果三角形一個(gè)外角的平分線平行于三角形的一邊,那么這個(gè)三角形是等腰三角形.

  分析:讓學(xué)生畫圖,寫出已知求證,啟發(fā)學(xué)生遇到已知中有外角時(shí),常常考慮應(yīng)用外角的兩個(gè)特性①它與相鄰的內(nèi)角互補(bǔ);②它等于與它不相鄰的兩個(gè)內(nèi)角的和.要證AB=AC,可先證明∠B=∠C,因?yàn)橐阎?=∠2,所以可以設(shè)法找出∠B、∠C與∠1、∠2的關(guān)系.

  已知:∠CAE是△ABC的外角,∠1=∠2,AD∥BC.

  求證:AB=AC.

  證明:(略)由學(xué)生板演即可.

  補(bǔ)充例題:(投影展示)

  1.已知:如圖,AB=AD,∠B=∠D.

  求證:CB=CD.

  分析:解具體問題時(shí)要突出邊角轉(zhuǎn)換環(huán)節(jié),要證CB=CD,需構(gòu)造一個(gè)以 CB、CD為腰的等腰三角形,連結(jié)BD,需證∠CBD=∠CDB,但已知∠B=∠D,由AB=AD可證∠ABD=∠ADB,從而證得∠CDB=∠CBD,推出CB=CD.

  證明:連結(jié)BD,在 中, (已知)

  (等邊對等角)

  (已知)

  即

  (等教對等邊)

  小結(jié):求線段相等一般在三角形中求解,添加適當(dāng)?shù)妮o助線構(gòu)造三角形,找出邊角關(guān)系.

  2.已知,在 中, 的平分線與 的外角平分線交于D,過D作DE//BC交AC與F,交AB于E,求證:EF=BE-CF.

  分析:對于三個(gè)線段間關(guān)系,盡量轉(zhuǎn)化為等量關(guān)系,由于本題有兩個(gè)角平分線和平行線,可以通過角找邊的關(guān)系,BE=DE,DF=CF即可證明結(jié)論.

  證明: DE//BC(已知)

  ,

  BE=DE,同理DF=CF.

  EF=DE-DF

  EF=BE-CF

  小結(jié):

  (1)等腰三角形判定定理及推論.

  (2)等腰三角形和等邊三角形的證法.

  七.練習(xí)

  教材 P.75中1、2、3.

  八.作業(yè)

  教材 P.83 中 1.1)、2)、3);2、3、4、5.

  九.板書設(shè)計(jì)

八年級數(shù)學(xué)教案11

  教學(xué)目標(biāo):

  1、掌握平均數(shù)、中位數(shù)、眾數(shù)的概念,會求一組數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù)。

  2、在加權(quán)平均數(shù)中,知道權(quán)的差異對平均數(shù)的影響,并能用加權(quán)平均數(shù)解釋現(xiàn)實(shí)生活中一些簡單的現(xiàn)象。

  3、了解平均數(shù)、中位數(shù)、眾數(shù)的差別,初步體會它們在不同情境中的應(yīng)用。

  4、能利和計(jì)算器求一組數(shù)據(jù)的算術(shù)平均數(shù)。

  教學(xué)重點(diǎn):體會平均數(shù)、中位數(shù)、眾數(shù)在具體情境中的意義和應(yīng)用。

  教學(xué)難點(diǎn):對于平均數(shù)、中位數(shù)、眾數(shù)在不同情境中的應(yīng)用。

  教學(xué)方法:歸納教學(xué)法。

  教學(xué)過程:

  一、知識回顧與思考

  1、平均數(shù)、中位數(shù)、眾數(shù)的概念及舉例。

  一般地對于n個(gè)數(shù)X1,……Xn把(X1+X2+…Xn)叫做這n個(gè)數(shù)的算術(shù)平均數(shù),簡稱平均數(shù)。

  如某公司要招工,測試內(nèi)容為數(shù)學(xué)、語文、外語三門文化課的綜合成績,滿分都為100分,且這三門課分別按25%、25%、50%的比例計(jì)入總成績,這樣計(jì)算出的成績?yōu)閿?shù)學(xué),語文、外語成績的加權(quán)平均數(shù),25%、25%、50%分別是數(shù)學(xué)、語文、外語三項(xiàng)測試成績的權(quán)。

