毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

《倍數(shù)和因數(shù)》教學(xué)反思

時間:2023-03-08 00:14:53 教學(xué)反思 我要投稿

《倍數(shù)和因數(shù)》教學(xué)反思(通用5篇)

  身為一名人民老師,我們要有一流的教學(xué)能力,借助教學(xué)反思可以快速提升我們的教學(xué)能力,那么寫教學(xué)反思需要注意哪些問題呢?以下是小編收集整理的《倍數(shù)和因數(shù)》教學(xué)反思,僅供參考,歡迎大家閱讀。

《倍數(shù)和因數(shù)》教學(xué)反思(通用5篇)

《倍數(shù)和因數(shù)》教學(xué)反思1

  《倍數(shù)和因數(shù)》這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識整除的情況下直接認(rèn)識倍數(shù)和因數(shù)的。數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。

  這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長。下面就說說我對本課在教學(xué)設(shè)計上的反思和一些初淺的想法。

  比如在認(rèn)識“因數(shù)、倍數(shù)”時,不再運用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的.認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點是求一個數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的關(guān)系的基礎(chǔ)上,對學(xué)生而言,怎樣求一個數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時,我先放手讓學(xué)生自己找,學(xué)生在獨立思考的過程中,自然而然的會結(jié)合自己對因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對已有知識的運用意識),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個學(xué)習(xí)活動環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動的空間,有了自由活動的空間,才會有思維創(chuàng)造的火花,才能體現(xiàn)教育活動的終極目標(biāo)。

  新課標(biāo)實施的過程是一個不斷學(xué)習(xí)、探究、研究和提高的過程,在這個過程中,需要我們認(rèn)真反思、獨立思考、交流探討,學(xué)習(xí)研究,與學(xué)生平等對話,在實踐和探索中不斷前進(jìn)。

《倍數(shù)和因數(shù)》教學(xué)反思2

  《倍數(shù)和因數(shù)》,由于之前沒上過這冊內(nèi)容,在看完教材后就和同組的老師說,這個內(nèi)容好像挺簡單的。不過上完這節(jié)課后這個想法卻煙消云散,根本沒有想象的那么容易上,而且在課堂中存在了很多在預(yù)設(shè)中沒有想到的問題,下面對自己的課堂做一些反思:

  1、在第一個環(huán)節(jié)認(rèn)識倍數(shù)和因數(shù)的意義中,首先讓學(xué)生用12個同樣大小的小正方形擺成一個長方形,并用乘法算式來表示你是怎么擺的,有幾種不同的擺法?通過讓學(xué)生動手操作實踐,體現(xiàn)了以學(xué)生為本,而且能喚醒學(xué)生已有的知識經(jīng)驗,抽象為具體討論的數(shù)學(xué)問題。在抽象出三個不同的乘法算式后,我以第一個乘法算式4×3=12為例,介紹倍數(shù)和因數(shù)的關(guān)系,本來以為說:“4和3是12的因數(shù),12是4和3的倍數(shù)”應(yīng)該是很簡單的兩句話,學(xué)生應(yīng)該會說,可是當(dāng)請學(xué)生來自己選擇一個乘法算式來說一說時,好幾個學(xué)生卻被卡住了,還有的說成了4是12的倍數(shù)。

  針對學(xué)生出現(xiàn)的問題,我覺得可能是自己在介紹時運用的不到位,一個是比較小,后面的同學(xué)都沒能看清楚;另一方面我預(yù)想的比較簡單,所以說了一遍后也沒請學(xué)生再復(fù)述一遍。在說到“誰是誰的倍數(shù),誰是誰的因數(shù)”時應(yīng)該在中相繼出示這兩句話,這樣的話讓學(xué)生看著說印象會更深刻,相信學(xué)生說的也會比較好。

  2、第二個環(huán)節(jié)是探求找一個數(shù)的倍數(shù)的`方法,從上一個環(huán)節(jié)我最后出示的除法算式中引入:我們知道了18是3的倍數(shù),那3的倍數(shù)是不是只有18呢?通過疑問來激發(fā)學(xué)生找出3的倍數(shù)有哪些?學(xué)生很快能找到,但是并沒有找全,于是再問,那又什么辦法把3的倍數(shù)找全呢?學(xué)生自然想到去乘1,乘2,乘3……也就按順序找到了3的倍數(shù)。在分別找到了2和5的倍數(shù)后我問學(xué)生:觀察上面這幾個例子,你有什么發(fā)現(xiàn)?請了好幾個學(xué)生都沒能找到,最后還是老師告訴了學(xué)生倍數(shù)最小是?最大呢?

  針對最后請學(xué)生找一找發(fā)現(xiàn)倍數(shù)的共同特點這一問題,我覺得我在設(shè)計時問題提得太大,太籠統(tǒng)。學(xué)生聽到問題后可能無從下手,不知道該找什么?梢詥枺簞偛耪伊2,3,5的倍數(shù),觀察這幾個數(shù)的倍數(shù),他們有什么共同特點?這樣學(xué)生就會比較有針對性地去尋找結(jié)果。

  3、第三個環(huán)節(jié)是探求找一個數(shù)因數(shù)的方法,找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復(fù)又不遺漏地找一個數(shù)的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有是一定困難的,而這個環(huán)節(jié)我處理的也不到位,學(xué)生對找一個數(shù)因數(shù)的方法掌握的不夠好。

  我一開始設(shè)計請學(xué)生自主找36的因數(shù),在巡視時發(fā)現(xiàn)有一部分學(xué)生沒有頭緒,無從下手,時間倒是花去了不少。所以我覺得是否可以先從12下手,因為前面一開始已經(jīng)找過12的因數(shù)了,如果這里能用12做一下鋪墊,可能找36的因數(shù)時就會好一些。

  在學(xué)生自主探索完36的因數(shù)有哪些后,交流不同學(xué)生的結(jié)果,有一位出現(xiàn)了1,36;2,18;3,12;4,9;6,6我就問你是怎么找到的?學(xué)生說是用除法找到的,于是就用36分別去除1,2,3……得到了36的因數(shù)。其實這里除了用除法來找之外,還可以用乘的方法來找,而乘的方法似乎對于學(xué)生來說在找得時候還更簡單一點。更重要的是我覺得一對對的找對于找全一個數(shù)的因數(shù)是一個很重要的方法,而我卻把這個方法忽略了,所以學(xué)生對于找一個數(shù)的因數(shù)的方法不夠深刻,在練習(xí)中也發(fā)現(xiàn)做的不理想。

  4、第四個環(huán)節(jié)是鞏固練習(xí),我設(shè)計了2個小游戲。一個是看誰反應(yīng)快,符合要求的請學(xué)生起立,這個游戲?qū)W生參與面廣,學(xué)生也感興趣,還從中發(fā)現(xiàn)了找誰的學(xué)號是幾的因數(shù),1每次都會起立,就更好的鞏固了一個數(shù)的因數(shù)最小是1。但是也有個別學(xué)生反應(yīng)比較慢。第二個小游戲是猜一猜老師的手機(jī)號碼是多少?但是由于前面時間用的比較多,所以沒來得及做。

  原本認(rèn)為簡單的課卻一點都不簡單,每個細(xì)小環(huán)節(jié)的把握都要求我去仔細(xì)的鉆研教材,設(shè)計好每一步,這樣才能上好一節(jié)課。

《倍數(shù)和因數(shù)》教學(xué)反思3

  教學(xué)中我發(fā)現(xiàn)倍數(shù)和因數(shù)這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而這里的處理的方法有所不同,我在教學(xué)時做了一些改動,讓學(xué)生用12個小正方形擺長方形,然后自己用算式把擺法表示出來。這樣學(xué)生的算是就不局限于乘法,有一部分學(xué)生寫了除法算式。這樣學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。因為現(xiàn)在也有很多學(xué)生學(xué)習(xí)奧賽,所以我從整除的角度也介紹了因數(shù)與倍數(shù)的'概念、

  由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動的接受。如讓學(xué)生思考:你覺得3和12、4和12之間有什么關(guān)系呢?(對乘除法學(xué)生有著相當(dāng)豐富的經(jīng)驗,因此不少學(xué)生能說出倍數(shù)關(guān)系,可能說得不很到位,但那是學(xué)生自己的東西)。當(dāng)學(xué)生認(rèn)識了倍數(shù)之后,我進(jìn)行了設(shè)問:12是3的倍數(shù),那反過來3和12是什么關(guān)系呢?盡管學(xué)生無法回答,但卻給了他思考和接受“因數(shù)”的空間,使學(xué)生體會到12是3的倍數(shù),反過來3就是12的因數(shù),接下來4和12的關(guān)系,學(xué)生都爭者要回答。

  如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這不比老師給予的有效得多。

《倍數(shù)和因數(shù)》教學(xué)反思4

  一、“倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法一定要分清。

  “倍數(shù)和因數(shù)”與“倍數(shù)和約數(shù)”這兩種說法只是新舊教材的說法不同而已,其實都是表示同一類數(shù)。(即因數(shù)也是約數(shù))

  二、為什么第十教科書上講“倍數(shù)與因數(shù)”的時候不提整除。

  也許我的頭腦還受舊版教材的影響,我認(rèn)為說到“倍數(shù)與因數(shù)”必須要談到整除,因為整除是研究“因數(shù)和倍數(shù)”的條件,學(xué)生在沒有這條件學(xué)習(xí)整除,只要教師的教學(xué)方法稍有不慎,學(xué)生會很快誤入小數(shù)也有因數(shù);但是我在實際的教學(xué)過程中,也體會到了教材中不提整除的好處。而我的心里卻又產(chǎn)生了一個新的疑問,S版教材到底在什么時候于什么數(shù)學(xué)環(huán)境下才提出“整除”這個概念呢?會不會在六年級課改才出現(xiàn)呢?我期待著。

