毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

圓錐的體積教學(xué)反思

時(shí)間:2022-03-31 17:33:54 教學(xué)反思 我要投稿

圓錐的體積教學(xué)反思范文(精選22篇)

  作為一名到崗不久的老師,教學(xué)是我們的任務(wù)之一,通過教學(xué)反思可以有效提升自己的教學(xué)能力,那么應(yīng)當(dāng)如何寫教學(xué)反思呢?下面是小編精心整理的圓錐的體積教學(xué)反思范文(精選22篇),歡迎大家分享。

圓錐的體積教學(xué)反思范文(精選22篇)

  圓錐的體積教學(xué)反思 篇1

  圓錐的體積是圓柱體積的延伸,所以再學(xué)生了解圓柱體積計(jì)算公式以后,我有意識(shí)地讓學(xué)生來解決圓錐的體積,有的同學(xué)說圓錐的體積公式是V=sh,也有的同學(xué)說不是V=sh,而是V=sh÷3,當(dāng)我問及為什么是V=sh÷3時(shí),這位同學(xué)說,是書上是這樣說的。我知道這位同學(xué)在老師講新課之前,他已提前預(yù)習(xí)了。接著我把提前準(zhǔn)備好的兩個(gè)學(xué)具擺在學(xué)生面前,找人上來操作,讓學(xué)生從實(shí)際操作中驗(yàn)證圓錐的體積公式到底是V=sh,還是V=sh÷3。因?yàn)閿?shù)學(xué)由于語(yǔ)言的嚴(yán)謹(jǐn)性,我說“圓錐的體積是圓柱體積的1/3”這句話是否正確。有不少同學(xué)通過剛才的試驗(yàn),絕大多數(shù)同學(xué)都說這句話是對(duì)的。然而也有極少數(shù)同學(xué)認(rèn)為這句話不夠嚴(yán)謹(jǐn),還應(yīng)該加上“當(dāng)圓錐與圓柱等底、等高時(shí),圓錐的體積才是圓柱體積的1/3!蓖ㄟ^辨析,我讓學(xué)生不僅明白了圓錐體積公式的推導(dǎo)過程,還讓學(xué)生明白圓錐體積公式與圓柱體積公式之間的內(nèi)在聯(lián)系。

  一節(jié)好的數(shù)學(xué)課不是老師教出來的,而是學(xué)生通過試驗(yàn)總結(jié)、歸納、體驗(yàn),通過活動(dòng)“做”出來的。

  圓錐的體積教學(xué)反思 篇2

  圓錐的體積是在學(xué)生直觀認(rèn)識(shí)圓錐的特征,會(huì)算圓的面積,以及長(zhǎng)方體、正方體、圓柱體的體積的基礎(chǔ)上安排教學(xué)的。以往幾次,都是按老方法進(jìn)行,一開始教師就準(zhǔn)備了一個(gè)圓柱和一個(gè)圓錐,先比較它們的底面積相等,再分別量出它們的高也相等。進(jìn)而由老師做實(shí)驗(yàn),把圓錐裝滿水(或沙)往圓柱里倒,學(xué)生觀察倒了幾次正好把圓柱裝滿。接著推導(dǎo)圓錐的體積等于圓柱體積的三分之一,并重點(diǎn)強(qiáng)調(diào)求圓錐的體積一定要乘三分之一。一節(jié)課上下來非常輕松,非常順利,時(shí)間也充足,作業(yè)效果也還不錯(cuò)?墒堑搅司C合運(yùn)用問題就出來了:忘記乘三分之一的,計(jì)算出錯(cuò)的,已知圓錐的體積和底面積,求高時(shí),直接用體積除以底面積的,出的錯(cuò)誤五花八門。

  再上這節(jié)課時(shí),我加強(qiáng)了以下幾個(gè)點(diǎn)的教學(xué),收到了較好的效果。

  1、教學(xué)新課時(shí),我出示一個(gè)圓柱體和一個(gè)圓錐體讓學(xué)生觀察并猜測(cè)圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,通過師生交流、問答、猜想等形式,調(diào)動(dòng)學(xué)生的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過實(shí)驗(yàn)來證實(shí)自己的猜想,所以做起實(shí)驗(yàn)就興趣盎然;

  2、實(shí)驗(yàn)時(shí),讓學(xué)生小組合作親自動(dòng)手實(shí)驗(yàn),以實(shí)驗(yàn)要求為主線,即動(dòng)手操作,又動(dòng)腦思考,努力探索圓錐體積的計(jì)算方法。學(xué)生在學(xué)習(xí)的過程中,始終是一個(gè)探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗(yàn)。學(xué)生獲得的不僅是新活的數(shù)學(xué)知識(shí),同時(shí)也獲得了探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會(huì)逐步變的有思想、會(huì)思考、會(huì)逐漸發(fā)現(xiàn)自身的價(jià)值。

  3、學(xué)生做圖形應(yīng)用題時(shí),引導(dǎo)學(xué)生審題,先確定是什么圖形,再想相應(yīng)的計(jì)算公式,最后根據(jù)公式列出算式。這樣對(duì)于后面的綜合運(yùn)用題,學(xué)生有了這種固定思維模式,就不會(huì)亂列式,

  4、列出算式后,不要按部就班的從左算到右,先觀察算式的特點(diǎn),尋求簡(jiǎn)單的計(jì)算方法,把口算和計(jì)算有機(jī)結(jié)合。如:3。14×(4÷2)2×8時(shí),先口算(4÷2)2=4,再口算4×8=32,最后再計(jì)算3。14×32。又如:×3。14×(4÷2)2×9時(shí),先口算×9=3,(4÷2)2=4,3×4=12,再計(jì)算3。14×12。這樣就大大地減少了學(xué)生計(jì)算難度,提高了計(jì)算的正確率。

  圓錐的體積教學(xué)反思 篇3

  圓錐的體積是在學(xué)習(xí)了圓錐的認(rèn)識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。

  這節(jié)課我是這樣設(shè)計(jì)的:第一部分,復(fù)習(xí)圓錐的特征和圓柱的體積=底面積×高。反思:復(fù)習(xí)舊知識(shí)之間的聯(lián)系,便于運(yùn)用已學(xué)知識(shí)推動(dòng)新知識(shí)的學(xué)習(xí),為學(xué)習(xí)新知識(shí)做準(zhǔn)備。

  第二部分,便于圓柱體積的計(jì)算公式,先讓學(xué)生用轉(zhuǎn)化的思想大膽猜測(cè),能否把體積計(jì)算方法轉(zhuǎn)化成已學(xué)過的立體圖形來推導(dǎo)圓錐體積公式呢?學(xué)生猜測(cè)之后,讓學(xué)生拿出手中等底等高的圓柱體,然后同桌討論得出結(jié)論,全班交流。再進(jìn)行第二次實(shí)驗(yàn),同桌交換圓柱或圓錐倒進(jìn)沙子之后,同桌討論,全班交流,老師引導(dǎo)學(xué)生兩次實(shí)驗(yàn)的結(jié)論有什么不同,經(jīng)過學(xué)生的討論,師生歸納出:圓錐的體積等于等底等高的圓柱體積的三分之一。并強(qiáng)調(diào)V=3SH的前提條件是等底等高。