  中位數(shù)就是把一組數(shù)據(jù)按大小順序排列,處在最中間位置的數(shù)(或最中間兩個(gè)數(shù)據(jù)的平均數(shù))叫這組數(shù)據(jù)的中位數(shù)。

  眾數(shù)就是一組數(shù)據(jù)中出現(xiàn)次數(shù)最多的那個(gè)數(shù)據(jù)。

  如3,2,3,5,3,4中3是眾數(shù)。

  2、平均數(shù)、中位數(shù)和眾數(shù)的特征:

 。1)平均數(shù)、中位數(shù)、眾數(shù)都是表示一組數(shù)據(jù)“平均水平”的平均數(shù)。

 。2)平均數(shù)能充分利用數(shù)據(jù)提供的信息,在生活中較為常用,但它容易受極端數(shù)字的影響,且計(jì)算較繁。

 。3)中位數(shù)的優(yōu)點(diǎn)是計(jì)算簡單,受極端數(shù)字影響較小,但不能充分利用所有數(shù)字的信息。

 。4)眾數(shù)的可靠性較差,它不受極端數(shù)據(jù)的影響,求法簡便,當(dāng)一組數(shù)據(jù)中個(gè)別數(shù)據(jù)變動較大時(shí),適宜選擇眾數(shù)來表示這組數(shù)據(jù)的“集中趨勢”。

  3、算術(shù)平均數(shù)和加權(quán)平均數(shù)有什么區(qū)別和聯(lián)系:

  算術(shù)平均數(shù)是加權(quán)平均數(shù)的一種特殊情況,加權(quán)平均數(shù)包含算術(shù)平均數(shù),當(dāng)加權(quán)平均數(shù)中的權(quán)相等時(shí),就是算術(shù)平均數(shù)。

  4、利用計(jì)算器求一組數(shù)據(jù)的平均數(shù)。

  利用科學(xué)計(jì)算器求平均數(shù)的方法計(jì)算平均數(shù)。

  二、例題講解:

  例1,某公司銷售部有營銷人員15人,銷售部為了制定某種商品的月銷售定額,統(tǒng)計(jì)了這15人某月的銷售量如下:

  每人銷售件數(shù) 1800 510 250 210 150 120

  人數(shù) 113532

 。1)求這15位營銷人員該月銷售量的平均數(shù)、中位數(shù)和眾數(shù);

 。2)假設(shè)銷售部負(fù)責(zé)人把每位營銷員的月銷售額定為平均數(shù),你認(rèn)為是否合理,為什么?如不合理,請你制定一個(gè)較合理的銷售定額,并說明理由。

  例2,某校規(guī)定:學(xué)生的平時(shí)作業(yè)、期中練習(xí)、期末考試三項(xiàng)成績分別按40%、20%、40%的比例計(jì)入學(xué)期總評成績,小亮的平時(shí)作業(yè)、期中練習(xí)、期末考試的數(shù)學(xué)成績依次為90分,92分,85分,小亮這學(xué)期的數(shù)學(xué)總評成績是多少?

  三、課堂練習(xí):復(fù)習(xí)題A組

  四、小結(jié):

  1、掌握平均數(shù)、中位數(shù)與眾數(shù)的概念及計(jì)算。

  2、理解算術(shù)平均數(shù)與加權(quán)平均數(shù)的聯(lián)系與區(qū)別。

  五、作業(yè):復(fù)習(xí)題B組、C組(選做)

八年級數(shù)學(xué)教案12

  ●教學(xué)目標(biāo)

  (一)教學(xué)知識點(diǎn)

  1.掌握相似 三角形的定義、表示法,并能根據(jù)定義判斷兩個(gè)三角形是否相似.

  2.能根據(jù)相似比進(jìn)行計(jì) 算.

  (二)能力訓(xùn)練要求

  1.能根據(jù)定義判斷兩個(gè)三角形是否相似,訓(xùn)練 學(xué)生的判斷能力.

  2.能根據(jù)相似比求長度和角度,培養(yǎng)學(xué)生的運(yùn)用能力.

  (三)情感與價(jià)值觀要求

  通過與相似多邊形有關(guān)概念的類比,滲透類比的教學(xué)思想,并領(lǐng)會特殊與一般的關(guān)系.

  ●教學(xué)重點(diǎn) 相似三角形的定義及運(yùn)用.

  ●教學(xué)難點(diǎn) 根據(jù)定義求線段長或角的度數(shù).

  ●教學(xué)過程

 、.創(chuàng)設(shè)問題情境,引入新課

  今天, 我們就來研究相似三角形.