  三、教學(xué)2、5和3的倍數(shù)教師應(yīng)注重“靈活”。

  1、 在教學(xué)2和5的倍數(shù)時,是用同一種方法找出它們倍數(shù)的,學(xué)生很容易掌握,也很快就能把2和5的倍數(shù)說出,并能準(zhǔn)確找出各自的倍數(shù),此時,教師應(yīng)把學(xué)生的思維轉(zhuǎn)到同時是2和5的倍數(shù)怎樣找?接著引導(dǎo)學(xué)生歸納出同時是2和5的倍數(shù)的特征,因此,讓學(xué)生的知識面進(jìn)一步加大。

  2、教學(xué)3的倍數(shù)的特征時,教師首先讓學(xué)生用2和5的倍數(shù)的方法去找3的倍數(shù)的特征,讓學(xué)生嘗試這種方法是找不到3的.倍數(shù)的特征,這時,教師應(yīng)該引導(dǎo)學(xué)生對寫出的3的倍數(shù),要用另一種方法去歸納、總結(jié)3的倍數(shù)的特征,運用這一特點,教師可以有意識地寫些數(shù)(有3的倍數(shù),也有不是3的倍數(shù),而且是較大的數(shù))讓學(xué)生進(jìn)行判斷,這樣可使學(xué)生對3的倍數(shù)的特征進(jìn)一步得到鞏固;當(dāng)學(xué)生熟練掌握3的倍數(shù)的特征時,教師話峰一轉(zhuǎn),你們能歸納出9的倍數(shù)的特征嗎?學(xué)生在教師這一激發(fā)下,他們的求知欲興趣大增,然后教師啟學(xué)生運用找3的倍數(shù)的方法,去找9的倍數(shù)的特征,學(xué)生會輕而易舉地歸納、總結(jié)出9的倍數(shù)的特征。通過找9的倍數(shù)的特征,既鞏固了學(xué)生學(xué)習(xí)3的倍數(shù)的特征,還使學(xué)生的知識面擴(kuò)大,達(dá)到知識的鞏固和遷移的目的。

  3、當(dāng)學(xué)生掌握了2、5和3的倍數(shù)的特征時,教師這時應(yīng)引導(dǎo)學(xué)生進(jìn)一步歸納、總結(jié),把這三個特征綜合,從而得出同時是2、3和5的倍數(shù)的特征。

  通過這樣的教學(xué),讓學(xué)生真正感受到“靈活”兩字,并且能把知識面向縱橫方向發(fā)展。

《倍數(shù)和因數(shù)》教學(xué)反思5

  本單元注意以下幾個方面的教學(xué),可以促進(jìn)學(xué)生鞏固基礎(chǔ)知識,促進(jìn)學(xué)生發(fā)展基本思維能力。

  1.加強概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。

  本冊新教材采用整數(shù)除法的表示形式教學(xué),便于學(xué)生感知因數(shù)和倍數(shù)的本質(zhì)意義。注意因數(shù)與倍數(shù)的相互依存的關(guān)系;質(zhì)數(shù)、合數(shù)與因數(shù)的關(guān)系;偶數(shù)、奇數(shù)與2的倍數(shù)的關(guān)系等,形成概念鏈,依靠理解促進(jìn)記憶!

  2.注意培養(yǎng)學(xué)生的抽象概括與歸納推理能力

  關(guān)注由從具體到抽象、由特殊到一般的概括、歸納過程,即從個別性知識推出一般性結(jié)論。如質(zhì)數(shù)、合數(shù):寫出1——20各數(shù)的因數(shù)進(jìn)行歸納推理,熟悉20以內(nèi)的質(zhì)數(shù),制作100以內(nèi)質(zhì)數(shù)表。

  3.教給學(xué)生養(yǎng)成“有序?qū)W習(xí)”的良好學(xué)習(xí)習(xí)慣。

  4.加強解決問題的教與學(xué),新教材增加了探索兩數(shù)之和的.奇偶性的純數(shù)學(xué)問題,可以根據(jù)兩數(shù)之和的奇偶性的規(guī)律推理出兩數(shù)之差、兩數(shù)之積的奇偶性,并滲透解決問題的策略。

  5.拓展學(xué)生的知識面。如探究既是2的倍數(shù)又是5的倍數(shù)特征;4的倍數(shù)特征;6的倍數(shù)特征等,開拓視野,發(fā)展思維!

《倍數(shù)和因數(shù)》教學(xué)反思6

  教學(xué)目標(biāo):

  1、使學(xué)生結(jié)合具體情境初步理解倍數(shù)和因數(shù)的含義,初步理解倍數(shù)和因數(shù)相互依存的關(guān)系。

  2、使學(xué)生依據(jù)倍數(shù)和因數(shù)的含義以及已有乘除法知識,通過嘗試、交流等活動,探索并掌握找一個數(shù)倍數(shù)和因數(shù)的方法,能在1—100的自然數(shù)中找出10以內(nèi)某個數(shù)的所有倍數(shù),找出100以內(nèi)某個數(shù)的所有因數(shù)。

  3、使學(xué)生在認(rèn)識倍數(shù)和因數(shù)以及找一個數(shù)的倍數(shù)和因數(shù)的過程中進(jìn)一步感受數(shù)學(xué)知識的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。

  教學(xué)重點:

  理解因數(shù)和倍數(shù)的含義。

  教學(xué)難點:

  探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法。

  教學(xué)過程:

  一、認(rèn)識倍數(shù)和因數(shù)

  1、操作活動。

  (1)小黑板出示要求:用12個同樣大的正方形拼成一個長方形。每排擺幾個?擺了幾排?用乘法算式把自己的擺法表示出來。

 。2)整理:全班交流,分別板書4×3=1212×1=126×2=12

  3、學(xué)習(xí)“倍數(shù)”和“因數(shù)”的概念

 。1)談話:剛才同學(xué)們通過不同的擺法擺出了不同的長方形,而且還寫出了3個不同的乘法算式,今天,我們就一起來研究乘法算式中,數(shù)與數(shù)之間的關(guān)系。(出示:倍數(shù)和因數(shù))

  (2)根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?

  板書:12是4的倍數(shù),12是3的倍數(shù)

  4是12的因數(shù),3是12的因數(shù)

  (3)根據(jù)6×2=12,你能說出哪個數(shù)是哪個數(shù)的倍數(shù),哪個數(shù)是哪個數(shù)的因數(shù)嗎?根據(jù)12×1=12呢?

 。4)練一練:從3×6=1836÷4=9中任選一題說一說。

  為什么4和9是36的因數(shù)?

  4、小結(jié):根據(jù)乘法或除法算式我們可以確定誰是誰的因數(shù),誰是誰的倍數(shù)。為了方便,在研究倍數(shù)和因數(shù)時,所說的數(shù)一般指不是0的自然數(shù)。

  二、探索找一個數(shù)的倍數(shù)的方法

  1、談話:在剛才的談話中,我們知道了12是3的倍數(shù),18也是3的倍數(shù)

  提問:3的倍數(shù)只有這兩個嗎?

  你還能再寫出幾個3的倍數(shù)?

  你是怎樣想的?

  你能按照從小到大的順序有條理地說出3的倍數(shù)嗎?

  你能把3的倍數(shù)全都說完嗎?

  可以怎樣表示?

  2、議一議:你有沒有發(fā)現(xiàn)找3的倍數(shù)的小竅門?(在找3的倍數(shù)時,可以按從小到大的順序,依次用1、2、3……與3相乘,每次乘得的積都是3的倍數(shù))

  3、試一試:

 。1)2的倍數(shù)有

 。2)5的倍數(shù)有

  4、想一想:觀察上面幾個例子,你發(fā)現(xiàn)一個數(shù)的倍數(shù)有什么特點?

  5、練一練:想想做做2

  三、探索求一個數(shù)的因數(shù)的方法

  1、提出問題:你能找出36的所有因數(shù)嗎?

  2、四人小組合作完成

  3、交流整理找一個數(shù)的因數(shù)的方法。

  4、試一試(既要一組一組地找,又要按次序排列)

  15的因數(shù)

  16的因數(shù)

  5、比一比:根據(jù)上面幾個例子,你發(fā)現(xiàn)一個數(shù)的因數(shù)有什么特點?和同桌說一說

  6、練一練:想想做做

  四、課堂總結(jié)。

  1、這節(jié)課,你有什么收獲?

  五、鞏固提高

  1、判斷

 。1)12是倍數(shù),3是因數(shù)

 。2)6既是2的倍數(shù),又是3的倍數(shù)。

  (3)25以內(nèi)4的倍數(shù)有:4,8,12,16,20,24……

 。4)6的最小倍數(shù)是12,12的最小因數(shù)是6。

  2、看誰反應(yīng)快

  游戲準(zhǔn)備:學(xué)生按學(xué)號編成連續(xù)的自然數(shù)。(課前)

  游戲規(guī)則:凡是學(xué)號符合以下要求的,請站起來,看誰反應(yīng)快?