  反思:這一環(huán)節(jié)讓學(xué)生用轉(zhuǎn)化的思想猜測(cè),激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動(dòng)學(xué)生的探究欲望。緊接著讓學(xué)生兩次動(dòng)手實(shí)驗(yàn),親自體驗(yàn)知識(shí)的探究過程。符合小學(xué)生的認(rèn)知規(guī)律,便于學(xué)生主動(dòng)地獲取知識(shí),掌握正確的學(xué)習(xí)方法。通過實(shí)驗(yàn),學(xué)生參與了知識(shí)的形成過程,得出了只有在等底等高的情況下圓錐的體積是圓柱的三分之一,否則這個(gè)結(jié)論不成立。

  全課反思:英國(guó)教育家思賓塞說過:“在教育中應(yīng)該盡量鼓勵(lì)個(gè)人發(fā)展的過程,應(yīng)該引導(dǎo)兒童自己進(jìn)行探究,自己去推理,給他們講的應(yīng)該盡量少,而引導(dǎo)他們?nèi)グl(fā)現(xiàn)的應(yīng)該盡量多,這樣教師在教學(xué)中才能真正由重結(jié)果向重過程轉(zhuǎn)變,成為學(xué)生的組織者、引導(dǎo)者與合作者”。因此,這節(jié)課,我引導(dǎo)學(xué)生進(jìn)行實(shí)驗(yàn),放手讓他們動(dòng)手操作,在操作的過程中得出結(jié)論,突破教學(xué)難點(diǎn),理解圓錐的體積計(jì)算方法。看著孩子們聽到老師的稱贊,他們那開心的笑臉,我想:只有讓孩子們成為學(xué)習(xí)的主人,老師只做引導(dǎo)者和合作者,引導(dǎo)得當(dāng),合作愉快時(shí),那我們就真正起到了教書育人的作用,還有誰不想學(xué)習(xí)數(shù)學(xué)這門有意義的課程呢? 1

  圓錐的體積教學(xué)反思 篇4

  1、學(xué)生通過自己的實(shí)驗(yàn),非常順利地得到等底等高的圓柱和圓錐體積之間的關(guān)系,推導(dǎo)出來圓錐的體積計(jì)算公式。原因之處有:(1)猜想:發(fā)揮學(xué)生的空間想象,使學(xué)生初步建立圓錐與圓柱體積之間的關(guān)系,教師預(yù)設(shè)學(xué)生可能粗略地知道有“三分之一”這一關(guān)系,“那么三分之一這一關(guān)系怎樣推導(dǎo)呢”引起以下怎樣推導(dǎo)圓錐的體積這一過程。

 。2)在推導(dǎo)過程中,帶著思考題(思考題實(shí)際就是學(xué)生實(shí)驗(yàn)的過程),讓學(xué)生帶有目標(biāo)進(jìn)行實(shí)驗(yàn),讓學(xué)生更有目的性,也非常方便,有操作性。

 。3)學(xué)具準(zhǔn)備充分,各小組選擇水、沙子,增強(qiáng)趣味性,主動(dòng)性,積極性高。

  (4)公式推導(dǎo)完之后的一個(gè)反例子(出示一個(gè)非常大的圓柱和一個(gè)非常小的圓錐),讓學(xué)生明確并不是所有的圓錐的體積都是圓柱體積的三分之一,從而強(qiáng)調(diào)了等底等高。

  2、練習(xí)題由淺入深,判斷題主要是要加深學(xué)生對(duì)概念、公式的運(yùn)用和理解,第2題是書上的一組題,為提高效率只列式不計(jì)算,這三道題分別是告訴底面積和高、底面半徑和高、底面直徑和高,把幾種類型都呈現(xiàn)出來。最后一題是動(dòng)手實(shí)踐題,一要考察學(xué)生的公式運(yùn)用情況,二要考察學(xué)生的解決實(shí)際問題的能力及策略,雖然沒做幾道題,但我覺得:解決問題比什么都重要。

  3、本來想用不等底、不等高的圓柱和圓錐參與實(shí)驗(yàn),考慮到可能會(huì)得出錯(cuò)誤結(jié)論而影響體積公式的推導(dǎo),所以把這一環(huán)節(jié)省去。設(shè)計(jì)了一組大的等底等高的圓錐和圓柱,讓學(xué)生明確不管大小,只要等底等高就有3倍這樣的關(guān)系。

  4、時(shí)間分配上不到位,例題的處理中,考慮到本節(jié)的重點(diǎn)是理解公式并運(yùn)用公式,所以沒花多的時(shí)間,由于數(shù)字教大,部分學(xué)生沒做完。

  圓錐的體積教學(xué)反思 篇5

  對(duì)于《圓錐體積》的教學(xué),我前些年按傳統(tǒng)的教法:用空心圓柱、圓錐裝沙的實(shí)驗(yàn),得出圓錐體積的計(jì)算公式,的確有不妥之處,其一用“容積”偷換“體積”的概念,淡化了學(xué)生對(duì)“體積”的理解。其二在實(shí)驗(yàn)中,把“容積”看作近似地等于“體積”有失科學(xué)的嚴(yán)密性,對(duì)培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度不利。由于自己的守舊,一直沒能突破,沒想到今日的突破收到意想不到的效果。也引發(fā)我的進(jìn)一步思考:

  1、在日常的教學(xué)中,我們教師常常提醒學(xué)生,學(xué)習(xí)不能死守書本、不知變化、人云我云,要不拘泥、不守舊。那么我們教師自己更應(yīng)該打破條條框框、突破教材、創(chuàng)造性的靈活地使用教材。

  2、陶行知先生倡導(dǎo)“手腦聯(lián)盟”,他說“人生兩個(gè)寶,雙手和大腦”就是要學(xué)生手腦并用。在小學(xué)數(shù)學(xué)教學(xué)中,如果我們教師能給學(xué)生創(chuàng)造人人參與,既動(dòng)手又動(dòng)腦的情景,就能最大限度的激發(fā)學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的創(chuàng)新思維。讓不同的學(xué)生在活動(dòng)中得到不同的發(fā)展。

  3、實(shí)驗(yàn)后的交流是培養(yǎng)學(xué)生思維的有力的催化劑。在交流中,學(xué)生通過比較、思考,加深了對(duì)公式的理解,不僅理解了圓柱體和圓錐體之間的關(guān)系,而且培養(yǎng)了學(xué)生的思維能力、表達(dá)能力、概括能力。

  總之,我們教師只有在教學(xué)活動(dòng)中,努力創(chuàng)造條件,讓學(xué)生主動(dòng)參與、發(fā)現(xiàn)和揭示數(shù)學(xué)原理和方法,我們的數(shù)學(xué)課堂就一定能生成更多的精彩!