 、.新課講解

  1.相似三角形的定義及記法

  三角對應(yīng)相等,三邊 對應(yīng)成比例的兩個(gè)三角形叫做相 似三角形。如△ABC與△DEF相似,記作△ABC∽△DEF

  其中對應(yīng)頂點(diǎn)要寫在對應(yīng)位置,如A與D,B與E,C與F相對應(yīng).AB∶DE等于相似比.

  2.想一想

  如果△ABC∽△DEF,那么哪些角是對應(yīng)角?哪些邊是對應(yīng)邊?對應(yīng) 角 有什么關(guān)系?對應(yīng)邊呢?

  所以 D、E、F. .

  3.議一議,學(xué)生討論

  (1)兩個(gè)全等三角形一定相似嗎?為什么?

  (2)兩個(gè)直角三角 形一 定相似嗎?兩個(gè)等腰直角三角形呢?為 什么?

  (3)兩個(gè)等腰三角形一定相似嗎?兩個(gè)等邊三角形呢?為什么?

  結(jié)論:兩 個(gè)全等三角形一定相似.

  兩個(gè) 等腰直角三角形一定相似.兩個(gè)等邊三角形一定相似.兩個(gè)直角三角形和兩個(gè)等腰三角形不一定相似.

  4.例題

  例1、有一塊呈三角形形狀 的草坪,其中一邊的長是20 m,在這個(gè)草坪的圖紙上,這條邊長5 cm,其他兩邊的 長都是3.5 cm,求該草坪其他兩邊的實(shí)際長度.

  例2.已 知△ABC∽△ADE,AE=50 cm,EC=30 cm,BC =70 cm,BAC=45,

  ACB=40,求(1)AED和ADE的度數(shù)。(2)DE的長.

  5.想一想

  在例2的條件下,圖中有哪些線段成比例?

 、.課堂練習(xí) P129

 、.課時(shí)小結(jié)

  相似三角形的 判定方法定義法.

 、.課后作業(yè)

八年級數(shù)學(xué)教案13

  11.1與三角形有關(guān)的線段

  11.1.1三角形的邊

  1.理解三角形的概念,認(rèn)識三角形的頂點(diǎn)、邊、角,會數(shù)三角形的個(gè)數(shù).(重點(diǎn))

  2.能利用三角形的三邊關(guān)系判斷三條線段能否構(gòu)成三角形.(重點(diǎn))

  3.三角形在實(shí)際生活中的應(yīng)用.(難點(diǎn))

  一、情境導(dǎo)入

  出示金字塔、戰(zhàn)機(jī)、大橋等圖片,讓學(xué)生感受生活中的三角形,體會生活中處處有數(shù)學(xué).

  教師利用多媒體演示三角形的形成過程,讓學(xué)生觀察.

  問:你能不能給三角形下一個(gè)完整的定義?

  二、合作探究

  探究點(diǎn)一:三角形的概念

  圖中的銳角三角形有( )

  A.2個(gè)

  B.3個(gè)

  C.4個(gè)

  D.5個(gè)

  解析:(1)以A為頂點(diǎn)的銳角三角形有△ABC、△ADC共2個(gè);(2)以E為頂點(diǎn)的銳角三角形有△EDC共1個(gè).所以圖中銳角三角形的個(gè)數(shù)有2+1=3(個(gè)).故選B.

  方法總結(jié):數(shù)三角形的個(gè)數(shù),可以按照數(shù)線段條數(shù)的方法,如果一條線段上有n個(gè)點(diǎn),那么就有n(n-1)2條線段,也可以與線段外的一點(diǎn)組成n(n-1)2個(gè)三角形.

  探究點(diǎn)二:三角形的三邊關(guān)系

  【類型一】判定三條線段能否組成三角形

  以下列各組線段為邊,能組成三角形的是( )

  A.2c,3c,5c

  B.5c,6c,10c

  C.1c,1c,3c

  D.3c,4c,9c

  解析:選項(xiàng)A中2+3=5,不能組成三角形,故此選項(xiàng)錯誤;選項(xiàng)B中5+6>10,能組成三角形,故此選項(xiàng)正確;選項(xiàng)C中1+1<3,不能組成三角形,故此選項(xiàng)錯誤;選項(xiàng)D中3+4<9,不能組成三角形,故此選項(xiàng)錯誤.故選B.

