《因式分解》教學(xué)反思
篇一:因式分解教學(xué)反思
講解因式分解的定義的時候,同學(xué)們都很清楚。而我也強調(diào)的就是因式分解與乘法公式是相反方向的變形,并且在練習(xí)中一再將公式羅列出來。然后講授提公因式法、公式法(包括平方差、完全平方公式),講課的時候是一個公式一節(jié)課,先分解公式符合條件的形式再練習(xí),主要是以練習(xí)為重。
講課的過程是非常順利的,這令我以為學(xué)生的掌握程度還好。
講完因式分解的新課,我隨堂出了一些綜合性的練習(xí)題,才發(fā)現(xiàn)效果是不太好的。他們只是看到很表層的東西,而對于較為復(fù)雜的式子,卻無從下手。
課后,我總結(jié)的原因有以下四點:
。、思想上不重視,因為對于公式的互換覺得太簡單,只是將它作為一個簡單的內(nèi)容來看,所以課后沒有以足夠的練習(xí)來鞏固。
。病⒃趯W(xué)習(xí)過程中太過于強調(diào)形式,反而如何創(chuàng)造條件來滿足條件忽略了。導(dǎo)致他們對于與公式相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手。
。、靈活運用公式(特別與冪的運算性質(zhì)相結(jié)合的公式)的能力較差,如要將9-25x2化成32-(5x)2然后應(yīng)用平方差公式這樣的題目卻無從下手。究其原因,和我布置的作業(yè)及隨堂練習(xí)的單一性及難度低的特點有關(guān)。
。础⒁蚴椒纸鉀]有先想提公因式的習(xí)慣,在結(jié)果也沒有注意是否進行到每一個多項式因式都不能再分解為止,比如最簡單的將a3-a提公因式后應(yīng)用平方差公式,但很多同學(xué)都是只化到a(a2-1)而沒有化到最后結(jié)果a(a +1)(a -1)。 因式分解是一個重要的內(nèi)容,也是難點,我認為我對教材內(nèi)容的調(diào)整是比較適合的,但是我忽略了學(xué)生的接受能力,也沒有注意到計算題在練習(xí)方面的鞏固及題型的多樣化。在以后的教學(xué)中應(yīng)該更多結(jié)合學(xué)生的學(xué)習(xí)情況去調(diào)整教學(xué)進度,多發(fā)現(xiàn)學(xué)生在學(xué)習(xí)方面的優(yōu)勢和不足之處。
篇二:因式分解教學(xué)反思
1、從教材的地位與作用看:
、疟竟(jié)課的主要內(nèi)容是平方差公式的推導(dǎo)和平方差公式在整式乘法中的應(yīng)用.
⑵它是在學(xué)生已經(jīng)掌握單項式乘法、多項式乘法基礎(chǔ)上的拓展和創(chuàng)造性應(yīng)用;
、鞘菍Χ囗検匠朔ㄖ谐霈F(xiàn)的較為特殊的算式的第一種歸納、總結(jié);是從一般到特殊的認識過程的范例.
、人鼞(yīng)用十分廣泛,通過乘法公式的學(xué)習(xí),可以豐富教學(xué)內(nèi)容,開拓學(xué)生視野.更是今后學(xué)習(xí)因式公解、分式運算及其它代數(shù)式變形的重要基礎(chǔ). 2、從學(xué)生學(xué)習(xí)過程的角度看:
、 學(xué)生剛學(xué)過多項式的乘法,已經(jīng)具備學(xué)習(xí)和運用平方差公式的知識結(jié)構(gòu);
、 由于學(xué)生初次學(xué)習(xí)乘法公式,認清公式結(jié)構(gòu)并不容易,因此,教學(xué)時不可拔高要求,追求一步到位;
、 學(xué)生在本節(jié)課學(xué)習(xí)過程中出現(xiàn)的錯誤,迸發(fā)出的思維火花、情感都是本節(jié)課較好的教學(xué)資源.
三、教學(xué)目標:
。1)知識與技能
1.經(jīng)歷逆用平方差公式的過程.
2.會運用平方差公式,并能運用公式進行簡單的分解因式. (2)過程與方法
1.在逆用平方差公式的過程中,培養(yǎng)符號感和推理能力. 2.培養(yǎng)學(xué)生觀察、歸納、概括的能力.