  圓錐的體積教學(xué)反思 篇6

  教學(xué)圓錐的體積是在掌握了圓錐的認(rèn)識(shí)和圓柱的體積的基礎(chǔ)上教學(xué)的。本課教學(xué)摒棄了以往把學(xué)生分成若干組,小組實(shí)驗(yàn)得出結(jié)論的方法。

  新課一開始,我就讓學(xué)生觀察,先猜測(cè)圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。然后讓學(xué)生看白板演示將圓錐里的水倒入等底等高的圓柱里,需要倒幾次。雖然孩子們沒有進(jìn)行實(shí)驗(yàn),但孩子目睹了過程,從中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。對(duì)圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實(shí)際的生活問題,鞏固深化知識(shí)點(diǎn)。

  思考:雖然學(xué)生在學(xué)習(xí)的過程中,應(yīng)該成為一個(gè)探索者、研究者、發(fā)現(xiàn)者,但不是并不是每個(gè)知識(shí)的獲得都必須學(xué)生動(dòng)手操作。從課后的作業(yè)反饋來看,學(xué)生的出錯(cuò)率比以前小組合作的學(xué)習(xí)的還要好?磥恚@樣的學(xué)習(xí),學(xué)生學(xué)的活,記得牢,即發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。

  圓錐的體積教學(xué)反思 篇7

  在本節(jié)課中,通過用排水法測(cè)量外形類似于圓錐的體積(比如鉛錘)不但麻煩,而且有時(shí)還不能用(比如測(cè)量麥堆的體積),體會(huì)此方法具有一定的局限性而引入新課。從面上的相似性知道圓錐的體積可能與圓柱的有關(guān),然后經(jīng)歷大膽猜測(cè)、實(shí)驗(yàn)驗(yàn)證、分析實(shí)驗(yàn)結(jié)果,從而得出體積公式的過程。再利用適當(dāng)?shù)木毩?xí)鞏固公式而達(dá)到本節(jié)課的教學(xué)目的。本節(jié)課總體感覺很順暢,學(xué)生思維活躍。在課堂上利用實(shí)物演示,較好地引導(dǎo)學(xué)生思考,總結(jié)出等底等高的圓柱與圓錐之間的關(guān)系,突出了重點(diǎn),突破了難點(diǎn)。

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出,要讓學(xué)生能夠“初步學(xué)會(huì)運(yùn)用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實(shí)社會(huì),去解決日常生活中和其他學(xué)科學(xué)習(xí)中的問題,增強(qiáng)應(yīng)用數(shù)學(xué)的意識(shí)。”本課的設(shè)計(jì)充分體現(xiàn)了這一理念。課中讓學(xué)生動(dòng)手分別用圓錐和圓柱盛沙,讓學(xué)生感受到數(shù)學(xué)與生活的密切聯(lián)系,通過自己的探究,運(yùn)用數(shù)學(xué)的思維方式解決問題,又能運(yùn)用掌握的知識(shí)去研究解決生活的其它數(shù)學(xué)問題,,培養(yǎng)了學(xué)生的應(yīng)用意識(shí)。同時(shí),課堂教學(xué)注重讓學(xué)生自主學(xué)習(xí),合作探究,充分發(fā)揮了學(xué)生的學(xué)習(xí)主動(dòng)性,也培養(yǎng)了學(xué)生的創(chuàng)新能力。

  雖然本節(jié)課達(dá)到了教學(xué)目的,取得了不錯(cuò)的教學(xué)效果,但也存在一些不足,由于受條件限制,學(xué)具準(zhǔn)備不夠充分;課堂語(yǔ)言還不夠簡(jiǎn)練;在學(xué)生匯報(bào)時(shí),沒有抓住生成;沒有認(rèn)真研究不等底不等高的體積關(guān)系等。在以后的教學(xué)過程中一定會(huì)注意這些問題,使自己不斷地進(jìn)步。

  圓錐的體積教學(xué)反思 篇8

  圓錐的體積是在學(xué)生掌握了圓錐的認(rèn)識(shí)和圓柱的體積計(jì)算的基礎(chǔ)上教學(xué)的,是小學(xué)幾何初步知識(shí)教學(xué)的重要內(nèi)容。本課的設(shè)計(jì)主要做到了以下幾點(diǎn):

  1。大膽猜測(cè),培養(yǎng)猜測(cè)意識(shí)。假設(shè)和猜想是科學(xué)的天梯,是科學(xué)探究的重要一環(huán)。任何發(fā)明創(chuàng)造都是離不開假設(shè)和猜想的;谶@樣的認(rèn)識(shí),結(jié)合本節(jié)課教學(xué)內(nèi)容的特點(diǎn),在教學(xué)設(shè)計(jì)中借助教具和學(xué)具,讓學(xué)生充分觀察“等底等高的圓柱和圓錐”后,讓學(xué)生大膽猜想它們的體積可能會(huì)有什么樣的關(guān)系,這樣設(shè)計(jì)不僅僅能夠培養(yǎng)學(xué)生的猜測(cè)意識(shí),更重要的是能夠充分調(diào)動(dòng)所有學(xué)生的積極性,激起大家的探究愿望。

  2。操作驗(yàn)證,培養(yǎng)科學(xué)的實(shí)驗(yàn)觀。數(shù)學(xué)不僅是思維科學(xué),也是實(shí)驗(yàn)科學(xué),通過觀察猜想,實(shí)驗(yàn)操作得到數(shù)學(xué)結(jié)論,這種形式也是進(jìn)行科學(xué)研究的最基本形式。教學(xué)設(shè)計(jì)中,注重引導(dǎo)學(xué)生通過自主探究實(shí)驗(yàn)得出結(jié)論,讓學(xué)生明確圓錐的體積是與這個(gè)圓錐等底等高的圓柱體積Sh的三分之一,從而總結(jié)出圓錐體積的計(jì)算公式V=三分之一Sh。

  圓錐的體積教學(xué)反思 篇9

  圓錐的體積是在學(xué)生直觀認(rèn)識(shí)圓錐的特征,會(huì)算圓的面積,以及長(zhǎng)方體、正方體、圓柱體的體積的基礎(chǔ)上安排教學(xué)的。因此,我有針對(duì)性地設(shè)計(jì)、制作了本節(jié)課的輔助教學(xué)課件,既突出重點(diǎn)、突破難點(diǎn),又激發(fā)學(xué)生的學(xué)習(xí)興趣,優(yōu)化教學(xué)過程,提高課堂教學(xué)質(zhì)量。

  1、復(fù)習(xí)遷移,做好鋪墊

  由于圓錐體的體積是在學(xué)生學(xué)過圓柱體的體積的基礎(chǔ)上安排教學(xué)的,為了讓學(xué)生回憶圓柱體的體積計(jì)算公式,以便為知識(shí)的遷移和新知識(shí)的學(xué)習(xí)做好鋪墊,我制作了一張圖文并茂的圖文片向?qū)W生展示了一個(gè)圓柱體圖形,并在圖形下面用醒目的文字向?qū)W生提出問題:這是什么形體?它的體積應(yīng)怎樣計(jì)算?這樣一張集文字、圖形、聲音于一體的圖文片,很容易引起學(xué)生注意,營(yíng)造學(xué)習(xí)氣氛。

  2、創(chuàng)設(shè)情境,引入新知

  數(shù)學(xué)來源于生活,我取材于生活以創(chuàng)設(shè)情境,使教學(xué)過程與生活實(shí)際密聯(lián)系起來,我制作了一張圖文并茂的圖文片向?qū)W生展示了曬谷場(chǎng)上一堆圓錐形的谷子,并在顯眼的位置向?qū)W生巧設(shè)問題:這堆谷成什么形體?你們能求出這堆谷的體積嗎?這樣,激發(fā)了學(xué)生的求知欲望,把學(xué)生引入到新課探索的活動(dòng)中。

  3、實(shí)驗(yàn)操作,推導(dǎo)公式

  圓錐體積的推導(dǎo),是本節(jié)課的教學(xué)難點(diǎn),為了讓學(xué)生直觀感知圓錐的體積與它等底等高的圓柱的體積的關(guān)系。首先讓學(xué)生用工具做實(shí)驗(yàn),初步感知,再呈現(xiàn)我制作的圖文片向?qū)W生演示:用圓錐裝滿水倒入和它等底等高的圓柱里的過程。并在動(dòng)畫下面巧設(shè)問題:用圓錐裝滿水倒入和它等底等高的空?qǐng)A柱里,倒幾次正好倒?jié)M?每次水的高度是圓柱高度的幾分之幾?有層次的教學(xué)設(shè)計(jì),豐富多彩的教學(xué)活動(dòng),充分體現(xiàn)以教師為主導(dǎo),以學(xué)生為主體的教與學(xué)的雙邊活動(dòng)。學(xué)生通過認(rèn)真操作實(shí)驗(yàn),觀察思考,都明白了圓錐的體積等于和它等底等高的圓柱體積的1/3,從而推導(dǎo)出圓錐體積的計(jì)算公式。