  方法總結(jié):判定三條線段能否組成三角形,只要判定兩條較短的線段長度之和大于第三條線段的長度即可.

  【類型二】判斷三角形邊的取值范圍

  一個(gè)三角形的三邊長分別為4,7,x,那么x的取值范圍是( )

  A.3<x<11 B.4<x<7

  C.-3<x<11 D.x>3

  解析:∵三角形的三邊長分別為4,7,x,∴7-4<x<7+4,即3<x<11.故選A.

  方法總結(jié):判斷三角形邊的取值范圍要同時(shí)運(yùn)用兩邊之和大于第三邊,兩邊之差小于第三邊.有時(shí)還要結(jié)合不等式的知識進(jìn)行解決.

  【類型三】等腰三角形的三邊關(guān)系

  已知一個(gè)等腰三角形的兩邊長分別為4和9,求這個(gè)三角形的周長.

  解析:先根據(jù)等腰三角形兩腰相等的性質(zhì)可得出第三邊長的兩種情況,再根據(jù)兩邊和大于第三邊來判斷能否構(gòu)成三角形,從而求解.

  解:根據(jù)題意可知等腰三角形的三邊可能是4,4,9或4,9,9,∵4+4<9,故4,4,9不能構(gòu)成三角形,應(yīng)舍去;4+9>9,故4,9,9能構(gòu)成三角形,∴它的周長是4+9+9=22.

  方法總結(jié):在求三角形的邊長時(shí),要注意利用三角形的三邊關(guān)系驗(yàn)證所求出的邊長能否組成三角形.

  【類型四】三角形三邊關(guān)系與絕對值的綜合

  若a,b,c是△ABC的三邊長,化簡|a-b-c|+|b-c-a|+|c+a-b|.

  解析:根據(jù)三角形三邊關(guān)系:兩邊之和大于第三邊,兩邊之差小于第三邊,來判定絕對值里的式子的正負(fù),然后去絕對值符號進(jìn)行計(jì)算即可.

  解:根據(jù)三角形的三邊關(guān)系,兩邊之和大于第三邊,得a-b-c<0,b-c-a<0,c+a-b>0.∴|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+c+a-b+c+a-b=3c+a-b.

  方法總結(jié):絕對值的化簡首先要判斷絕對值符號里面的式子的正負(fù),然后根據(jù)絕對值的性質(zhì)將絕對值的符號去掉,最后進(jìn)行化簡.此類問題就是根據(jù)三角形的三邊關(guān)系,判斷絕對值符號里面式子的正負(fù),然后進(jìn)行化簡.

  三、板書設(shè)計(jì)

  三角形的邊

  1.三角形的概念:

  由不在同一直線上的三條線段首尾順次相接所組成的圖形.

  2.三角形的三邊關(guān)系:

  兩邊之和大于第三邊,兩邊之差小于第三邊.

  本節(jié)課讓學(xué)生經(jīng)歷一個(gè)探究解決問題的過程,抓住“任意的三條線段能不能圍成一個(gè)三角形”引發(fā)學(xué)生探究的欲望,圍繞這個(gè)問題讓學(xué)生自己動手操作,發(fā)現(xiàn)有的能圍成,有的不能圍成,由學(xué)生自己找出原因,為什么能?為什么不能?初步感知三條邊之間的關(guān)系,重點(diǎn)研究“能圍成三角形的三條邊之間到底有什么關(guān)系”.通過觀察、驗(yàn)證、再操作,最終發(fā)現(xiàn)三角形任意兩邊之和大于第三邊這一結(jié)論.這樣教學(xué)符合學(xué)生的認(rèn)知特點(diǎn),既提高了學(xué)生學(xué)習(xí)的興趣,又增強(qiáng)了學(xué)生的動手能力.

八年級數(shù)學(xué)教案14

  教材分析

  因式分解是代數(shù)式的一種重要恒等變形!稊(shù)學(xué)課程標(biāo)準(zhǔn)》雖然降低了因式分解的特殊技巧的要求,也對因式分解常用的四種方法減少為兩種,且公式法的應(yīng)用中,也減少為兩個(gè)公式,但絲毫沒有否定因式分解的教育價(jià)值及其在代數(shù)運(yùn)算中的重要作用。本章教材是在學(xué)生學(xué)習(xí)了整式運(yùn)算的基礎(chǔ)上提出來的,事實(shí)上,它是整式乘法的逆向運(yùn)用,與整式乘法運(yùn)算有密切的聯(lián)系。分解因式的變形不僅體現(xiàn)了一種“化歸”的思想,而且也是解決后續(xù)—分式的化簡、解方程等—恒等變形的基礎(chǔ),為數(shù)學(xué)交流提供了有效的途徑。分解因式這一章在整個(gè)教材中起到了承上啟下的作用。本章的教育價(jià)值還體現(xiàn)在使學(xué)生接受對立統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生善于觀察、善于分析、正確預(yù)見、解決問題的能力。