 。1)誰的學(xué)號是5的倍數(shù)

 。2)誰的學(xué)號是24的.因數(shù)

 。3)誰的學(xué)號是30的因數(shù)

 。4)誰的學(xué)號是1的倍數(shù)

  反思:

  在教學(xué)過程中出現(xiàn)了一個問題:是在提問:“根據(jù)4×3=12,你能說出誰是誰的倍數(shù)嗎?12是4的幾倍?12是3的幾倍?你能說出誰是誰的因數(shù)嗎?”時,發(fā)現(xiàn)學(xué)生根本不能回答,本來以為學(xué)生在三年級的時候應(yīng)該對這部分的內(nèi)容有所了解,能順利回答,但是在課后與三年級的教師交流后發(fā)現(xiàn)沒有這方面的內(nèi)容安排。由此,我想:新課程實施了五年,我其實還是門外漢,還不能很好地適應(yīng)新課程的要求,新課程的教材編排具有連續(xù)性,而老版本經(jīng)常是一個知識點安排在一起,注重深度。看來教師不光要關(guān)心自己年級的教材內(nèi)容,還得知道整個教材編排體系,知道各個年級知識點之間的聯(lián)系。這樣才能更好地完成教學(xué)任務(wù),使學(xué)生得到應(yīng)有的發(fā)展而不是降低要求的發(fā)展或者是被強行提高要求的發(fā)展。

《倍數(shù)和因數(shù)》教學(xué)反思7

  教學(xué)內(nèi)容:青島版教材小學(xué)數(shù)學(xué)五年級上冊88—91頁。

  教學(xué)目標(biāo):

  1、使學(xué)生初步認(rèn)識因數(shù)和倍數(shù)的含義,探索求一個數(shù)的因數(shù)或倍數(shù)的方法,發(fā)現(xiàn)一個數(shù)的因數(shù)、倍數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征。

  2、使學(xué)生在認(rèn)識因數(shù)和倍數(shù)以及探索一個數(shù)的因數(shù)或倍數(shù)的過程中,進(jìn)一步體會數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平,對數(shù)學(xué)產(chǎn)生好奇心,培養(yǎng)學(xué)習(xí)興趣。

  教學(xué)重點:理解因數(shù)和倍數(shù)的意義,探索求一個數(shù)因數(shù)或倍數(shù)的方法。

  教學(xué)難點:探索求一個數(shù)因數(shù)或倍數(shù)的方法。

  教具準(zhǔn)備:多媒體課件、學(xué)生練習(xí)題

  教學(xué)過程:

  一、談話導(dǎo)入。

  師:同學(xué)們看這是什么?

  生:小正方形。

  師:想不想知道王老師給大家?guī)砹硕嗌賯這樣的小正方形?

  生:想。

  師:多少個?

  生:12個。

  師:想一想你能不能把這12個完全一樣的小正方形拼成一個長方形呢?

  生:能。

  【設(shè)計意圖】:以學(xué)生熟悉情景引入,激發(fā)學(xué)生的好奇心。

  二、教學(xué)因數(shù)和倍數(shù)的意義

  師:增加一點難度,用一道算式說明你的想法,讓其他同學(xué)猜一猜你是怎么擺的,好嗎?

  生:好!

  學(xué)生匯報:

  生1:1×12=12

  師:他是怎么擺的?

  生:一行擺1個,擺了12行;也可以一行擺12個,擺1行。

  課件出示擺法。

  師:把第一種擺法豎起來就和第二種擺法一樣了,我們把這兩種擺法算作一種擺法。(用課件舍去一種)

  生2:2×6=12

  師:猜一猜他是在怎么擺的?

  生:一行擺2個,擺了6行;也可以一行擺6個,擺2行。

  師:這兩種情況,我們也算一種。

  生3: 3×4=12

  師:他又是怎么擺的?

  生:一行擺3個,擺了4行;也可以一行擺4個,擺3行。

  師:還有其他擺法嗎?

  生:沒有了。

  師:對,如果把12個同樣大小的正方形拼成一個長方形,就只有這三種擺法,大家千萬不要小看了這三種擺法,更不要小看了這三種擺法下面的三道乘法算式,今天我們的新課就藏在這三道乘法算式里面。因數(shù)和倍數(shù)(板書課題)

  2.教學(xué)“因數(shù)和倍數(shù)”的意義。

  師:我們以3×4=12為例,在數(shù)學(xué)上可以說3是12的因數(shù),4也是12的因數(shù),12是3的倍數(shù),12也是4 的倍數(shù)。這里還有兩道算式,同桌兩個同學(xué)先互相說一說誰是誰的因數(shù),誰是誰的倍數(shù)。

  學(xué)生匯報:任選一道回答。

  生1:12是12的.因數(shù),1是12的因數(shù),12是2的倍數(shù),12是1的倍數(shù)。

  師:說的多好。‰m然有點像繞口令,但數(shù)學(xué)上確實是這樣的。我們再一起說一遍。

  師:還有一道算式,誰來說一說?

  生:2是12的因數(shù),6是12的因數(shù),12是2的倍數(shù),12也是6的倍數(shù)。

  師明確:為了研究方便,我們所說的因數(shù)和倍數(shù)都是指自然數(shù),(0除外)。

  師:通過剛才的練習(xí),你有沒有發(fā)現(xiàn)12的因數(shù)一共有哪些? (生邊說老師邊有序的用課件出示12的所有的因數(shù)。)

  師:好了,剛才我們已經(jīng)初步研究了因數(shù)和倍數(shù),屏幕顯示:試一試:你能從中選兩個數(shù),說一說誰是誰的因數(shù)?誰是誰因數(shù)和倍數(shù)?行不行?先自己試一試。

  3、5、18、20、36

  【設(shè)計意圖】讓學(xué)生經(jīng)歷知識的形成過程。通過實際例子,讓學(xué)生進(jìn)一步理解,因數(shù)和倍數(shù)之間存在著相互依存的關(guān)系。

  三、教學(xué)尋找因數(shù)的方法。

  1、找一個數(shù)的因數(shù)。

  師:看來同學(xué)們對于因數(shù)和倍數(shù)已經(jīng)掌握的不錯了。不過剛才老師在聽的時候發(fā)現(xiàn)一個奧秘,好幾個數(shù)都是36的因數(shù),你發(fā)現(xiàn)了嗎?誰能在五個數(shù)中把哪些數(shù)是36的因數(shù)一口氣說完?

  師:說出幾個36的因數(shù)并不難,關(guān)鍵是怎樣找的既有序又全面,有沒有信心挑戰(zhàn)一下?

  生:有。

  師:老師提個要求:

  1)、可以獨立完成,也可以同桌交流。

  2)、把這個數(shù)的因數(shù)找全以后,把你的方法記錄在下面。并總結(jié)你是怎樣找的。

  2、探索交流找一個數(shù)的因數(shù)的方法。

  找一名有代表性的作業(yè)板書在黑板上。

  師:他找對了嗎?

  生:沒有,漏下了一對。

  師:為什么會漏掉?僅僅是因為粗心嗎?

  生:不是,他沒有按照一定的順序找!

  師:那么要找到36所有的因數(shù)關(guān)鍵是什么?

  生:有序。

  師生共同邊說邊有序的把36的所有的因數(shù)板書出來。 師:還有問題嗎?

  生:沒有了。

  生:你們沒有,老師有一個問題,你們?yōu)槭裁凑业?就不再接著往下找了?

  生:再接著找就重復(fù)了。

  師:那么找到什么時候就不找了?

  生:找到重復(fù)了,就不在往下找了。

  師、生共同總結(jié)找因數(shù)的方法。(一對一對有序的找,一直找到重復(fù)為止)。

  師:有失誤的學(xué)生對自己的錯誤進(jìn)行調(diào)整。

  3、鞏固練習(xí)。

  找出下面各數(shù)的因數(shù)。

  4、尋找一個數(shù)的因數(shù)的特點。

  【設(shè)計意圖】放手讓學(xué)生自主找一個數(shù)的因數(shù),并總結(jié)找一個數(shù)因數(shù)的方法。學(xué)生非常喜歡,而且也能夠讓學(xué)生在活動中提升。

  四、教學(xué)尋找倍數(shù)的方法。

  1、找一個數(shù)的倍數(shù)。

  師:剛才我們學(xué)習(xí)了找一個數(shù)的因數(shù),那么你能像剛才一樣有序的找出一個數(shù)的所有倍數(shù)嗎?

  生:能!

  師:試試看,找個小的可以嗎?

  生:行!

  師:找一下3的倍數(shù)。30秒時間,把答案寫在練習(xí)紙上。 ??

  師:有什么問題嗎?

  生:老師,寫不完。

  師:為什么寫不完?

  生:有很多個!

  師:那怎么才能全都表示出來呢?

  生:可以加省略號。

  師:你太厲害了!你把語文上的知識都用上了,太真聰明了!難道不該再來點掌聲嗎?

  師:誰能總結(jié)一下你是怎樣找到的?

  生:從小到大依次乘自然數(shù)。

  師:你真會思考!

  課件出示3的倍數(shù)。

  2、找5、7的倍數(shù)。

  師:我們再來練習(xí)找一下5的倍數(shù)。

  生:5的倍數(shù)有:5、10、15、20、25??

  生:7的倍數(shù)有:7、14、21、28、35??

  師:你能像總結(jié)一個數(shù)因數(shù)的特點一樣,來總結(jié)一下一個數(shù)的倍數(shù)有什么特征嗎?

  生:能!