  4、自學(xué)嘗試,解惑答疑

  為了提高學(xué)生解決實(shí)際問題的能力,我把課本上的例1制成一張圖文片,配上悠閑的樂曲,讓學(xué)生嘗試解答。試做時(shí),我則進(jìn)行巡視,如有問題,個(gè)別輔導(dǎo),接著指名回答。這樣,能夠把較多的時(shí)間留給學(xué)生,培養(yǎng)學(xué)生的自學(xué)能力,使他們從中體驗(yàn)到學(xué)習(xí)的成功的樂趣。

  圓錐的體積教學(xué)反思 篇10

  本節(jié)課《圓錐的體積》以談話法、實(shí)驗(yàn)法為主,討論法、練習(xí)法為輔,實(shí)現(xiàn)教學(xué)目標(biāo)。教學(xué)中,既充分發(fā)揮學(xué)生的主體作用,調(diào)動(dòng)學(xué)生積極主動(dòng)地參與教學(xué)的全過程。小學(xué)階段學(xué)習(xí)的幾何知識(shí)是直觀幾何。小學(xué)生學(xué)習(xí)幾何知識(shí)不是靠嚴(yán)格的論證,而主要是通過觀察、操作。根據(jù)課題的特點(diǎn),主要采取讓學(xué)生做實(shí)驗(yàn)的方法主動(dòng)獲取知識(shí),而且在教學(xué)中我注重如何有效的引導(dǎo)學(xué)生探究。

  例如,在上課開始,我是讓學(xué)生回憶圓柱體積公式的推導(dǎo)過程,

  讓學(xué)生猜測(cè)圓錐的體積也可以借助我們已經(jīng)學(xué)過的.圖形來驗(yàn)證,培養(yǎng)學(xué)生的遷移類推能力。到學(xué)生猜測(cè)出用圓柱的體積來幫助研究圓錐時(shí),再進(jìn)一步讓學(xué)生猜測(cè)圓柱與圓錐之間的關(guān)系,激起學(xué)生的學(xué)習(xí)興趣,然后馬上讓學(xué)生自己以小組為單位去驗(yàn)證自己的猜測(cè)是否正確,讓每個(gè)學(xué)生都經(jīng)歷一次探究學(xué)習(xí)的過程。每個(gè)學(xué)生都經(jīng)歷了“猜想估計(jì)———設(shè)計(jì)實(shí)驗(yàn)驗(yàn)證———發(fā)現(xiàn)算法”的自主探究學(xué)習(xí)的過程,按自己的設(shè)想自由探究等底等高的圓錐體和圓柱體體積之間的關(guān)系,圓錐體體積的計(jì)算方法。

  在探究圓錐體積計(jì)算方法的學(xué)習(xí)過程中,學(xué)生不再是實(shí)驗(yàn)演示的被動(dòng)的觀看者,而是參與操作的主動(dòng)探索者,真正成為學(xué)習(xí)的主人。在整個(gè)學(xué)習(xí)過程中,學(xué)生獲得的不僅是新活的數(shù)學(xué)知識(shí),獲得更多的是探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會(huì)逐步變的有思想、會(huì)思考、會(huì)逐漸發(fā)現(xiàn)自身的價(jià)值。而且在探究出圓錐體積公式的基礎(chǔ)上,再讓他們想辦法計(jì)算出他們小組實(shí)驗(yàn)用的圓錐的體積,又一次給了學(xué)生探究的空間,使他們對(duì)不光能得出圓錐的體積公式,而且知道怎么應(yīng)用它。

  充分發(fā)揮了學(xué)生的個(gè)性潛能。在學(xué)習(xí)中充分發(fā)揮學(xué)生的潛能,讓他們按自己的觀察進(jìn)行猜測(cè)估計(jì),按自己的設(shè)想操作學(xué)習(xí),對(duì)自己學(xué)習(xí)情況進(jìn)行總結(jié),反思,在全體學(xué)生思維火花的相互碰撞中,出現(xiàn)了驗(yàn)證等底等高的圓錐體和圓柱體體積的方法。涌現(xiàn)出了對(duì)圓錐體體積計(jì)算公式中“1/3”的不同理解,實(shí)現(xiàn)了學(xué)習(xí)策略的多樣化,豐富了學(xué)生的學(xué)習(xí)資源。

  圓錐的體積教學(xué)反思 篇11

  《圓錐的體積》是在掌握了圓錐的認(rèn)識(shí)和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)時(shí)讓學(xué)生通過實(shí)驗(yàn)來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運(yùn)用這個(gè)關(guān)系計(jì)算圓錐的體積,讓學(xué)生從感性認(rèn)識(shí)上升到理性認(rèn)識(shí)。學(xué)生感到非常簡(jiǎn)單易懂,因此學(xué)起來并不感到困難。

  新課一開始,我就讓學(xué)生觀察,先猜測(cè)圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。教師從展示實(shí)物圖形到空間圖形,采用對(duì)比的方法,加深學(xué)生對(duì)形體的認(rèn)識(shí)。然后讓學(xué)生動(dòng)手實(shí)驗(yàn),以小組合作學(xué)習(xí)的方式讓每個(gè)學(xué)生都能參與到探究中去,學(xué)生在實(shí)驗(yàn)中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。對(duì)圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實(shí)際的生活問題,起到鞏固深化知識(shí)點(diǎn)的作用。

  由于本節(jié)課活動(dòng)單設(shè)計(jì)合理,問題比較精細(xì),學(xué)生能在小組合作學(xué)習(xí)的過程中,自主設(shè)計(jì)實(shí)驗(yàn)過程,從而選擇合適的學(xué)具來做實(shí)驗(yàn),在比較、分析中得出圓錐的體積公式,取得了較好的效果。具體分析如下:

  一、收獲:

  1、探究圓錐體積計(jì)算方法的學(xué)習(xí)過程,學(xué)生不再是實(shí)驗(yàn)演示的被動(dòng)的觀看者,而是參與操作的主動(dòng)探索者,真正成為學(xué)習(xí)的主人。在整個(gè)學(xué)習(xí)過程中,學(xué)生獲得的不僅是新活的數(shù)學(xué)知識(shí),同時(shí)也獲得了更多的是探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會(huì)逐步變的有思想、會(huì)思考、會(huì)逐漸發(fā)現(xiàn)自身的價(jià)值。

  2、每個(gè)學(xué)生都經(jīng)歷“猜想估計(jì)———設(shè)計(jì)實(shí)驗(yàn)驗(yàn)證———發(fā)現(xiàn)算法”的自主探究學(xué)習(xí)的過程,在教學(xué)案的引導(dǎo)下學(xué)生能在小組合作學(xué)習(xí)的過程中,自主設(shè)計(jì)實(shí)驗(yàn)過程,從而選擇合適的學(xué)具來做實(shí)驗(yàn),在比較、分析中得出只有等底等高的圓柱和圓錐才有這樣的關(guān)系,從而加深了等低等高的印象,進(jìn)而得出圓錐的體積公式,讓每個(gè)學(xué)生都經(jīng)歷一次探究學(xué)習(xí)的過程。