。3)情感與價值觀要求:在分解過程中發(fā)現(xiàn)規(guī)律,并能用符號表示,從而體會數(shù)學(xué)的簡捷美;讓學(xué)生在合作探究的學(xué)習(xí)過程中體驗成功的喜悅;培養(yǎng)學(xué)生敢于挑戰(zhàn);勇于探索的精神和善于觀察、大膽創(chuàng)新的思維品質(zhì)。
四教學(xué)重點:利用平方差公式進行分解因式
五教學(xué)難點:領(lǐng)會因式分解的解題步驟和分解因式的徹底性。
六教學(xué)準備:深研課標和教材,分析學(xué)情 ,制作課件
因式分解這部分的內(nèi)容是八年級數(shù)學(xué)第一學(xué)期重難點,雖然應(yīng)用的公式只是三條,但要靈活應(yīng)用于解題卻不容易,所以我在制定這一章書的教學(xué)計劃時就對教材的教學(xué)順序作出了一些調(diào)整。因式分解的'公式是乘法公式的逆運算,所以我將因式分解提前學(xué),在學(xué)會乘法公式后暫時略過整式的除法直接學(xué)習(xí)因式分解,我認為這樣調(diào)整后可以加強公式的熟練使用;另一方面我加強乘法公式的練習(xí)鞏固,在沒有學(xué)習(xí)因式分解之前,先針對平方差公式以及完全平方公式的應(yīng)用及逆用作了一個專題訓(xùn)練。
在學(xué)習(xí)因式分解的這個專題訓(xùn)練的效果是不錯的,因為平方差公式以及完全平方公式都是剛剛學(xué)習(xí)且應(yīng)用較多的公式。作好這些準備工作之后,便開始學(xué)習(xí)因式分解。正式提出因式分解的定義的時候,同學(xué)們都一副明了的表情。而我也強調(diào)的就是因式分解與乘法公式是相反方向的變形,并且在練習(xí)中一再將公式羅列出來。然后講授提公因式法、公式法(包括平方差、完全平方公式),講課的時候是一個公式一節(jié)課,先分解公式符合條件的形式再練習(xí),主要是以練習(xí)為重。講課的過程是非常順利的,這令我以為學(xué)生的掌握程度還好。因為作業(yè)都是最基本的公式應(yīng)用,而提高題一般是特優(yōu)生才會選擇來做。
講完因式分解的新課,我隨堂出了一些綜合性的練習(xí)題,才發(fā)現(xiàn)效果是不太好的。他們只是看到很表層的東西,而對于較為復(fù)雜的式子,卻無從下手。
課后,我總結(jié)的原因有以下四點:1、思想上不重視,因為對于公式的互換覺得太簡單,只是將它作為一個簡單的內(nèi)容來看,所以課后沒有以足夠的練習(xí)來鞏固。2、在學(xué)習(xí)過程中太過于強調(diào)形式,反而如何創(chuàng)造條件來滿足條件忽略了。導(dǎo)致他們對于與公式相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手。3、靈活運用公式(特別與冪的運算性質(zhì)相結(jié)合的公式)的能力較差,如要將9-25x化成3-(5x)然后應(yīng)用平方差公式這樣的題目卻無從下手。究其原因,和我布置的作業(yè)及隨堂練習(xí)的單一性及難度低的特點有關(guān)。4、因式分解沒有先想提公因式的習(xí)慣,在結(jié)果也沒有注意是否進行到每一個多項式因式都不能再分解為止,比如最簡單的將a3-a提公因式后應(yīng)用平方差公式,但很多同學(xué)都是只化到a(a2 -1)而沒有化到最后結(jié)果a(a +1)(a -1)。因式分解是一個重要的內(nèi)容,也是難點,我認為我對教材內(nèi)容的調(diào)整是比較適合的,但是我忽略了學(xué)生的接受能力,也沒有注意到計算題在練習(xí)方面的鞏固及題型的多樣化。在以后的教學(xué)中應(yīng)該更多結(jié)合學(xué)生的學(xué)習(xí)情況去調(diào)整教學(xué)進度,多發(fā)現(xiàn)學(xué)生在學(xué)習(xí)方面的優(yōu)勢和不足之處。
【《因式分解》教學(xué)反思】相關(guān)文章:
因式分解教學(xué)反思01-04
因式分解教學(xué)反思06-10
因式分解的問題及對策的教學(xué)反思01-21
因式分解數(shù)學(xué)教學(xué)反思06-19
《公式法因式分解》教學(xué)反思03-15
數(shù)學(xué)《因式分解》的教學(xué)反思范文07-13
因式分解與組成教學(xué)反思05-19