  學(xué)生總結(jié):一個數(shù)倍數(shù)的個數(shù)是無限的,最小的倍數(shù)是它本身,沒有最大的倍數(shù)。

  【設(shè)計意圖】在探索求一個數(shù)的倍數(shù)和因數(shù)的方法時,創(chuàng)設(shè)具體的情境讓學(xué)生去合作交流,并結(jié)合具體事例,讓學(xué)生自己觀察并發(fā)現(xiàn)一個數(shù)的倍數(shù)、因數(shù)中最大的數(shù)、最小的數(shù)及其個數(shù)方面的特征,豐富了教學(xué)方式,讓學(xué)生在觀察中發(fā)現(xiàn),在合作中體驗成功的喜悅,在主動參與、樂于探究中發(fā)展自我。

  四、知識拓展

  認(rèn)識“完美數(shù)”。

  師:(課件出示6的因數(shù))在6的因數(shù)中還藏著另外一個秘密,(這是孩子們都瞪大眼睛在看,在聽。┪覀儼6的因數(shù)中最大的一個去掉,剩下1、2、3,然后把它們再加起來又回到6本身,數(shù)學(xué)家給這樣的數(shù)起了一個名字,叫“完美數(shù)”。依次出示第二個、第三個一直到第六個完美數(shù)。

  小結(jié):其實有關(guān)因數(shù)和倍數(shù)的秘密還有很多,它們在等待著同學(xué)們在以后的學(xué)習(xí)中去研究、去探索。

  【設(shè)計意圖】豐富學(xué)生的知識,陶冶學(xué)生的情操。

  教學(xué)反思:

  找一個數(shù)因數(shù)的方法是本節(jié)課的難點,如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有一定困難,這里充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這時如果再給予有效的指導(dǎo)和總結(jié)就更好了。

《倍數(shù)和因數(shù)》教學(xué)反思8

  一、教材與知識點的對比與區(qū)別。

  1、對比新版教材知識設(shè)置與傳統(tǒng)教材的區(qū)別。有關(guān)數(shù)論的這部分知識是傳統(tǒng)教學(xué)內(nèi)容但教材在傳承以往優(yōu)秀做法的同時也進(jìn)行了較大幅度的改動。無論是從宏觀方面——內(nèi)容的劃分還是從微觀方面——具體內(nèi)容的設(shè)計上都獨具匠心!耙驍(shù)與倍數(shù)”的認(rèn)識與原教材有以下兩方面的區(qū)別1新課標(biāo)教材不再提“整除”的概念也不再是從除法算式的觀察中引入本單元的學(xué)習(xí)而是反其道而行之通過乘法算式來導(dǎo)入新知。2“約數(shù)”一詞被“因數(shù)”所取代。這樣的`變化原因何在教師必須要認(rèn)真研讀教材深入了解編者意圖才能夠正確、靈活駕馭教材。因此我通過學(xué)習(xí)教參了解到以下信息學(xué)生的原有知識基礎(chǔ)是在已經(jīng)能夠區(qū)分整除與余數(shù)除法對整除的含義有比較清楚的認(rèn)識不出現(xiàn)整除的定義并不會對學(xué)生理解其他概念產(chǎn)生任何影響。因此本教材中刪去了“整除”的數(shù)學(xué)化定義。

  2、相似概念的對比。1彼“因數(shù)”非此“因數(shù)”。在同一個乘法算式中兩者都是指乘號兩邊的整數(shù)但前者是相對于“積”而言的與“乘數(shù)”同義可以是小數(shù)。而后者是相對于“倍數(shù)”而言的與以前所說的“約數(shù)”同義說“X是X的因數(shù)”時兩者都只能是整數(shù)。2“倍數(shù)”與“倍”的區(qū)別!氨丁钡母拍畋取氨稊(shù)”要廣。我們可以說“1。5是0。3的5倍”但不能說”1。5是0。3的倍數(shù)”。我們在求一個數(shù)的倍數(shù)時運用的方法與“求一個數(shù)的幾倍是多少”是相同的只是這里的“幾倍”都是指整數(shù)倍。

  二、教法的運用實踐

  1、“因數(shù)與倍數(shù)”概念的數(shù)的應(yīng)用范圍的規(guī)定直接運用講述法。對與本知識點的概念是人為規(guī)定的一個范圍因此對于學(xué)生和第一接觸的印象是沒有什么可以探究和探索的要求而且給學(xué)生一個直觀的感受!耙驍(shù)與倍數(shù)”的運用范圍就是在非0自然數(shù)的范疇之內(nèi)與小數(shù)無關(guān)與分?jǐn)?shù)無關(guān)與負(fù)數(shù)無關(guān)雖沒學(xué)但有小部分學(xué)生了解。同時強調(diào)——非0——因為0乘任何數(shù)得00除以任何數(shù)得0。研究它的因數(shù)與倍數(shù)是沒有意義。我得到的經(jīng)驗就是對于數(shù)學(xué)當(dāng)中規(guī)定性的概念用直接講述法讓學(xué)生清晰明確。因此用直接導(dǎo)入法先復(fù)習(xí)自然數(shù)的概念再寫出乘法算式3×4=12說明在這個算式中3和4是12的因數(shù)12是3和4的倍數(shù)。

  2、在進(jìn)行延續(xù)性教學(xué)中可以讓學(xué)生探究怎么樣找一個數(shù)的因數(shù)和倍數(shù)在板書要講究一個格式與對稱性這樣在對學(xué)生發(fā)現(xiàn)倍數(shù)與因數(shù)個數(shù)的有限與無限的對比再就是發(fā)現(xiàn)一個數(shù)的因數(shù)的最小因數(shù)是1最大因數(shù)是其本身。

《倍數(shù)和因數(shù)》教學(xué)反思9

  《倍數(shù)和因數(shù)》這一資料與原先教材比有了很大的不一樣,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù),而此刻是在未認(rèn)識整除的狀況下直接認(rèn)識倍數(shù)和因數(shù)的。數(shù)學(xué)中的“起始概念”一般比較難教,這部分資料學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的資料。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、決定,需要一個長期的消化理解的過程。

  這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)帶給足夠的時空和適當(dāng)?shù)闹笇?dǎo),同時,也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動化、合作化和情意化,具體做到了以下幾點:

 。ㄒ唬┎僮鲗嵺`,舉例內(nèi)化,認(rèn)識倍數(shù)和因數(shù)

  我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不一樣的長方形,再讓學(xué)生寫出不一樣的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的好處。這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,使概念的揭示突破了從抽象到抽象,從數(shù)學(xué)到數(shù)學(xué),讓學(xué)生自主體驗數(shù)與形的結(jié)合,進(jìn)而構(gòu)成因數(shù)與倍數(shù)的好處。使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念。這樣,充分學(xué)習(xí)、利用、挖掘教材,用學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。

 。ǘ┳灾魈骄浚锰幗(gòu),找倍數(shù)和因數(shù)

  整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的組織者、指導(dǎo)者、參與者。整節(jié)課中,教師始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解倍數(shù)和因數(shù)的好處,探索并掌握找一個數(shù)的倍數(shù)和因數(shù)的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。

  新課程提出了合作學(xué)習(xí)的學(xué)習(xí)方式,教學(xué)中的多次合作不僅僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)潛力,初步構(gòu)成合作與競爭的意識。

  找一個數(shù)因數(shù)的方法是本節(jié)課的難點,在教學(xué)過程中讓學(xué)生自主探索,在隨后的巡視中發(fā)現(xiàn)有很多的學(xué)生完成的不是很好,我就決定先交流在讓學(xué)生尋找,這樣就用了很多時光,最后就沒有很多的時光去練習(xí),我認(rèn)為雖然時光用的過多,但我認(rèn)為學(xué)生探索的.比較充分,學(xué)生也有收獲。如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有必須困難,那里能夠充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自我獨立找36的因數(shù),我巡視了一下三分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按必須的次序進(jìn)行。之后讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自我剛才的方法進(jìn)行反思,吸收同伴中好的方法,這時老師再給予有效的指導(dǎo)和總結(jié)。

 。ㄈ┳兪酵卣,實踐應(yīng)用---—促進(jìn)智能內(nèi)化

  練習(xí)的設(shè)計不僅僅緊緊圍繞教學(xué)重點,而且注意到了練習(xí)的層次性,趣味性。在游戲中,師生互動,激活了學(xué)生的情感,學(xué)生的思維不斷活躍起來,學(xué)生不僅僅參與率高,而且還較好地鞏固了新知。課上,我能注重自始至終關(guān)注學(xué)生學(xué)習(xí)興趣、學(xué)習(xí)熱情、學(xué)習(xí)自信等情感因素的培養(yǎng),并及時讓學(xué)生感受到學(xué)習(xí)成功的喜悅,享受數(shù)學(xué),感悟文化魅力。

  由于這節(jié)是概念課,因此有不少東西是由老師告知的,但并不意味著學(xué)生完全被動地理解。教學(xué)之前我明白這節(jié)課時光會很緊,所以在備課的時候,我認(rèn)真鉆研了教材,仔細(xì)分析了教案,看哪些地方時光安排的能夠少一些,所以我在第一部分認(rèn)識因數(shù)和倍數(shù)這一環(huán)節(jié)里縮短出示時光,直接出示,,實際效果我認(rèn)為是比較理想的。課上還就應(yīng)及時運用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自我的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。教師就應(yīng)及時跟上個性化的語言評價,激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來。

《倍數(shù)和因數(shù)》教學(xué)反思10

  《公倍數(shù)和公因數(shù)》的教學(xué)已接近尾聲,但練習(xí)反饋,部分學(xué)生求兩個數(shù)的最大公因數(shù)和最小公倍數(shù)錯誤百出,細(xì)細(xì)思量,用課本上列舉的方法,真的很難一下子準(zhǔn)確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的最小公倍數(shù),有學(xué)生寫80,25和50的最大公因數(shù)有學(xué)生寫5。……而且去問問學(xué)生找兩個數(shù)公倍數(shù)和最小公倍數(shù),或者兩個數(shù)的公因數(shù)和最大公因數(shù)的感受,他們都說“煩”,“很煩”,“太麻煩了”。

  在了解了學(xué)生的感受以后,我又重新通過練習(xí)概括出了一些特殊情況:

  (1)兩個數(shù)是倍數(shù)關(guān)系的,這兩個數(shù)的最小公倍數(shù)是其中較大的一個數(shù),最大公因數(shù)是其中較小的'一個數(shù);

