毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

最新高一下冊(cè)數(shù)學(xué)教案

時(shí)間:2023-05-18 13:00:36 教案 我要投稿
  • 相關(guān)推薦

最新高一下冊(cè)數(shù)學(xué)教案

  作為一名老師,就不得不需要編寫教案,借助教案可以讓教學(xué)工作更科學(xué)化。優(yōu)秀的教案都具備一些什么特點(diǎn)呢?下面是小編精心整理的最新高一下冊(cè)數(shù)學(xué)教案,歡迎閱讀,希望大家能夠喜歡。

最新高一下冊(cè)數(shù)學(xué)教案

最新高一下冊(cè)數(shù)學(xué)教案1

  一、教學(xué)目標(biāo)

  1.知識(shí)與技能:掌握畫三視圖的基本技能,豐富學(xué)生的空間想象力。

  2.過程與方法:通過學(xué)生自己的親身實(shí)踐,動(dòng)手作圖,體會(huì)三視圖的作用。

  3.情感態(tài)度與價(jià)值觀:提高學(xué)生空間想象力,體會(huì)三視圖的作用。

  二、教學(xué)重點(diǎn):畫出簡(jiǎn)單幾何體、簡(jiǎn)單組合體的三視圖;

  難點(diǎn):識(shí)別三視圖所表示的空間幾何體。

  三、學(xué)法指導(dǎo):觀察、動(dòng)手實(shí)踐、討論、類比。

  四、教學(xué)過程

  (一)創(chuàng)設(shè)情景,揭開課題

  展示廬山的風(fēng)景圖——“橫看成嶺側(cè)看成峰,遠(yuǎn)近高低各不同”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實(shí)反映出物體,我們可從多角度觀看物體。

  (二)講授新課

  1、中心投影與平行投影:

  中心投影:光由一點(diǎn)向外散射形成的投影;

  平行投影:在一束平行光線照射下形成的投影。

  正投影:在平行投影中,投影線正對(duì)著投影面。

  2、三視圖:

  正視圖:光線從幾何體的前面向后面正投影,得到的投影圖;

  側(cè)視圖:光線從幾何體的左面向右面正投影,得到的投影圖;

  俯視圖:光線從幾何體的上面向下面正投影,得到的投影圖。

  三視圖:幾何體的正視圖、側(cè)視圖和俯視圖統(tǒng)稱為幾何體的三視圖。

  三視圖的畫法規(guī)則:長對(duì)正,高平齊,寬相等。

  長對(duì)正:正視圖與俯視圖的長相等,且相互對(duì)正;

  高平齊:正視圖與側(cè)視圖的高度相等,且相互對(duì)齊;

  寬相等:俯視圖與側(cè)視圖的寬度相等。

  3、畫長方體的.三視圖:

  正視圖、側(cè)視圖和俯視圖分別是從幾何體的正前方、正左方和正上方觀察到有幾何體的正投影圖,它們都是平面圖形。

  長方體的三視圖都是長方形,正視圖和側(cè)視圖、側(cè)視圖和俯視圖、俯視圖和正視圖都各有一條邊長相等。

  4、畫圓柱、圓錐的三視圖:

  5、探究:畫出底面是正方形,側(cè)面是全等的三角形的棱錐的三視圖。

  (三)鞏固練習(xí)

  課本P15練習(xí)1、2;P20習(xí)題1.2[A組]2。

  (四)歸納整理

  請(qǐng)學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖

  (五)布置作業(yè)

  課本P20習(xí)題1.2[A組]1。

最新高一下冊(cè)數(shù)學(xué)教案2

  教學(xué)過程

  (一)創(chuàng)設(shè)情景,揭示課題

  1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;

  2、閱讀課本引例,體會(huì)函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:

  (1)炮彈的射高與時(shí)間的變化關(guān)系問題;

  (2)南極臭氧空洞面積與時(shí)間的變化關(guān)系問題;

  (3)“八五”計(jì)劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時(shí)間的變化關(guān)系問題.

  3、分析、歸納以上三個(gè)實(shí)例,它們有什么共同點(diǎn);

  4、引導(dǎo)學(xué)生應(yīng)用集合與對(duì)應(yīng)的語言描述各個(gè)實(shí)例中兩個(gè)變量間的依賴關(guān)系;

  5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個(gè)實(shí)例中的兩個(gè)變量間的關(guān)系是否是函數(shù)關(guān)系.

  (二)研探新知

  1、函數(shù)的.有關(guān)概念

  (1)函數(shù)的概念:

  設(shè)A、B是非空的數(shù)集,如果按照某個(gè)確定的對(duì)應(yīng)關(guān)系f,使對(duì)于集合A中的任意一個(gè)數(shù)x,在集合B中都有確定的數(shù)f(x)和它對(duì)應(yīng),那么就稱f:A→B為從集合A到集合B的一個(gè)函數(shù)(function).

  記作:y=f(x),x∈A.

  其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對(duì)應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).

  注意:

 、佟皔=f(x)”是函數(shù)符號(hào),可以用任意的字母表示,如“y=g(x)”;

 、诤瘮(shù)符號(hào)“y=f(x)”中的f(x)表示與x對(duì)應(yīng)的函數(shù)值,一個(gè)數(shù),而不是f乘x.

  (2)構(gòu)成函數(shù)的三要素是什么?

  定義域、對(duì)應(yīng)關(guān)系和值域

  (3)區(qū)間的概念

 、賲^(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;

 、跓o窮區(qū)間;

 、蹍^(qū)間的數(shù)軸表示.

  (4)初中學(xué)過哪些函數(shù)?它們的定義域、值域、對(duì)應(yīng)法則分別是什么?