  3、學(xué)生在展示中獲得了成功的喜悅,體驗(yàn)了探究的樂趣。

  自采用“活動(dòng)單導(dǎo)學(xué)”教學(xué)模式以來,學(xué)生敢說、愿說、樂說,學(xué)生的語(yǔ)言能力及敘述問題的條理性、層次性有了明顯的提高。在本節(jié)課中學(xué)生能夠根據(jù)教學(xué)案中的問題進(jìn)行思考、討論,從而大膽展示,能夠把動(dòng)手實(shí)踐和語(yǔ)言表達(dá)結(jié)合在一起,從而清楚地展示了圓錐的體積探究的全過程。這點(diǎn)值得充分的肯定。

  二、不足:

  1、實(shí)驗(yàn)教材具有現(xiàn)成性,學(xué)習(xí)用具具有一定的實(shí)際限制,使學(xué)生探索思考的空間較小,不利于學(xué)生思維的充分發(fā)展。

  2、學(xué)生在實(shí)驗(yàn)時(shí)要求不高,導(dǎo)致存在著誤差。實(shí)驗(yàn)失敗。

  3、學(xué)習(xí)困難的學(xué)生對(duì)于一些需要靈活判斷的題目還是不能有較好的把握,從而也可以看出,他們對(duì)于該體積公式的理解也只是停留在了較簡(jiǎn)單的和較低的層面。在與圓柱的體積的聯(lián)系中,思維的靈活度不夠。后來也感覺他們有出現(xiàn)一點(diǎn)點(diǎn)厭學(xué)的情緒,這是因?yàn)樵谧詈笏麄儼炎约寒?dāng)成了傾聽者。缺少了一種主動(dòng)思維和思考的愿望。

  三、 措施:

  1、讓學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,做題時(shí)認(rèn)真仔細(xì)。

  2、鼓勵(lì)學(xué)生利用課余時(shí)間間動(dòng)手做一些學(xué)具,不僅會(huì)增強(qiáng)學(xué)生的動(dòng)手操作能力,而且可以用到學(xué)習(xí)中去。

  3、教師要認(rèn)真的去設(shè)計(jì)教學(xué)案,把每一個(gè)問題設(shè)計(jì)精細(xì),小組合作學(xué)習(xí)才能真正發(fā)揮優(yōu)勢(shì)。

  圓錐的體積教學(xué)反思 篇12

  讓學(xué)生真正成為活動(dòng)的主動(dòng)者,才能讓學(xué)生真正的感受自己是學(xué)習(xí)的主人。在圖形的教學(xué)中,根據(jù)學(xué)習(xí)內(nèi)容的特點(diǎn),注重操作,注重實(shí)踐,可以讓教學(xué)達(dá)到最高效。

  《圓錐》這節(jié)課,其教學(xué)目標(biāo)是:

  1)、認(rèn)識(shí)圓錐,了解圓錐的底面、側(cè)面和高;

  2)、掌握?qǐng)A錐高的測(cè)量方法;

  3)、圓錐體積公式的推導(dǎo);

  4)、通過例一例二使學(xué)生會(huì)應(yīng)用圓錐公式進(jìn)行簡(jiǎn)單的計(jì)算。

  教學(xué)中,學(xué)生通過實(shí)際觸摸,動(dòng)手測(cè)量、探索推導(dǎo)等活動(dòng),前三個(gè)教學(xué)目標(biāo)在輕松快樂的氛圍中順利完成。在公式應(yīng)用這個(gè)環(huán)節(jié),考慮到學(xué)生已經(jīng)預(yù)習(xí)過例題,就把例二教學(xué)做了改動(dòng)給出一圓錐形麥堆,底面直徑是20分米,高是14分米,每立方米小麥重0。375千克,求這堆小麥重多少千克?讓學(xué)生自主練習(xí),本以為應(yīng)用公式很快就能解決的一個(gè)問題,可學(xué)生算了好長(zhǎng)時(shí)間還沒有完成。原來我在改動(dòng)數(shù)字時(shí)沒有考慮到圓錐體積公式的1/3和3。14給出的直徑和高與1/3都不能約分,使本應(yīng)該鞏固公式應(yīng)用的目標(biāo)辯詞了復(fù)雜的小數(shù)計(jì)算,浪費(fèi)了大量的時(shí)間,課后習(xí)題沒有處理完就匆匆結(jié)束了這節(jié)課。課后反思數(shù)學(xué)既活又嚴(yán)謹(jǐn),看似一個(gè)簡(jiǎn)單數(shù)字的出示也要付出周密的策劃。一節(jié)簡(jiǎn)單流暢的好課,并不是隨手拈來的,只要用心的去思考,統(tǒng)籌安排,關(guān)注到每個(gè)細(xì)節(jié)才能得到。

  教學(xué)需要學(xué)習(xí),教學(xué)更需要反思,在反思中進(jìn)步,在反思中提高。

  圓錐的體積教學(xué)反思 篇13

  課前我安排學(xué)生收集、整理生活中應(yīng)用圓錐的實(shí)例和信息資料。教學(xué)時(shí)我首先列舉生活中大量的圓錐實(shí)物,在學(xué)生觀察思考這些物體形狀的共同特點(diǎn),并從實(shí)物中抽象出幾何形體的基礎(chǔ)上引入。再引導(dǎo)學(xué)生對(duì)照模型和圖形,互說圓錐的特征,加深對(duì)圓錐的認(rèn)識(shí)。感受幾何知識(shí)在生活中的應(yīng)用,同時(shí)提高學(xué)生運(yùn)用數(shù)學(xué)為生活服務(wù)的意識(shí)和能力。

  在本課中,我無論從問題的引入,圓錐概念的定義,高的尋找及測(cè)量方法的探索,我都給予學(xué)生充足的時(shí)間進(jìn)行嘗試、研究和討論,讓學(xué)生以不同的方式進(jìn)行合作、交流,這樣的過程,不僅提供了學(xué)生自主學(xué)習(xí)的機(jī)會(huì),也提高了學(xué)生自主參與學(xué)習(xí)的意識(shí)和信心,大家積極發(fā)言,爭(zhēng)先操作,參與率很高。

  我積極地創(chuàng)造機(jī)會(huì)讓學(xué)生自己去學(xué)習(xí)或者去探究問題.通過 “看一看 ”, “摸一摸 ”, “比一比 ”, “指一指 ”, “說一說 ”, “猜一猜 ”等問題情境,讓學(xué)生親身感受數(shù)學(xué),在 “找 ”中學(xué),在 “測(cè) ”中學(xué),在 “思 ”中學(xué),培養(yǎng)學(xué)生動(dòng)手操作能力、直觀思維和抽象思維能力,使數(shù)學(xué)課堂教學(xué) “動(dòng) ”起來、 “活 ”起來,讓學(xué)生在 “做 ”中學(xué),使數(shù)學(xué)課堂煥發(fā)出生命活力。

  圓錐的體積教學(xué)反思 篇14

  (課前準(zhǔn)備:等底等高、不等底不等高的空?qǐng)A柱、圓錐、沙子,利用“錯(cuò)誤”資源,展示思維過程 ——《圓錐的體積》一課的案例反思。課前學(xué)生都預(yù)習(xí)過這一內(nèi)容。)

  教學(xué)片斷

  師:下面分組做實(shí)驗(yàn),在空?qǐng)A錐里裝滿沙子,然后倒入空?qǐng)A柱中,看看幾次正好裝滿。

  小組代表從教具箱中自選實(shí)驗(yàn)用的空?qǐng)A錐圓柱各一個(gè),分頭操作。

  師:請(qǐng)同學(xué)們利用手中的圓柱和圓錐、沙子,從倒的次數(shù)看,研究?jī)烧唧w積之間有怎樣的關(guān)系?