 。2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的情況(“互質(zhì)數(shù)”這個概念學(xué)生沒有學(xué)到):

 、賰蓚不同的素數(shù);

 、趦蓚連續(xù)的自然數(shù);

 、1和任何自然數(shù)。

  另外,我又結(jié)合教材后面的“你知道嗎?”,指導(dǎo)了一下用短除法求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)的方法。在完成練習(xí)時,讓學(xué)生根據(jù)情況,用自己喜歡的方法來求兩個數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學(xué)生結(jié)合題目中兩個數(shù)的特點,自主選擇方法的空間,學(xué)生比較喜歡。

  想來想去,還是真得很懷念舊教材上的“短除法”。

《倍數(shù)和因數(shù)》教學(xué)反思11

  在本課教學(xué)時,先讓學(xué)生用12個同樣大小的正方形,擺成一個長方形,并用乘法算式把自己的擺法表示出來,讓學(xué)生動手操作、合作交流,怎樣擺,有哪些不同的擺法?先讓學(xué)生小組交流、操作后,以其中的一道乘法算式為例,引出倍數(shù)和因數(shù)的概念。

  這樣的安排,體現(xiàn)了以學(xué)生為本,用學(xué)生已有的經(jīng)驗和動手操作能力,很好的'調(diào)動了學(xué)生學(xué)習(xí)的積極性和主動性。一方面讓學(xué)生樂于接受,是學(xué)生在展示自己的想法,老師僅僅是組織者;另一方面培養(yǎng)了學(xué)生善于觀察和傾聽他人的想法的良好學(xué)習(xí)態(tài)度。對于找一個數(shù)的倍數(shù)比找一個數(shù)的因數(shù)的方法要容易些,所以我先教學(xué)如何找一個數(shù)的倍數(shù),在學(xué)生學(xué)會了找一個數(shù)的倍數(shù)的方法基礎(chǔ)上,再教學(xué)如何找一個數(shù)的因數(shù),這樣教學(xué)便于學(xué)生自己探索并總結(jié)歸納出找一個數(shù)的因數(shù)的方法,體現(xiàn)了讓學(xué)生自主學(xué)習(xí)。

  在處理本節(jié)課的難點找36的因數(shù)時,我原來是放手讓學(xué)生自己去找的。結(jié)果試上時很多學(xué)生沒有頭緒,無從下手。時間倒是花去不少,可方法卻沒有多少可行的。我靜下心來尋找原因,找一個的因數(shù)是學(xué)生以前從未遇到過的問題,自然不知道如何解決。再加上找一個數(shù)的因數(shù)比找一個數(shù)的倍數(shù)要難得多,我這樣貿(mào)然地放手,學(xué)生當(dāng)然不知所措了。后來,在處理找36的因數(shù)時,如何做到既不重復(fù)又不遺漏地找36的因數(shù)?我認(rèn)為要對學(xué)生扶放得當(dāng),要有適當(dāng)?shù)胤,學(xué)生才能探索出方法。于是,我讓學(xué)生回憶剛才的幾道乘法算式,然后把找一個數(shù)的倍數(shù)的方法有效的遷移到找一個數(shù)的因數(shù)中。果然學(xué)生知道了該如何思考后,效果好了很多。

《倍數(shù)和因數(shù)》教學(xué)反思12

  在上學(xué)期的白紙備課活動中,我們高年段數(shù)學(xué)抽到的教學(xué)內(nèi)容就是因數(shù)與倍數(shù),這個內(nèi)容是我沒有教過的,在看到教學(xué)內(nèi)容時,我心里不禁在打鼓,我能找準(zhǔn)教學(xué)重難點嗎?能突破重難點嗎?一連串問題涌了上來,最后我還是讓自己冷靜下來,靜下心來認(rèn)真分析教材,盡自己最大的努力梳理出教學(xué)重難點,創(chuàng)設(shè)情境、設(shè)計游戲來突出重點、突破難點。在設(shè)計完教學(xué)過程后,我也與同組的老師交流了活動體會。原來在老教材中沒有因數(shù)這個概念,只有約數(shù)和倍數(shù),而且是由整除的概念引入的,但因為我是第一次教學(xué)這個內(nèi)容,很自然的就沒有被以往教材的教學(xué)定式所束縛,嘗到了新教材的甜頭。現(xiàn)在剛好又教了這個內(nèi)容,仔細(xì)參考了教學(xué)用書我才真正領(lǐng)悟到了新教材的新穎所在。

  新教材在引入因數(shù)和倍數(shù)的概念時與以往的教材有所不同。在以往的教材中,都是通過除法算式來引出整除的概念,每個除法算式對應(yīng)著一對有整除關(guān)系的數(shù),如b÷a=n表示b能被a整除,b÷n=a表示b能被n整除。在此基礎(chǔ)上再引出因數(shù)和倍數(shù)的概念。實際上,由于乘除法本身就存在著互逆關(guān)系,用乘法算式(如b=na)同樣可以表示整除的含義。因此,新教材中沒有用數(shù)學(xué)化的語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。這樣,學(xué)生不必通過12÷2=6得出12能被2整除,進(jìn)而2是12的因數(shù),12是2的倍數(shù)。再通過12÷6=2得出12能被6整除,進(jìn)而6是12的因數(shù),12是6的'倍數(shù),大大簡化了敘述和記憶的過程。在這兒,用一個乘法算式2×6=12可以同時說明“2和6都是12的因數(shù),12是2的倍數(shù),也是6的倍數(shù)!

  這樣的設(shè)計既減輕了學(xué)生的學(xué)習(xí)負(fù)擔(dān)又讓學(xué)生在學(xué)習(xí)時盡量避免出現(xiàn)概念混淆、理解困難的問題。學(xué)生對新知掌握較牢,在實際教學(xué)中我就是這樣處理的,學(xué)生樂學(xué),思路清晰。

《倍數(shù)和因數(shù)》教學(xué)反思13

  XXXX小學(xué) XXXXX

  教學(xué)內(nèi)容:教材例1、例2

  教學(xué)目標(biāo)

  1.知識與技能:讓學(xué)生初步理解因數(shù)和倍數(shù)的概念,掌握找因數(shù)和倍數(shù)的方法。學(xué)會用列舉法找一個數(shù)的因數(shù)和倍數(shù)。

  2.過程與方法:借助直觀圖,先引導(dǎo)學(xué)生觀察后列出乘法算式,最后結(jié)合乘法算式來理解因數(shù)與倍數(shù)的概念。

  3.情感、態(tài)度與價值觀:理解因數(shù)和倍數(shù)的意義能及兩者之間相互依存的關(guān)系。

  教學(xué)重點:理解因數(shù)和倍數(shù)的概念。

  教學(xué)難點:掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。

  教學(xué)方法:啟發(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。

  教學(xué)準(zhǔn)備:多媒體。

  教學(xué)過程:

  一、新課導(dǎo)入:

  1.出示教材第5頁例1。

  12÷2=6 9÷5=1.830÷6=5 2÷3=0.6

  26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7

  (1)觀察: 引導(dǎo)觀察例1中的算式,你發(fā)現(xiàn)了什么?(都是除法算式)

  (2)分類:你能把上面的除法算式分類嗎?

  學(xué)生分類后,教師組織學(xué)生交流,引導(dǎo)學(xué)生根據(jù)是否整除分為以下兩類

  第一類 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二類 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25

  2.引入課題。這節(jié)課我們就來學(xué)習(xí)有關(guān)數(shù)的整除的相關(guān)知識。(板書課題:因數(shù)和倍數(shù))

  二、探索新知:

 。ㄒ唬、明確因數(shù)與倍數(shù)的意義。(教學(xué)例1)

  1. 教師引導(dǎo)。教師指出:在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們

  就說被除數(shù)是除數(shù)和商的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。例如:12÷2=6,我們說12是2和6的倍數(shù),2和6是12的因數(shù)。

  2. 學(xué)生嘗試。

  教師讓學(xué)生說一說第一類的每個算式中,誰是誰的因數(shù)?誰是誰的倍數(shù)?先同桌互相說一說,再組織全班交流。

  3. 深化認(rèn)識。師:通過剛才的說一說活動,你發(fā)現(xiàn)了什么?

  引導(dǎo)學(xué)生體會:因數(shù)和倍數(shù)雖是兩個不同的概念,但又是相互依存的,二者不能單獨存在。我們不能說誰是因數(shù),誰是倍數(shù),而應(yīng)該說誰是誰的因數(shù),誰是誰的倍數(shù)。例如,30÷6=5,30是6和5的倍數(shù),6和5是30的因數(shù)。教師強調(diào),并讓學(xué)生注意:為了方便,在研究因數(shù)和倍數(shù)的時候,我們所說的數(shù)指的是自然數(shù)(一般不包括O)。

  4. 即時練習(xí)。指導(dǎo)學(xué)生完成教材第5頁“做一做”。

  小結(jié):如果a÷b =c(a,b,c均是不為0的自然數(shù)),那么a就是b和c的倍數(shù),b和c是a的因數(shù)。因數(shù)和倍數(shù)是相互依存的。

  (二)、探索找一個數(shù)因數(shù)的方法。(教學(xué)例2)

  1. 出示例2:18的因數(shù)有哪幾個?