  通過三個(gè)已知的函數(shù):y=ax+b(a≠0)

  y=ax2+bx+c(a≠0)

  y=(k≠0)比較描述性定義和集合,與對(duì)應(yīng)語言刻畫的定義,談?wù)勼w會(huì).

  師:歸納總結(jié)

  (三)質(zhì)疑答辯,排難解惑,發(fā)展思維。

  1、如何求函數(shù)的定義域

  例1:已知函數(shù)f(x)=+

  (1)求函數(shù)的定義域;

  (2)求f(-3),f()的值;

  (3)當(dāng)a>0時(shí),求f(a),f(a-1)的值.

  分析:函數(shù)的定義域通常由問題的實(shí)際背景確定,如前所述的三個(gè)實(shí)例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個(gè)式子有意義的實(shí)數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.

  例2、設(shè)一個(gè)矩形周長為80,其中一邊長為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫出定義域.

  分析:由題意知,另一邊長為x,且邊長x為正數(shù),所以0

  所以s==(40-x)x(0

  引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:

  (1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R.

  2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的集合.

  (3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號(hào)內(nèi)的式子大于或等于零的實(shí)數(shù)的集合.

  (4)如果f(x)是由幾個(gè)部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合.(即求各集合的交集)

最新高一下冊(cè)數(shù)學(xué)教案3

  教學(xué)目標(biāo):

  1、結(jié)合實(shí)際問題情景,理解分層抽樣的必要性和重要性;

  2、學(xué)會(huì)用分層抽樣的方法從總體中抽取樣本;

  3、并對(duì)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣及分層抽樣方法進(jìn)行比較,揭示其相互關(guān)系。

  教學(xué)重點(diǎn):

  通過實(shí)例理解分層抽樣的方法。

  教學(xué)難點(diǎn):

  分層抽樣的步驟。

  教學(xué)過程:

  一、問題情境

  1、復(fù)習(xí)簡(jiǎn)單隨機(jī)抽樣、系統(tǒng)抽樣的概念、特征以及適用范圍。

  2、實(shí)例:某校高一、高二和高三年級(jí)分別有學(xué)生名,為了了解全校學(xué)生的視力情況,從中抽取容量為的樣本,怎樣抽取較為合理?

  二、學(xué)生活動(dòng)

  能否用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣,為什么?

  指出由于不同年級(jí)的學(xué)生視力狀況有一定的差異,用簡(jiǎn)單隨機(jī)抽樣或系統(tǒng)抽樣進(jìn)行抽樣不能準(zhǔn)確反映客觀實(shí)際,在抽樣時(shí)不僅要使每個(gè)個(gè)體被抽到的機(jī)會(huì)相等,還要注意總體中個(gè)體的層次性。

  由于樣本的容量與總體的個(gè)體數(shù)的比為100∶2500=1∶25,所以在各年級(jí)抽取的個(gè)體數(shù)依次是。即40,32,28。

  三、建構(gòu)數(shù)學(xué)

  1、分層抽樣:當(dāng)已知總體由差異明顯的幾部分組成時(shí),為了使樣本更客觀地反映總體的情況,常將總體按不同的特點(diǎn)分成層次比較分明的幾部分,然后按各部分在總體中所占的比進(jìn)行抽樣,這種抽樣叫做分層抽樣,其中所分成的各部分叫“層”。

  說明:

 、俜謱映闃訒r(shí),由于各部分抽取的個(gè)體數(shù)與這一部分個(gè)體數(shù)的比等于樣本容量與總體的個(gè)體數(shù)的'比,每一個(gè)個(gè)體被抽到的可能性都是相等的;

 、谟捎诜謱映闃映浞掷昧宋覀兯莆盏男畔ⅲ箻颖揪哂休^好的代表性,而且在各層抽樣時(shí)可以根據(jù)具體情況采取不同的抽樣方法,所以分層抽樣在實(shí)踐中有著非常廣泛的應(yīng)用。

最新高一下冊(cè)數(shù)學(xué)教案4

  一、教學(xué)目標(biāo):

  掌握向量的概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

  二、教學(xué)重點(diǎn):

  向量的性質(zhì)及相關(guān)知識(shí)的綜合應(yīng)用。

  三、教學(xué)過程:

  (一)主要知識(shí):

  1、掌握向量的.概念、坐標(biāo)表示、運(yùn)算性質(zhì),做到融會(huì)貫通,能應(yīng)用向量的有關(guān)性質(zhì)解決諸如平面幾何、解析幾何等的問題。

  (二)例題分析:略

  四、小結(jié):

  1、進(jìn)一步熟練有關(guān)向量的運(yùn)算和證明;能運(yùn)用解三角形的知識(shí)解決有關(guān)應(yīng)用問題

  2、滲透數(shù)學(xué)建模的思想,切實(shí)培養(yǎng)分析和解決問題的能力。

【最新高一下冊(cè)數(shù)學(xué)教案】相關(guān)文章:

最新高一數(shù)學(xué)教案09-27

最新高一數(shù)學(xué)下冊(cè)教案09-27

最新五年級(jí)下冊(cè)數(shù)學(xué)教案03-16

最新高一數(shù)學(xué)下冊(cè)教學(xué)計(jì)劃06-13

高一數(shù)學(xué)教案06-20

高一數(shù)學(xué)教案12-21

最新高一下冊(cè)英語的教學(xué)設(shè)計(jì)12-27

小班下冊(cè)數(shù)學(xué)教案02-28

最新蘇教版五年級(jí)下冊(cè)數(shù)學(xué)教案(精選15篇)02-04