《乘法分配律》的教學(xué)反思范文
今年我“高升”了!從畢業(yè)開始,一直在一二年級(jí)的數(shù)學(xué)徘徊,今年“高升”到了四年級(jí)!得到消息后,先是興奮,再是忐忑。興奮的是終于能教大孩子了。忐忑的是能教了這些大孩子嗎?于是每天像是剛工作時(shí)一樣,每天手寫備課、拎著凳子去聽?zhēng)煾档拿恳还?jié)課,不敢有絲毫怠慢。更忐忑的是接到通知,于老師要來聽課,其中有我!于是馬上請(qǐng)教我的師傅車?yán)蠋,車(yán)蠋熣J(rèn)為《乘法分配律》是一節(jié)數(shù)學(xué)味很濃的課,而且是一節(jié)特別值得研究的課,于是決定講這節(jié)課。經(jīng)過初步備課,我發(fā)現(xiàn)乘法分配律的運(yùn)用屬于運(yùn)算律中最有難度的部分,而且類型頗多,每一種都能讓學(xué)生琢磨半天,這讓我感覺這節(jié)課確實(shí)很有意思,也很有挑戰(zhàn)。
因?yàn)閺膩頉]有執(zhí)教過高年級(jí),我決定先“拜訪”名師。于是我上網(wǎng)搜視頻,設(shè)計(jì)。當(dāng)我看到葛麗霞老師的視頻,我被驚艷了!課堂中的每個(gè)環(huán)節(jié)都讓我感覺眼前一亮,幾個(gè)精彩瞬間如“乘法分配律的探索過程、用字母表示法還有課的小結(jié)……”仍記憶猶新,于是我決定就模仿葛麗霞老師的這節(jié)課。視頻看了三遍,教案看了無數(shù)遍。于是就“拿來”了這節(jié)課。
可是經(jīng)過于老師的指導(dǎo),我發(fā)現(xiàn),我模仿的是教案的話,每一句話后面深意,每一句話的目的,我真的明白了嗎?備課,備了教案,備了老師,卻把最重要的要素——學(xué)生,忘記了。沒有找到學(xué)生的認(rèn)知起點(diǎn),沒有探索到學(xué)生的易錯(cuò)點(diǎn),難點(diǎn)。后來,與我的師傅車?yán)蠋熞黄鹧芯,?duì)教案進(jìn)行了重建,重建教案主要有以下幾個(gè)改進(jìn):
1、形意結(jié)合。
初次教學(xué)乘法分配律時(shí),由于對(duì)教材的挖掘比較膚淺,在教學(xué)中,只是重視了對(duì)“兩個(gè)數(shù)的和與一個(gè)數(shù)相乘,要用括號(hào)里的每一個(gè)加數(shù)分別與這個(gè)數(shù)相乘,再把積相加”這句話的理解,學(xué)生對(duì)乘法分配律的印象完全停留在外形上,根本不知道為什么要用括號(hào)里的每個(gè)加數(shù)分別與括號(hào)外的數(shù)相乘,結(jié)果他們?cè)趹?yīng)用時(shí),只會(huì)按照總結(jié)出的規(guī)律生搬硬套,全班竟有一半的人出現(xiàn)了問題;當(dāng)課堂進(jìn)行到乘法分配律的逆運(yùn)用時(shí),很多學(xué)生更是不知道該從何入手,課堂效果特差。于是,重建教案中,在引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律時(shí),不僅注意了等式兩邊的“外形”結(jié)構(gòu)特點(diǎn),即“兩個(gè)數(shù)的和與一個(gè)數(shù)相乘,要用括號(hào)里的'每一個(gè)加數(shù)分別與這個(gè)數(shù)相乘,再把積相加”,而且重視了對(duì)規(guī)律的本質(zhì)--乘法意義的理解。借此機(jī)會(huì)我再次打開教學(xué)參考,進(jìn)行了細(xì)細(xì)地研讀。“對(duì)12×105簡(jiǎn)算時(shí),要將105想成100與5的和。先求100個(gè)12是多少,再求5個(gè)12是多少,合起來就是105個(gè)12是多少!笔茄,在引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律時(shí),我只注意了等式兩邊的“外形”結(jié)構(gòu)特點(diǎn),卻缺乏對(duì)規(guī)律的本質(zhì)--乘法意義的理解。
2、講解到位,注重知識(shí)點(diǎn)的前后聯(lián)系
初建教案時(shí),最后環(huán)節(jié)設(shè)計(jì)了展示二年級(jí)兩位數(shù)乘一位數(shù),以及三年級(jí)兩位數(shù)乘兩位數(shù)的電子課本,其目的是將前后的知識(shí)點(diǎn)加以聯(lián)系。我的課堂設(shè)計(jì)也延續(xù)了這一亮點(diǎn),可是我只是自顧自的講解了一番,孩子根本不知所云!
起初我的感覺是這一環(huán)節(jié)主要是考慮優(yōu)等生的提升,所以在講解時(shí)也只是匆匆了事!但是,課后我覺得應(yīng)該讓孩子明白回顧這一環(huán)節(jié)的內(nèi)容,在出示乘法情境圖的時(shí)候可以采用課件展示的方式,出示23×(10+2)=23×10+23×2這一算式。為了讓學(xué)生更好地理解以前運(yùn)用過乘法分配律,還可出示長(zhǎng)方形的周長(zhǎng)公式(a+b)×2=a×2+b×2,唯有此,才能夠?qū)⑶昂笾R(shí)點(diǎn)聯(lián)系起來,水到渠成。
新航程的號(hào)角已經(jīng)吹響,我想我應(yīng)該以此次講課為契機(jī),適應(yīng)數(shù)學(xué)教學(xué)的變化,向名師課堂學(xué)習(xí),從“拿來”到“思考”,關(guān)注學(xué)生,讓數(shù)學(xué)回歸本質(zhì),盡自己最大的努力讓每一個(gè)孩子學(xué)到有價(jià)值的數(shù)學(xué)!
【《乘法分配律》的教學(xué)反思】相關(guān)文章:
乘法之乘法分配律的教學(xué)反思12-08
乘法分配律教學(xué)反思07-15
《乘法分配律》教學(xué)反思08-23
乘法分配律教學(xué)反思11-20
乘法分配律教學(xué)反思01-03
《乘法分配律》教學(xué)反思07-30
《乘法分配律》教學(xué)反思09-03
《乘法分配律》的教學(xué)反思07-30
乘法分配律教學(xué)反思07-30