  (1) 學(xué)生獨立思考。

  師:根據(jù)因數(shù)和倍數(shù)的意義,想一想18除以哪些整數(shù)的結(jié)果是整數(shù)。

  18÷1=18,l和18是18的因數(shù);18÷2=9, 2和9是18的因數(shù);18÷3=6, 3和6是18的因數(shù)。引導(dǎo)學(xué)生把18的因數(shù)按從小到大的順序排列,每兩個因數(shù)之間用逗號隔開,全部寫完后用句號結(jié)束,即18的因數(shù)有:1,2,3,6,9 ,18。

  (2)小組合作交流。交流時教師要讓學(xué)生說明找的方法,引導(dǎo)學(xué)生認(rèn)識:只要想18除以哪些整數(shù)的結(jié)果是整數(shù),并且要從1開始,一對一對地找,避免遺漏。如果學(xué)生還有其他想法,只要合理,教師都應(yīng)給予肯定。

  (3)采用集合圖的`方法。

  教師指出也可用右面的集合圖來表示18的全部因數(shù)。明確:用圖示法表示18的因數(shù)時,先畫一個橢圓,在橢圓的上面寫上“18的因數(shù)”,再把18的因數(shù)按從小到大的順序有規(guī)律地寫在橢圓里,每兩個因數(shù)之間也用逗號隔開,全部寫完后不加句號。

  (4)練習(xí)。讓學(xué)生找出30的因數(shù)和36的因數(shù),并組織交流。

  30的因數(shù)有1,2,3,5,6,10,15,30。

  36的因數(shù)有1,2,3,4,6,9,12,18,36。

  三、鞏固練習(xí)

  指導(dǎo)學(xué)生完成教材“練習(xí)二”第1、6題。學(xué)生獨立完成全部練習(xí)后教師組織學(xué)生進(jìn)行集體證正。

  四、課堂小結(jié)

  師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?

  板書設(shè)計:

  因數(shù)和倍數(shù)

  12÷2=6 12是2和6的倍數(shù)

  2和6是12的因數(shù) 18的因數(shù)有1,2,3,6,9,18。

  一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。

  作業(yè):教材第7頁“練習(xí)二”第2(1)題。

  第二單元:因數(shù)和倍數(shù)

  第二課時:因數(shù)與倍數(shù)(2)

  教學(xué)內(nèi)容:教材P6例3及練習(xí)二第2(1)、3~8題。

  教學(xué)目標(biāo):

  知識與技能:通過學(xué)習(xí),使學(xué)生能自主探究,找出求一個數(shù)的倍數(shù)的方法。 過程與方法:結(jié)合具體情境,使學(xué)生進(jìn)一步認(rèn)識自然數(shù)之間存在因數(shù)和倍數(shù)的關(guān)系,掌握求一個數(shù)的因數(shù)和倍數(shù)的方法。

  情感、態(tài)度與價值觀:初步學(xué)會從數(shù)學(xué)的角度提出問題、理解問題,并能用所學(xué)知識解決問題。在解決問題的過程中,培養(yǎng)學(xué)生概括、分析和比較的能力,使學(xué)生體會數(shù)學(xué)知識的內(nèi)在聯(lián)系。

  教學(xué)重點:掌握求一個數(shù)的倍數(shù)的方法。

  教學(xué)難點:理解因數(shù)和倍數(shù)兩者之間的關(guān)系。

  教學(xué)方法:啟發(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。

  教學(xué)準(zhǔn)備:多媒體。

  教學(xué)過程:

  一、復(fù)習(xí)導(dǎo)入

  10,28,42的因數(shù)有哪些?你是用什么方法找出這些數(shù)的因數(shù)個數(shù)的?一個數(shù)的因數(shù)中,最大的是幾?最小的是幾?

  二、探索新

  1.探索找倍數(shù)的方法。(教學(xué)例3)

  出示例3:2的倍數(shù)有哪些?

  師:你會找2的倍數(shù)嗎?給你們1分鐘的時間,看誰寫得又對、又快、又多!準(zhǔn)備好了嗎?開始!

  師:時間到,你寫了多少個2的倍數(shù)?生1:15個。生2:24個。

  師:大家都是用的什么方法呢?

  生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。

  生2:我也是用乘法,用2去乘1、乘2……

  師:哪些同學(xué)也是用乘法做的?

  師:你們都是用2去乘一個數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?

  生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。

  師:很好!如果給你更長的時間,你能把2的倍數(shù)全部寫出來嗎?

  師:為什么?(因為2的倍數(shù)有無數(shù)個)

  師:怎么辦?(用省略號)

  師:通過交流,你有什么發(fā)現(xiàn)?

  引導(dǎo)學(xué)生初步體會2的倍數(shù)的個數(shù)是無限的。

  追問:你能用集合圖表示2的倍數(shù)嗎?

  學(xué)生填完后,教師組織學(xué)生進(jìn)行核對。

  (4)即時練習(xí)。讓學(xué)生找出3的倍數(shù)和5的倍數(shù),并組織交流。學(xué)生舉例時可能會產(chǎn)生錯誤,教師要引導(dǎo)學(xué)生根據(jù)錯例進(jìn)行適時剖析。

  4.反思提煉。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?

  先讓學(xué)生在小組內(nèi)交流,再組織全班集體交流,通過全班交流,引導(dǎo)學(xué)生認(rèn)識以下三點:

  (1)一個數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。

  (2)一個數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。

  (3)一個數(shù)的因數(shù)的個數(shù)是有限的,一個數(shù)的倍數(shù)的個數(shù)是無限的。

  三、鞏固提升

  1.指導(dǎo)學(xué)生完成教材第7~8頁“練習(xí)二”第4、5、6、7題。

  學(xué)生獨立完成全部練習(xí)后教師組織學(xué)生進(jìn)行集體證正。

  集體訂正時,教師著重引導(dǎo)學(xué)生認(rèn)識以下幾點:

  (1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的倍數(shù)”答案是一樣的。

  (2)第5題中的第(2)小題是錯的,因為一個數(shù)的倍數(shù)的個數(shù)是無限的,第(4)小題也是錯的,因為在研究因數(shù)和倍數(shù)時,我們所說的數(shù)指的是自然數(shù),不含小數(shù)。

  (3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。

  2.利用求倍數(shù)的方法解決生活中的實際問題

  出示:媽媽買來幾個西瓜,2個2個地數(shù),正好數(shù)完,5個5個地數(shù),也正好數(shù)完。這些西瓜最少有多少個?

  理解題意,分析解答。

  教師提示“2個2個地數(shù),正好數(shù)完,說明西瓜的個數(shù)是2的倍數(shù),5個5

《倍數(shù)和因數(shù)》教學(xué)反思14

  1倍數(shù)和因數(shù)這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù)。而這里的處理的方法有所不同,在這之前學(xué)生還沒有學(xué)習(xí)小數(shù)乘除法,只接觸過整數(shù)乘除法,因此教材通過用12個小正方形拼長方形并寫乘法算式來引入因數(shù)和倍數(shù)。

  2要求學(xué)生用乘法算式表示自己的長方形的不同擺法,幫助學(xué)生建立起乘法意義的表象,為后面利用乘法找因數(shù)和倍數(shù)埋下伏筆。

  3重視說的訓(xùn)練,要求具體明確。“誰是誰的倍數(shù),誰是誰的因數(shù)”當(dāng)學(xué)生說到12*1=12時,感到有些拗口,教師即時鼓勵,體現(xiàn)了數(shù)學(xué)的`人文精神和不放過任何細(xì)節(jié)的作風(fēng)。

  4如何做到既不重復(fù)又不遺漏地找36的因數(shù),對于剛剛對倍數(shù)因數(shù)有個感性認(rèn)識的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢。先讓學(xué)生自己獨立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這不老師給予有有效得多。

  5練習(xí)形式活潑多樣,即顛覆傳統(tǒng)又扎實訓(xùn)練。

《倍數(shù)和因數(shù)》教學(xué)反思15

  《因數(shù)和倍數(shù)》是一節(jié)數(shù)學(xué)概念課,在以往的教材中,都是通過除法算式來引出整除的概念,而現(xiàn)在的人教版教材中沒有用數(shù)學(xué)語言給“整除”下定義,而是利用一個簡單的實物圖(2行飛機(jī),每行6架)引出一個乘法算式2×6=12,通過這個乘法算式直接給出因數(shù)和倍數(shù)的概念。對于學(xué)生來說是比較難掌握的內(nèi)容。尤其對因數(shù)和倍數(shù)是一對相互依存的概念,不能單獨存在,不是很好理解。我通過生活與數(shù)學(xué)之間的聯(lián)系,幫助學(xué)生理解因數(shù)倍數(shù)相互依存的關(guān)系。所以在上課之前我特意舉一些生活中的實例來幫助學(xué)生對相互依存的理解,在描述因數(shù)和倍數(shù)的概念時就不會說錯了。對于這節(jié)課的`教學(xué),我特別注意下面幾個細(xì)節(jié)來幫助學(xué)生理解因數(shù)和倍數(shù)的概念。

  1、是我上課時特別注意讓學(xué)生明白什么情況下才能討論因數(shù)和倍數(shù)的概念。

  2、是要學(xué)生注意區(qū)分乘法算式中的"因數(shù)"和本單元中的"因數(shù)"的聯(lián)系和區(qū)別。在同一個乘法算式中,兩者都是指乘號兩邊的整數(shù),但前者是相對"積"而言的,與"乘數(shù)"同義,可以是小數(shù),而后者是相對于"倍數(shù)"而言的,兩者都只能是整數(shù)。

  3、是要注意區(qū)分"倍數(shù)"與前面學(xué)過的"倍"的聯(lián)系和區(qū)別。"倍"的概念比"倍數(shù)"要廣?梢哉f"15是3的倍數(shù)",也可以說"1.5是0.3的5倍",但我們只能說"15是3的倍數(shù)",卻不能說"1.5是0.的倍數(shù)"。在課堂中反復(fù)強調(diào),幫助學(xué)生認(rèn)真理解辨析,所以學(xué)生一節(jié)課下來對這組概念就理解透徹了,就不會模糊了。