  生1:我們將空?qǐng)A錐里裝滿沙子,然后倒入空?qǐng)A柱中,三次正好裝滿。說明圓錐的體積是圓柱的三分之一。

  生2:三次倒?jié)M,圓錐的體積是圓柱的三分之一。

  生3(有些遲疑地):我們將空?qǐng)A錐里裝滿沙子,然后倒入空?qǐng)A柱中,四次正好裝滿。說明圓錐的體積是圓柱的四分之一。

  生1:是三分之一,不是四分之一。

  生5:我們?cè)诳請(qǐng)A錐里裝滿沙子,然后倒入空?qǐng)A柱中,不到三次就將圓柱裝滿了。

  ……

  師:并不都是三分之一呀。怎么會(huì)是這樣!我來做。(教師從教具箱中隨手取出一個(gè)空?qǐng)A錐一個(gè)空?qǐng)A柱)你們看, 將空?qǐng)A錐里裝滿沙子,倒入空?qǐng)A柱里。一次,再來一次。兩次正好裝滿。圓錐的體積是圓柱的二分之一。怎么回事?是不是書上的結(jié)論有錯(cuò)誤?(以前曾有學(xué)生對(duì)教材中的內(nèi)容提出過疑問)

  學(xué)生議論紛紛!

  師:你們說該怎么辦?

  生6:老師,你取的圓柱太大了。(教師在他的推薦下重新使用一個(gè)空?qǐng)A柱繼續(xù)實(shí)驗(yàn),三次正好倒?jié)M,教育論文《利用“錯(cuò)誤”資源,展示思維過程 ——《圓錐的體積》一課的案例反思》。)學(xué)生調(diào)換教具,再試。

  師:什么情況下,圓錐的體積是圓柱的三分之一?

  生:等底等高。

  生:圓錐的體積等于和它等底等高的圓柱體積的三分之一。

  師:也就是說圓錐的體積等于圓柱體積的三分之一的前提條件是等底等高。

  案例反思

  以前教學(xué)《圓錐的體積》時(shí)多是先由教師演示等底等高情況下的三分之一,再讓學(xué)生驗(yàn)證,最后教師通過對(duì)比實(shí)驗(yàn)說明不等底等高的差異,但效果不太好,學(xué)生對(duì)等底等高這一重要前提條件,掌握得并不牢固,理解很模糊。為了讓學(xué)生理解“等底等高”是判斷圓錐的體積是圓柱體積的三分之一的前提條件,我就設(shè)計(jì)了以上的教學(xué)片斷:讓學(xué)生自選空?qǐng)A柱和圓錐研究圓柱和圓錐體積之間的關(guān)系,學(xué)生通過動(dòng)手操作得出的結(jié)論與書上的結(jié)論有很大的差異,有三分之一、四分之一、二分之一,思維出現(xiàn)激烈的碰撞,這時(shí)我沒有評(píng)判結(jié)果,而是讓學(xué)生經(jīng)歷一番觀察、發(fā)現(xiàn)、合作、創(chuàng)新過程,得出圓錐體積等于等底等高的圓柱體積的三分之一,這樣讓學(xué)生裝在看似混亂無序的實(shí)踐中,增加對(duì)實(shí)驗(yàn)條件的辨別及信息的批判。既圓滿地推導(dǎo)出了圓錐的體積公式,又促進(jìn)了學(xué)生實(shí)踐能力和批判意識(shí)的發(fā)展。而這些目標(biāo)的達(dá)成完全是靈活機(jī)智地利用“錯(cuò)誤”這一資源,所產(chǎn)生的效果

  在平時(shí)的課堂教學(xué)中,我們要善于利用“錯(cuò)誤”這一資源,讓學(xué)生思考問題幾經(jīng)碰壁終于找到解決問題的方法,把思考問題的實(shí)際過程展現(xiàn)給學(xué)生看,讓學(xué)生經(jīng)過思維的碰撞,這樣做實(shí)際上是非常富于啟發(fā)性的.學(xué)習(xí)數(shù)學(xué)不僅要學(xué)會(huì)這道題的解法,而且更要學(xué)會(huì)這個(gè)解法是如何找到的.

  圓錐的體積教學(xué)反思 篇15

  以前教學(xué)圓錐的體積時(shí),由于教具的制作非常麻煩,多是先由教師演示等底等高情況下的圓柱體積的三分之一正好是圓錐的體積,再讓學(xué)生驗(yàn)證,最后教師通過對(duì)比實(shí)驗(yàn)說明不等底等高的差異,但收到的效果不佳,計(jì)算圓錐的體積時(shí)容易忘掉乘。學(xué)生對(duì)等底等高這一重要條件掌握并不牢固,理解很模糊。在本次課中,新課一開始,我就讓學(xué)生觀察,根據(jù)學(xué)習(xí)體積的經(jīng)驗(yàn),先判斷四個(gè)圓錐的體積大小,引導(dǎo)學(xué)生猜測(cè)圓錐的體積和它的什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,都能說出圓錐的體積跟它的底面積和高有關(guān)系,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。

  為了讓學(xué)生理解等底等高是判斷圓錐的體積是圓柱體積的三分之一的前提條件,同時(shí)為了節(jié)約教學(xué)時(shí)間,我設(shè)計(jì)了這樣的教學(xué)片斷:讓學(xué)生思考,圓錐與學(xué)過哪個(gè)立體圖形的關(guān)系最近?為什么?學(xué)生很容易找到圓柱,接著我又拿出幾個(gè)不同的圓柱,問:考考你們的眼力,選擇哪個(gè)來研究這個(gè)圓錐的體積比較好?將學(xué)生選的圓柱進(jìn)行驗(yàn)證,發(fā)現(xiàn)與圓錐是等底等高,告訴學(xué)生在選擇實(shí)驗(yàn)材料時(shí)要盡量選擇有些相同條件的,這樣實(shí)驗(yàn)時(shí)可以少走彎路,實(shí)驗(yàn)的結(jié)果準(zhǔn)確些,在這個(gè)過程中加深了對(duì)等底等高這個(gè)條件的理解。這時(shí),讓學(xué)生進(jìn)行小組合做,實(shí)驗(yàn)探究,經(jīng)歷一番觀察、發(fā)現(xiàn)、合作、創(chuàng)新的過程,得出圓錐體積等于和它等底等高圓柱體積的三分之一。這樣讓學(xué)生置身于有目的的實(shí)踐中,增加對(duì)實(shí)驗(yàn)條件的選擇及信息的歸納。既圓滿地推導(dǎo)出了圓錐的體積公式,又促進(jìn)了學(xué)生實(shí)踐能力和批判意識(shí)的發(fā)展。而這些目標(biāo)的實(shí)現(xiàn),完全是優(yōu)化實(shí)驗(yàn)過程所產(chǎn)生的效果。

  在小組合作學(xué)習(xí)中,為了增強(qiáng)實(shí)效性,避免走形式,在課前,我引導(dǎo)學(xué)生制作等底等高的一組圓柱和圓錐,使每個(gè)學(xué)生都能真切的參與實(shí)驗(yàn)、參與到探究中去,讓他們以這樣每個(gè)學(xué)生都能懷著喜悅的心情進(jìn)行學(xué)習(xí),最大限度的發(fā)揮每個(gè)學(xué)生的自主學(xué)習(xí)的能力,這樣的學(xué)習(xí)不僅使學(xué)生學(xué)會(huì)了知識(shí),更重要的是培養(yǎng)了學(xué)生的能力。

