《完全平方和(差)公式》教學(xué)反思
完全平方和(差)公式是某些特殊形式的多項(xiàng)式相乘,只有掌握完全平方和(差)公式的一些本質(zhì)地結(jié)構(gòu)特點(diǎn),才能正確地讓公式更好地幫助我們進(jìn)行簡(jiǎn)單計(jì)算。
要學(xué)好這部分,首先要注意掌握:
1、公式本身:(a+b)2=a2+2ab+b2
文字?jǐn)⑹觯簝蓴?shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積2倍。
2、公式的結(jié)構(gòu)特點(diǎn):等號(hào)左邊是一個(gè)二項(xiàng)式的平方,等號(hào)右邊是一個(gè)二次三項(xiàng)式,其中有兩項(xiàng)是公式左邊二項(xiàng)式中每一項(xiàng)的平方,另一項(xiàng)是左邊二項(xiàng)式中那兩項(xiàng)乘積的2倍;虻忍(hào)右邊記作:首平方,尾平方,2倍之積中間放。
3、公式中字母的廣泛意義:既可以代表任意的數(shù)(正數(shù)、負(fù)數(shù)),又可以代表任意代數(shù)式。注意代表代數(shù)式時(shí),要有“整體思想”的觀念。
其次要注意易錯(cuò)點(diǎn):
1、易錯(cuò)寫:(a+b)2=a2+b2
許多學(xué)生往往認(rèn)為(a+b)2=a2+b2,甚至認(rèn)為(a+b)3=a3+b3,(a+b)4=a4+b4,等等。為了說明這個(gè)問題,我首先利用分地的.故事引入,第一個(gè)農(nóng)夫分得a2+b2,第二個(gè)分得(a+b)2,然后讓同學(xué)們對(duì)比2個(gè)代數(shù)式,通過各種方法說明這兩者是不同的,比如計(jì)算法,代數(shù)字法,幾何作圖法(聯(lián)系公式的幾何意義),因而加深理解完全平方公式,并借此進(jìn)行強(qiáng)化訓(xùn)練。雖然還有極個(gè)別學(xué)生出現(xiàn)2項(xiàng)的情況,但絕大部分明白了2倍之積中間放的意義。
2、兩個(gè)公式中的符號(hào)易混:課堂上進(jìn)行了教學(xué)的改進(jìn),把2個(gè)公式(a+b)2與(a-b)2并作一個(gè)公式來處理。為了避免符號(hào)上出現(xiàn)混亂,把2個(gè)公式的符號(hào)特點(diǎn)進(jìn)行觀察,得出同號(hào)得正,異號(hào)得負(fù)的結(jié)論。由此應(yīng)對(duì)兩項(xiàng)式的平方的符號(hào)問題,也省去了一些變號(hào)的煩惱。
3、兩公式靈活運(yùn)用
在一些實(shí)際問題中,有些題目不能直接運(yùn)用公式,需要一步轉(zhuǎn)化才可以。如計(jì)算:
。1)(y-x)(x-y)(2)(x+y)(-x-y)
【《完全平方和(差)公式》教學(xué)反思】相關(guān)文章:
《完全平方和差公式》教學(xué)反思06-26
《完全平方和差公式》教學(xué)反思05-13
《完全平方和差公式》優(yōu)秀的教學(xué)反思05-14
《逆用完全平方和(或差)公式進(jìn)行因式分解》教學(xué)反思11-21
完全平方公式教學(xué)反思07-04
《完全平方公式》教學(xué)反思12-13
《完全平方公式》教學(xué)反思09-02
完全平方公式教學(xué)反思09-03