《倍數(shù)和因數(shù)》教學(xué)反思16

  本課程的教材涉及許多概念,這些概念抽象且容易混淆。如何使學(xué)生更容易理解這些概念,理清概念之間的關(guān)系,構(gòu)建知識之間的網(wǎng)絡(luò)體系,是本課程教學(xué)的重點和難點。同時,學(xué)習(xí)整理知識是這門課教學(xué)的靈魂。

  成功:

  1。構(gòu)建知識網(wǎng)絡(luò)體系,理清知識之間的關(guān)系。在教學(xué)中,我首先通過一個聯(lián)想紙牌游戲激發(fā)學(xué)生的學(xué)習(xí)興趣,讓學(xué)生用因子和復(fù)數(shù)的知識來描述數(shù)字2。學(xué)生很容易認(rèn)為2是最小的素數(shù),2是偶數(shù),2的因子是1和2的倍數(shù),2。有2,4,6和hellip,2。2的倍數(shù)特征是一個位為0、2、4、6、8的數(shù)字,學(xué)生回答后,教師及時掌握關(guān)鍵詞,引出本單元的所有概念:因子、倍數(shù)、素數(shù)、復(fù)合數(shù)、奇數(shù)、偶數(shù)、公因子、最大公因子、公倍數(shù)、最小公倍數(shù)、,多重特征2、多重特征3和多重特征5。如何使這些雜亂的概念更簡潔、更有序、更能反映知識之間的關(guān)系?通過課前的安排,發(fā)揮了小組合作與交流的作用。在相互交流中,學(xué)生相互學(xué)習(xí),相互學(xué)習(xí),逐漸對這些概念之間的關(guān)系有了進(jìn)一步的理解。然后,在選擇了幾個學(xué)生的作品進(jìn)行展示和評價后,最后,教師和學(xué)生一起組織和調(diào)整,最后完善知識之間的網(wǎng)絡(luò)體系。

  2.教學(xué)生如何組織知識。在教學(xué)中,教人釣魚比教人釣魚更好。作為一名教師,最好教給學(xué)生必要的學(xué)習(xí)方法。在本課的整理和復(fù)習(xí)中,我要求學(xué)生在課前總結(jié)第二單元中因子和倍數(shù)的概念。涉及的概念有:因子、倍數(shù)、公因子、公倍數(shù)、最大公因子、最小公倍數(shù)、素數(shù)、合數(shù)、奇數(shù)、偶數(shù)、2的多重特征、3的多重特征、5的多重特征,并提出了具體要求:第一,觀察和分析這些概念,哪些概念是密切相關(guān)的;第二,根據(jù)這些概念之間的密切關(guān)系,它們可以分為幾個類別;第三,它們可以用你喜歡的方式表達(dá),也可以用數(shù)學(xué)手寫報紙的形式呈現(xiàn)。課前設(shè)計完成后,我提前收集了一些有代表性的作品,放在課件中,供學(xué)生欣賞,互相學(xué)習(xí),互相學(xué)習(xí),共同提高。通過小組討論和課堂交流,教師和學(xué)生一起整理和總結(jié)本單元的概念,并繪制知識網(wǎng)絡(luò)圖。

  在本課程的整個設(shè)計過程中,通過學(xué)生的聯(lián)想,回憶以前學(xué)到的知識,并在他們的頭腦中建立知識之間的關(guān)系,從而揭示出這個知識網(wǎng)絡(luò)圖就是思維導(dǎo)圖。掌握這一方法后,我們可以系統(tǒng)地梳理數(shù)學(xué)中的每一個單元、每一卷知識、小學(xué)數(shù)學(xué)知識,讓學(xué)生體會思維導(dǎo)圖法的威力。學(xué)生在感嘆這種方法的`魅力的同時,也可以將這種方法推廣到其他學(xué)科,讓學(xué)生真正掌握知識整理的方法,并將其應(yīng)用到以后的單元知識整理中。

  3.進(jìn)一步回顧實踐中的概念。在實踐環(huán)節(jié),我根據(jù)這些概念設(shè)計了一些相應(yīng)的練習(xí)。目的是通過實踐促進(jìn)復(fù)習(xí),在實踐中更好地理解這些概念的具體含義,加深學(xué)生對概念的理解和掌握。在實踐過程中,學(xué)生不僅掌握了知識排序的方法,而且對知識的語境有了深刻的理解,對每個知識點的概念有了更清晰的理解,起到了復(fù)習(xí)和復(fù)習(xí)舊知識的作用。

  缺點:

  1。個別學(xué)生不會在展覽評價中進(jìn)行評價,而只是思考設(shè)計的美,而不是解釋知識之間的關(guān)系。老師應(yīng)該在這一點上給他們指導(dǎo)。

  2.有些學(xué)生甚至連最小的偶數(shù)都不懂,因為第二單元的知識是在開學(xué)時學(xué)的,有些知識點已經(jīng)忘記了。因此,他們在學(xué)習(xí)每一單元后,會繼續(xù)鞏固和實踐自己的知識。

  3.由于知識點太多,實踐時間不足,基本實踐時間可以保證,但需要擴(kuò)展的知識沒有得到更好的呈現(xiàn)。

  再教育設(shè)計:

  1。掌握數(shù)學(xué)知識的本質(zhì)。漂亮的排序表單只是外部的,而不是關(guān)鍵的。注重引導(dǎo)學(xué)生從數(shù)學(xué)本質(zhì)出發(fā)思考問題,排除數(shù)學(xué)本質(zhì)以外的東西,激發(fā)思維,從而形成良好的數(shù)學(xué)思維品質(zhì)。

  2.我們應(yīng)該繼續(xù)深入探索數(shù)學(xué)的思想、靈魂和方法來指導(dǎo)課堂教學(xué),讓學(xué)生掌握未來學(xué)習(xí)知識的鑰匙,學(xué)會打開知識的大門。

《倍數(shù)和因數(shù)》教學(xué)反思17

  《因數(shù)和倍數(shù)》是人教版五年級下冊第二章第一課時所學(xué)內(nèi)容,這一內(nèi)容與原來教材比有了很大的不同,舊教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識整除的情況下直接認(rèn)識因數(shù)和倍數(shù)的,這部分內(nèi)容學(xué)生初次接觸,對于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實生活中又不經(jīng)常接觸,對這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個長期的消化理解的過程。上完這節(jié)課覺得有以下幾點做得較好:

  1、通過操作實踐,認(rèn)識因數(shù)和倍數(shù)

  我開門見山,直接入題,創(chuàng)設(shè)了有效的數(shù)學(xué)學(xué)習(xí)情境,變抽象為直觀。首先讓學(xué)生動手操作把12個小正方形擺成不同的長方形,再讓學(xué)生寫出不同的乘法算式,借助乘法算式引出因數(shù)和倍數(shù)的意義,這樣在學(xué)生已有的知識基礎(chǔ)上,從動手操作,直觀感知,讓學(xué)生自主體驗數(shù)與形的結(jié)合,進(jìn)而形成因數(shù)與倍數(shù)的意義,使學(xué)生初步建立了“因數(shù)與倍數(shù)”的概念,減緩難度,效果較好。

  2、通過自主化、活動化、合作化,找因數(shù)和倍數(shù)

  整個教學(xué)過程中力求體現(xiàn)學(xué)生是學(xué)習(xí)的主體,教師只是教學(xué)活動的.組織者、引導(dǎo)者、參與者,。整節(jié)課中,我始終為學(xué)生創(chuàng)造寬松的學(xué)習(xí)氛圍,讓學(xué)生自主探索,學(xué)習(xí)理解因數(shù)和倍數(shù)的意義,探索并掌握找一個數(shù)的因數(shù)和倍數(shù)的方法,引導(dǎo)學(xué)生在充分的動口、動手、動腦中自主獲取知識。教學(xué)中的多次合作不僅能讓學(xué)生在合作中發(fā)表意見,參與討論,獲得知識,發(fā)現(xiàn)特征,而且還很好地培養(yǎng)了學(xué)生的合作學(xué)習(xí)能力,初步形成合作與競爭的意識。

  3、通過變式拓展,培養(yǎng)學(xué)生能力

  課前我精心設(shè)計練習(xí)題,力求不僅圍繞教學(xué)重點,而且注意到練習(xí)的層次性,趣味性。譬如:讓學(xué)生用所學(xué)知識介紹自己,通過數(shù)字卡片找自己的因數(shù)和倍數(shù)朋友等等。學(xué)生拿著自己的數(shù)字卡片上臺找自己的朋友,讓臺下學(xué)生判斷自己的學(xué)號是不是這個數(shù)的因數(shù)或倍數(shù),如果臺下學(xué)生的學(xué)號是這個數(shù)的因數(shù)或倍數(shù)就站到前面。由于答案不唯一,學(xué)生思考問題的空間很大,這樣既培養(yǎng)了學(xué)生的發(fā)散思維能力,又使學(xué)生享受到了數(shù)學(xué)思維的快樂,感悟數(shù)學(xué)的魅力。

  但是還存在一些不可忽視的問題:

  1、課上應(yīng)該及時運用多媒體將學(xué)生找的因數(shù)呈現(xiàn)出來,引導(dǎo)學(xué)生歸納總結(jié)自己的發(fā)現(xiàn):最小的因數(shù)是1,最大的因數(shù)是它本身。

  2、課堂用語還不夠精煉,應(yīng)該進(jìn)一步規(guī)范課堂用語,做到不拖泥帶水。

  3、教者評價應(yīng)及時跟上個性化的語言評價,激活學(xué)生的情感,將學(xué)生的思維不斷活躍起來,避免單一化。

《倍數(shù)和因數(shù)》教學(xué)反思18

  不知不覺,我們又進(jìn)行了第二單元的學(xué)習(xí)。第二單元的內(nèi)容是《因數(shù)與倍數(shù)》,這部分內(nèi)容與老教材相比變化很大,我覺得第二、四單元是本冊教材中變化最大的單元,要引起足夠的重視。