  通過本節(jié)課的教學(xué),我意識(shí)到在平時(shí)的課堂教學(xué)中,我們要善于利以學(xué)生認(rèn)識(shí)發(fā)展規(guī)律為依托:發(fā)現(xiàn)問題,提出問題探究解決問題,探究解決問題得出結(jié)論,實(shí)際應(yīng)用使學(xué)生在認(rèn)識(shí)實(shí)踐再認(rèn)識(shí)、再實(shí)踐中理解運(yùn)用知識(shí)。在教學(xué)環(huán)節(jié)中以學(xué)生探究為基礎(chǔ)引導(dǎo)學(xué)生在探究中總結(jié)規(guī)律,并運(yùn)用規(guī)律解決實(shí)際問題,激發(fā)學(xué)生探究的興趣感受到數(shù)學(xué)的應(yīng)用性,解決問題的樂趣,逐步提高學(xué)生探究知識(shí)應(yīng)用知識(shí)解決實(shí)際問題的能力。

  本節(jié)課的教學(xué)中比較遺憾的時(shí),在制作課件時(shí)考慮不周全,幾個(gè)圓錐的相關(guān)數(shù)據(jù)不準(zhǔn)確,比例不合適,對(duì)學(xué)生的學(xué)習(xí)造成了不必要的麻煩,影響了學(xué)生的判斷結(jié)果,這些看似細(xì)節(jié)的環(huán)節(jié),卻反映了在備課時(shí)的粗心大意,對(duì)學(xué)生也會(huì)產(chǎn)生不良的影響,今后要注意,時(shí)刻記。杭(xì)節(jié)決定成功!

  圓錐的體積教學(xué)反思 篇16

  最近教學(xué)了《圓柱與圓錐》,內(nèi)容包括圓柱的表面積、圓柱的體積、圓錐的體積等,并參與實(shí)踐活動(dòng)。從教材編寫的層面上講力圖體現(xiàn)以下特點(diǎn):

  1。結(jié)合具體情境和操作活動(dòng),引導(dǎo)學(xué)生經(jīng)歷“點(diǎn)動(dòng)成線”“線動(dòng)成面”“面動(dòng)成體”的過程,體會(huì)“點(diǎn)、線、面、體”之間的聯(lián)系教材的第一個(gè)活動(dòng)體現(xiàn)的內(nèi)容是“由平面圖形經(jīng)過旋轉(zhuǎn)形成幾何體”,這不僅是對(duì)幾何體形成過程的學(xué)習(xí),同時(shí)體會(huì)面和體的關(guān)系也是發(fā)展空間觀念的重要途徑,這也是教材將此課題目定為“面的旋轉(zhuǎn)”的原因。教材呈現(xiàn)了幾個(gè)生活中的具體情境,鼓勵(lì)學(xué)生進(jìn)行觀察,激活學(xué)生的生活經(jīng)驗(yàn),使學(xué)生經(jīng)歷“點(diǎn)動(dòng)成線”“線動(dòng)成面”“面動(dòng)成體”的過程。在結(jié)合具體情境感受的基礎(chǔ)上,教材又設(shè)計(jì)了一個(gè)操作活動(dòng),通過快速旋轉(zhuǎn)小旗,引導(dǎo)學(xué)生結(jié)合空間想象體會(huì)立體圖形的形成過程,發(fā)展空間觀念。教材還提供了若干由面旋轉(zhuǎn)成體的練習(xí)。

  2。重視操作與思考、想象相結(jié)合,發(fā)展學(xué)生的空間觀念操作與思考、想象相結(jié)合是學(xué)生認(rèn)識(shí)圖形、探索圖形特征、發(fā)展空間觀念的重要途徑。在本單元中,教材重視學(xué)生操作活動(dòng)的安排,在每個(gè)主題活動(dòng)中都安排了操作活動(dòng),促進(jìn)學(xué)生理解數(shù)學(xué)知識(shí)、發(fā)展空間觀念。如“圓柱的表面積”的教學(xué)中,教材引導(dǎo)學(xué)生通過操作來說明圓柱的側(cè)面展開后是一個(gè)怎樣的圖形,并呈現(xiàn)了兩種操作的方法:一種是把圓柱形紙盒剪開,側(cè)面展開后是一個(gè)長(zhǎng)方形;另一種是用一張長(zhǎng)方形紙卷成圓柱形。再如本單元的最后專門安排了一個(gè)“用長(zhǎng)方形紙卷圓柱形”的實(shí)踐活動(dòng),先讓學(xué)生用兩張完全一樣的長(zhǎng)方形紙,一張橫著卷成一個(gè)圓柱形,另一張豎著卷成一個(gè)圓柱形,研究?jī)蓚(gè)圓柱體積的大。蝗缓蠼M織學(xué)生將兩張完全一樣的長(zhǎng)方形紙裁開,把變化形狀后的紙?jiān)倬沓蓤A柱形,研究圓柱體積的變化,引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律,深化對(duì)圓柱表面積、體積的認(rèn)識(shí),并體會(huì)變量之間的關(guān)系。

  3。引導(dǎo)學(xué)生經(jīng)歷圓柱和圓錐體積計(jì)算方法的探索過程,體會(huì)類比等數(shù)學(xué)思想方法類比是一種重要的數(shù)學(xué)思想方法,是合情推理時(shí)常用的方法。教材重視類比、轉(zhuǎn)化等數(shù)學(xué)思想方法的滲透。在“圓柱的體積”教學(xué)時(shí),教材引導(dǎo)學(xué)生經(jīng)歷“類比猜想—驗(yàn)證說明”的探索過程。由于圓柱和長(zhǎng)方體、正方體都是直柱體,而且長(zhǎng)方體與正方體的體積都等于“底面積×高”,由此可以產(chǎn)生猜想:圓柱的體積計(jì)算

  方法也可能是“底面積×高”。在形成猜想后,教材再引導(dǎo)學(xué)生“驗(yàn)證說明”自己的猜想。在“圓錐的體積”教學(xué)時(shí),教材繼續(xù)滲透類比的思想,再次引導(dǎo)學(xué)生經(jīng)歷“類比猜想—驗(yàn)證說明”的探索過程。另外,教材還注意轉(zhuǎn)化、化曲為直等思想方法的滲透,如在驗(yàn)證說明“圓柱的體積=底面積×高”時(shí),引導(dǎo)學(xué)生把圓柱切割拼成近似的長(zhǎng)方體進(jìn)行研究,體現(xiàn)了化曲為直的思想方法。

  4。在解決實(shí)際問題中鞏固所學(xué)知識(shí),感受數(shù)學(xué)與生活的聯(lián)系圓柱和圓錐的知識(shí)在生活中有著較為廣泛的應(yīng)用,教材在編排練習(xí)時(shí),選擇了來自于現(xiàn)實(shí)生活的問題,引導(dǎo)學(xué)生靈活運(yùn)用所學(xué)知識(shí)解決問題。如學(xué)習(xí)“圓柱的表面積”時(shí),鼓勵(lì)學(xué)生計(jì)算薯片盒的包裝紙的大小、通風(fēng)管需要的鐵皮的面積、壓路機(jī)壓路的面積等,由于實(shí)際情形變化比較多,需要學(xué)生根據(jù)實(shí)際情況靈活地選擇有關(guān)數(shù)據(jù)進(jìn)行計(jì)算。在學(xué)習(xí)“圓柱和圓錐的體積”后,教材鼓勵(lì)學(xué)生計(jì)算水桶的容積、圓木的體積、圓錐形小麥堆的體積、鉛錘的質(zhì)量等。這些實(shí)際問題的解決,將使學(xué)生鞏固對(duì)所學(xué)知識(shí)的理解,體會(huì)數(shù)學(xué)知識(shí)在生活中的廣泛應(yīng)用,豐富對(duì)現(xiàn)實(shí)空間的認(rèn)識(shí),逐步形成學(xué)好數(shù)學(xué)的情感和態(tài)度。

