《分數(shù)乘整數(shù)》的教學反思
“分數(shù)乘整數(shù)”在練習中,50%的學生喜歡用分數(shù)加法的計算方法來做分數(shù)乘法。學生利用式題,不但總結出了分數(shù)乘整數(shù)的計算方法,而且知道了算理(也就是分數(shù)乘整數(shù)的意義),真正做到了算理與算法相結合。
基于這兩者天壤之別,筆者有了深深的感觸,上述兩個案例讓我想到一個相同的問題,就是我們常說的備課之先“備學生”到底備到什么程度?對于學生的知識前測,教師心中有多大的把握?沒有對學情準確的偵察”,便絕對不會”打贏”有效教學乃至高效教學這一勝仗。很多教師在備學生的時候,是借用別人的眼光來估計自己的學生,看教參上是怎么說的。教參說這時的學生應該具有什么樣的知識經(jīng)驗,教師便堅信自己的學生也定是如此了。沒有或者很少考慮到雖然是同一個年齡段的孩子,但還有諸多不同的因素:也許你的學生是后進的,他的基礎沒你想象的那么牢固;也許他是絕頂聰明的,學習進度已經(jīng)超過好多課業(yè)了。
如上述案例中,關注學生轉化的思想就是本課時教學的重中之重.數(shù)學知識有著本身固有的結構體系,往往是新知孕伏于舊知,舊知識點是新知識點的生長點,數(shù)學教學如何讓知識體系由點到線,線到面,使知識結構“見木又見林”是十分必要的。案例1從整數(shù)乘法遷移到分數(shù)乘整數(shù),想法是可取的,但整數(shù)乘法的意義在二上年級就已經(jīng)出現(xiàn),而且教材中沒有出現(xiàn)整數(shù)乘法的抽象表達方式(即整數(shù)乘法表示求幾個相同加數(shù)的.和),對于五下年級的學生來說,遺忘程度可想而知。而案例2中,以五上年級的分數(shù)加法為基礎,讓學生自由探索,效果是非常明顯的。轉化是需要條件的,只要“跳一跳”,就能摘到“桃子”,學生才會去嘗試。
今天這節(jié)課的算理看似簡單,其實理解還是有困難的.根據(jù)學生的認知心理,在遇到一個陌生的問題,如”1/5×3=?”時,學生對算法的興趣遠遠勝于算理.因為算法可以直接得到結果。一旦知道算法,多數(shù)學生會對算理失去興趣。甚至為了考試成績去死記硬背算理,算法與算理完全脫離。那么我們實際上不是教數(shù)學,而是在教一門計算程序:不是在培養(yǎng)研究者,而是在訓練操作工。這與”學生能夠獲得適應未來社會生活和進一步發(fā)展所必需的重要數(shù)學知識以及基本的思想方法和必要的應用技能”相違背的。
數(shù)學思想方法內容十分豐富,學生一接觸到數(shù)學知識,就聯(lián)系上許多數(shù)學思想方法。寓理于算的思想就是小學數(shù)學中的基本思想方法。在教學時,把重點放在讓學生充分體驗由直觀算理到抽象算法的過渡和演變過程,從而達到對算理的深層理解和對算法的切實把握。小學是打基礎的教育,有了算理的支撐,算法才會多樣化,課堂才會更開放。
課標中,原來講“雙基”,現(xiàn)在變成“四基”,多了基本思想、基本活動經(jīng)驗,筆者認為,只有具備了基本思想、基本活動經(jīng)驗,才能在思維上促進基本知識、基本技能的發(fā)展。不但教給學生一個表層的知識,更要給學生思維的方法與思想。
【《分數(shù)乘整數(shù)》的教學反思】相關文章:
分數(shù)乘整數(shù)的教學反思06-01
分數(shù)乘整數(shù)教學反思12-22
聽分數(shù)乘整數(shù)教學反思02-16