  1、以往認(rèn)識因數(shù)和倍數(shù)是借助于整除現(xiàn)象,“X能被X整除,或X能整除X”,所以X是X的因數(shù),X是X的倍數(shù),F(xiàn)在的教材完全不同了,2X3=6,所以2和3是6的因數(shù),6是2和3的倍數(shù),借助整除的模式na=b直接引出因數(shù)和倍數(shù)的概念。

  2、以往數(shù)學(xué)教材中,概念教學(xué)的量很大。數(shù)的整除,因數(shù)(老教材稱為約數(shù)),倍數(shù),2、5、3的倍數(shù)的特征(老教材稱為能被2、5、3整除的數(shù)的特征),質(zhì)數(shù),倒數(shù),分解質(zhì)因數(shù),最大公因數(shù)(以往的教材中稱為最大公約數(shù)),最小公倍數(shù)等內(nèi)容共同編排在后面,合為一個單元。而現(xiàn)在新教材本單元只安排了因數(shù)和倍數(shù),2、5、3的倍數(shù)的特征,質(zhì)數(shù)合數(shù)。其它內(nèi)容安排在了第四單元《分?jǐn)?shù)的意義和性質(zhì)》,借助約分引出公約數(shù)、公倍數(shù)的學(xué)習(xí),改變了概念多而集中,抽象程度過高的現(xiàn)象。

  3、以往求最大公約數(shù),最小公倍數(shù)時,采用的方法是唯一的、固定的,也就是有短除法分解質(zhì)因數(shù),而新教材中鼓勵方法多樣化,不把它作為正式的內(nèi)容教學(xué),而是出現(xiàn)在教材的你知道嗎中?不那么呆板了,尊重學(xué)生的思維差異。

  可見,編者為體現(xiàn)新課標(biāo)精神對本部分內(nèi)容作了精心的調(diào)整,煞費苦心,可是學(xué)完了本單元的第一部分和第二部分內(nèi)容,我對本單元的學(xué)習(xí)內(nèi)容有了小小的疑問。這一單元內(nèi)容分為因數(shù)和倍數(shù),2、5、3的'倍數(shù)的特征,質(zhì)數(shù)和合數(shù),我覺得第一部分內(nèi)容和第三部分內(nèi)容的關(guān)系很大,連續(xù)性強。知道了什么是因數(shù)和倍數(shù),也會找一個數(shù)的因數(shù)和倍數(shù)了,那么就應(yīng)該從找因數(shù)和個數(shù)問題上學(xué)習(xí)質(zhì)數(shù)和合數(shù)。教材對質(zhì)數(shù)和合數(shù)的學(xué)習(xí)內(nèi)容設(shè)計較好,開門見山讓學(xué)生找出1-20各數(shù)的因數(shù),觀察因數(shù)的個數(shù)有什么規(guī)律,再引出質(zhì)數(shù)和合數(shù)的學(xué)習(xí)?蔀槭裁丛谥虚g突然加上了2、5、3的倍數(shù)的特征?這樣感覺前后內(nèi)容失去了聯(lián)系,不夠自然流暢。所以我覺得可以把二三部分內(nèi)容作為適當(dāng)?shù)恼{(diào)整,即因數(shù)和倍數(shù),質(zhì)數(shù)和合數(shù),2、5、3的倍數(shù)的特征會比較好一些。

《倍數(shù)和因數(shù)》教學(xué)反思19

  一.數(shù)形結(jié)合減緩難度

  《因數(shù)和倍數(shù)》這一內(nèi)容,學(xué)生初次接觸。在導(dǎo)入中我創(chuàng)設(shè)有效的數(shù)學(xué)學(xué)習(xí)情境,數(shù)形結(jié)合,變抽象為直觀。讓學(xué)生把12個小正方形擺成不同的長方形,并用不同的乘法算式來表示自己腦中所想,借助乘法算式引出因數(shù)和倍數(shù)的意義。這樣,學(xué)生已有的數(shù)學(xué)知識引出了新知識,減緩難度,效果較好。

  二.自主探究,合作學(xué)習(xí)

  放手讓每個同學(xué)找出36的'所有因數(shù),學(xué)生圍繞教師提出的“怎樣才能找全36的所有因數(shù)呢?”這個問題,去尋找36的所有因數(shù)。由于個人經(jīng)驗和思維的差異性,出現(xiàn)了不同的答案,但這些不同的答案卻成為探索新知的資源,在比較不同的答案中歸納出求一個數(shù)的因數(shù)的思考方法。既留足了自主探究的空間,又在方法上有所引導(dǎo),避免了學(xué)生的盲目猜測。通過展示、比較不同的答案,發(fā)現(xiàn)了按順序一對一對找的好方法,突出了有序思考的重要性,有效地突破了教學(xué)的難點。

  三.在游戲中體驗學(xué)習(xí)的快樂

  在最后的環(huán)節(jié)中我設(shè)計了“找朋友”的游戲,層次是先找因數(shù)朋友,再找倍數(shù)朋友,最后為兩個數(shù)找到共同的朋友。

  這堂課我還存在許多不足,我的教學(xué)理念很清楚,課堂上學(xué)生是主體教師只是合作者。但在教學(xué)過程中許多地方還是不由自主的說得過多,給學(xué)生的自主探索空間太少。

《倍數(shù)和因數(shù)》教學(xué)反思20

  《因數(shù)和倍數(shù)》是人教版小學(xué)數(shù)學(xué)五年級下冊第二單元的起始課,也是一節(jié)重要的數(shù)學(xué)概念課,所涉及的知識點較多,內(nèi)容較為抽象,對于學(xué)生來說是比較難掌握的內(nèi)容,在這樣的前提下,如何能充分發(fā)揮學(xué)生的主體作用,讓他們自主探索,自己感悟概念的內(nèi)涵,并靈活地運用“先學(xué)后教”的模式,達(dá)到課堂的高效,在課堂中我做了以下的嘗試。

  一、領(lǐng)會意圖,做到用教材教。

  我覺得作為一名教師,重要的是領(lǐng)會教材的編寫意圖,靈活的運用教材,讓每個細(xì)節(jié)都能發(fā)揮它應(yīng)有的作用。如教材是利用了一個簡單的實物圖(2行飛機(jī),每行6架;3行飛機(jī),每行4架)引出了要研究的兩個乘法算式“2×6=12,3×4=12”直接給出了“誰是誰的因數(shù),誰是誰的倍數(shù)”的概念。這樣做目的有二:一是滲透了從乘法算式中找因數(shù)倍數(shù)的'方法,二是利用數(shù)與數(shù)之間的關(guān)系明確的看到因數(shù)倍數(shù)這種相互依存的關(guān)系。

  但這樣做仍不夠開放,我是這樣做的:課始并沒有出示主題圖,直接提出問題:“如果有12架飛機(jī),你可以怎樣去排列?”學(xué)生除了能想到圖中的兩種排法還能得到第三種,這樣做是用開放的問題做為誘因,使學(xué)生得到“2×6=12、3×4=12、1×12=12”三個算式,而這些算式不僅能夠清晰地體現(xiàn)因數(shù)倍數(shù)間的關(guān)系,更是后面“如何求一個數(shù)的因數(shù)”的方法的滲透和引導(dǎo)。看來靈活的運用教材,深放領(lǐng)會意圖,才能使教學(xué)更為輕松、高效!

  二、模式運用,做到靈活自然。

  模式是一種思想或是引子,面對不同的課型,我們應(yīng)該大膽嘗試,不斷的積累經(jīng)驗,使模式不再是僵化的,機(jī)械的。只要是能促進(jìn)學(xué)生能力形成的東西,我們不能因為要運用模式而把它們淡化,反之,應(yīng)該想方設(shè)法,在不知不覺中體現(xiàn)出來。

  如本課中例1是“求18的因數(shù)有哪些”,例2是“求2的倍數(shù)有哪些”教材的設(shè)計已經(jīng)能夠體現(xiàn)學(xué)生自主探索知識的軌跡,那我們何不通過一句簡短的過渡語讓學(xué)生進(jìn)入到下面的學(xué)習(xí)中呢?而沒有必要非要設(shè)計出兩個“自學(xué)指導(dǎo)”讓學(xué)生按步就搬地往下走,而且讓學(xué)生對比著去感受一個數(shù)“因數(shù)和倍數(shù)”的求法的不同,比先學(xué)例1再學(xué)例2的方式更容易讓學(xué)生發(fā)現(xiàn)不同,得到方法,加深對知識的理解,同時也更加體現(xiàn)了學(xué)生的自主性,這才是模式的真正目的所在。內(nèi)涵比形式更重要,發(fā)現(xiàn)比引導(dǎo)更有效!

【《倍數(shù)和因數(shù)》教學(xué)反思】相關(guān)文章:

《因數(shù)和倍數(shù)》教學(xué)反思01-31

因數(shù)和倍數(shù)的教學(xué)反思02-14

倍數(shù)和因數(shù)的教學(xué)反思03-06

《倍數(shù)和因數(shù)》教學(xué)反思04-11

《因數(shù)和倍數(shù)》教學(xué)反思10-19

因數(shù)和倍數(shù)教學(xué)反思10-26

因數(shù)和倍數(shù)教學(xué)反思07-02

《倍數(shù)和因數(shù)》教學(xué)反思04-11

因數(shù)和倍數(shù)教學(xué)反思03-19

倍數(shù)和因數(shù)的教學(xué)反思通用10-09