  學(xué)情分析

  通過探究平方差公式和運(yùn)用平方差公式分解因式的活動中,讓學(xué)生發(fā)表自己的觀點(diǎn),從交流中獲益,讓學(xué)生獲得成功的體驗(yàn),鍛煉克服困難的意志建立自信心。

  教學(xué)目標(biāo)

  1、在分解因式的過程中體會整式乘法與因式分解之間的聯(lián)系。

  2、通過公式a -b =(a+b)(a-b)的逆向變形,進(jìn)一步發(fā)展觀察、歸納、類比、等能力,發(fā)展有條理地思考及語言表達(dá)能力。

  3、能運(yùn)用提公因式法、公式法進(jìn)行綜合運(yùn)用。

  4、通過活動4,能將高偶指數(shù)冪轉(zhuǎn)化為2次指數(shù)冪,培養(yǎng)學(xué)生的化歸思想。

  教學(xué)重點(diǎn)和難點(diǎn)

  重點(diǎn):靈活運(yùn)用平方差公式進(jìn)行分解因式。

  難點(diǎn):平方差公式的推導(dǎo)及其運(yùn)用,兩種因式分解方法(提公因式法、平方差公式)的綜合運(yùn)用。

八年級數(shù)學(xué)教案15

  教學(xué)目標(biāo):

  (1)理解通分的意義,理解最簡公分母的意義;

  (2)掌握分式的通分法則,能熟練掌握通分運(yùn)算。

  教學(xué)重點(diǎn)

分式通分的理解和掌握。

  教學(xué)難點(diǎn)

分式通分中最簡公分母的確定。

  教學(xué)工具

投影儀

  教學(xué)方法:

啟發(fā)式、討論式

  教學(xué)過程:

  (一)引入

  (1)如何計(jì)算:

  由此讓學(xué)生復(fù)習(xí)分?jǐn)?shù)通分的意義、通分的根據(jù)、通分的法則以及最簡公分母的概念。

  (2)如何計(jì)算:

  (3)何計(jì)算:

  引導(dǎo)學(xué)生思考,猜想如何求解?

  (二)新課

  1、類比分?jǐn)?shù)的通分得到分式的通分:

  把幾個(gè)異分母的分式分別化成與原來的分式相等的同分母的分式,叫做分式的通分.

  注意:通分保證

  (1)各分式與原分式相等;

  (2)各分式分母相等。

  2.通分的依據(jù):分式的基本性質(zhì).

  3.通分的關(guān)鍵:確定幾個(gè)分式的最簡公分母.

  通常取各分母的所有因式的最高次冪的積作最簡公分母,這樣的公分母叫做最簡公分母.

  根據(jù)分式通分和最簡公分母的定義,將分式通分:

  最簡公分母為:

  然后根據(jù)分式的基本性質(zhì),分別對原來的各分式的分子和分母乘一個(gè)適當(dāng)?shù)恼,使各分式的分母都化為通分如下:xxx

  通過本例使學(xué)生對于分式的通分大致過程和思路有所了解。讓學(xué)生歸納通分的思路過程。

  例1通分:xxx

  分析:讓學(xué)生找分式的公分母,可設(shè)問“分母的系數(shù)各不相同如何解決?”,依據(jù)分?jǐn)?shù)的通分找最小公倍數(shù)。

  解:∵最簡公分母是12xy2,

  小結(jié):各分母的系數(shù)都是整數(shù)時(shí),通常取它們的系數(shù)的最小公倍數(shù)作為最簡公分母的系數(shù).

  解:∵最簡公分母是10a2b2c2,

  由學(xué)生歸納最簡公分母的思路。

  分式通分中求最簡公分母概括為:(1)取各分母系數(shù)的最小公倍數(shù);(2)凡出現(xiàn)的字母為底的冪的因式都要取;(3)相同字母的冪的因式取指數(shù)最大的。取這些因式的積就是最簡公分母。