  從教學(xué)層面上講,我覺得要注意這么幾點(diǎn):

  1、讓學(xué)生經(jīng)歷知識(shí)的生成,理解公式的由來。

  2、熟記相關(guān)公式和一些常見數(shù)據(jù),提高計(jì)算的正確率和速度。

  3、注意知識(shí)的拓展應(yīng)用,體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展學(xué)生的思維能力。

  圓錐的體積教學(xué)反思 篇17

  通過本節(jié)課的教學(xué),我意識(shí)到在平時(shí)的課堂教學(xué)中,我們要善于利用以學(xué)生認(rèn)識(shí)發(fā)展規(guī)律為依托 :發(fā)現(xiàn)問題,提出問題探究解決問題,探究解決問題得出結(jié)論,實(shí)際應(yīng)用使學(xué)生在“認(rèn)識(shí)—實(shí)踐—再認(rèn)識(shí)、再實(shí)踐”中理解運(yùn)用知識(shí)。反思教學(xué)過程,主要有以下幾點(diǎn)體會(huì):

  一、觀察引導(dǎo)

  讓學(xué)生觀察用卷筆刀削鉛筆,明白剛才那一截是圓柱體,現(xiàn)在這一截變成了圓錐體。啟發(fā)學(xué)生:削成后的這一部分體積與原體積比較有無變化?學(xué)生回答是肯定的,削后體積變小了。變小了以后的圓錐體是原圓柱體的幾分之幾?也就是說圓錐體體積與圓柱體體積有什么聯(lián)系?圓錐體體積公式如何推導(dǎo)?帶著問題去看書。

  二、巧置陷阱

  學(xué)生看書后知道圓錐體體積等于等底等高圓柱體積的三分之一。但對(duì)“等底、等高”這個(gè)條件往往不注意。為了突出“等底、等高”這個(gè)條件的重要性,我巧置陷阱,讓學(xué)生分組操作,(有一組的圓柱和圓錐體的容器不是等底等高的,有一組的圓柱和圓錐體的容器是等底等高的),去驗(yàn)證課本上的知識(shí)。學(xué)生進(jìn)行倒水實(shí)驗(yàn):用圓錐體容器盛滿水倒入圓柱體容器。過了一會(huì)兒,一個(gè)小組倒了3次水,還沒灌滿;而另一小組的同學(xué)卻大叫:“水溢出來了!”這是什么緣故呢?學(xué)生們議論紛紛。

  三、柳暗花明

  這時(shí)正是學(xué)生思維活動(dòng)進(jìn)入高潮時(shí),我拿出等底等高的圓柱體和圓錐體兩個(gè)容器,用圓錐體量水三次正好灌滿圓柱體,引導(dǎo)學(xué)生與上次演示比較,1比3的關(guān)系是在什么基礎(chǔ)上建立的?學(xué)生恍然大悟,明白圓錐體和圓柱體等底、等高,圓錐體體積才是圓柱體體積的三分之一。而在這樣的過程中我放手讓學(xué)生去想、去做,鼓勵(lì)學(xué)生以多角度去思考問題。學(xué)生在學(xué)習(xí)的過程中,始終是一個(gè)探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗(yàn)。

  四、歸納總結(jié)

  剛才同學(xué)們發(fā)現(xiàn)圓錐體體積等于等底、等高圓柱體體積的,現(xiàn)在圓錐體體積公式如何推導(dǎo)?學(xué)生很容易得出:

  v圓錐體=sh÷3

  但在教學(xué)過程中我發(fā)現(xiàn)了幾個(gè)值得我思考和改正的問題:

  1、在教學(xué)之后感覺到遺憾的是,由于教具有限,參與實(shí)驗(yàn)的學(xué)生不多。

  2、有些學(xué)生在計(jì)算過程中常忘記除以3,需要加強(qiáng)練習(xí)。

  3、對(duì)學(xué)生的操作關(guān)注不夠到位。

  采取的措施:

  1、培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,做題時(shí)認(rèn)真仔細(xì)。

  2、上課要用心去感受學(xué)生課堂上出現(xiàn)的各種情況,使自己更有激情,把自己更好地融入到課堂教學(xué)中去。同時(shí)也會(huì)把時(shí)間更多的放在鉆研教材上,把每一節(jié)課上得有聲有色。

  圓錐的體積教學(xué)反思 篇18

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:“有效的數(shù)學(xué)學(xué)習(xí)活動(dòng)不能單純地依賴模仿和記憶,動(dòng)手實(shí)踐、自主探索與合作交流是學(xué)生學(xué)習(xí)數(shù)學(xué)的重要方式!币虼,在教學(xué)圓錐體積計(jì)算時(shí),一改以前教師演示或在教師指令下實(shí)驗(yàn)的做法;采取提供學(xué)生材料和機(jī)會(huì),引導(dǎo)學(xué)生自主探究的學(xué)習(xí)方式。具體表現(xiàn)在:

  (1)密切數(shù)學(xué)與現(xiàn)實(shí)的聯(lián)系,富有兒童情趣。

  學(xué)生從熟悉的經(jīng)典歷史故事《曹操稱象》中,理解了“大象”轉(zhuǎn)化為“石頭”的等量代換的數(shù)學(xué)方法,滲透轉(zhuǎn)化的方法,為新知識(shí)作好鋪墊和準(zhǔn)備。又從刨鉛筆直觀引入,引發(fā)學(xué)生大膽猜想,學(xué)生的主動(dòng)性,探究性得到培養(yǎng)。實(shí)驗(yàn)中的米;最后,習(xí)題中又回歸生活,延伸了課堂。

  (2)致力于改變學(xué)生的學(xué)習(xí)方式。

  在教學(xué)過程中,能夠在學(xué)生已有的知識(shí)經(jīng)驗(yàn)基礎(chǔ)和動(dòng)手操作上,經(jīng)過學(xué)生自主探索與合作交流,解決了與生活經(jīng)驗(yàn)密切聯(lián)系,具有挑戰(zhàn)性的問題。課堂中,啟發(fā)學(xué)生提問,猜想,動(dòng)手測(cè)量,注重了解決問題能力的培養(yǎng),體驗(yàn)到了成功的快樂。

  (3)學(xué)習(xí)過程中揭示了一般科學(xué)的研究方法。

  提出問題——直覺猜想——實(shí)驗(yàn)探索——合作交流——實(shí)驗(yàn)驗(yàn)證——得出結(jié)論——實(shí)踐運(yùn)用。這為以后的探究學(xué)習(xí)提供了一個(gè)基本方法,使學(xué)生在自主探索中掌握了知識(shí),同時(shí)獲得了最廣泛的數(shù)學(xué)活動(dòng)經(jīng)驗(yàn)、理想和方法,更發(fā)展了學(xué)生的反思意識(shí)、小組自我評(píng)價(jià)意識(shí)。

  縱觀本節(jié)課的設(shè)計(jì),運(yùn)用現(xiàn)代教學(xué)理論,以新課程的理念指導(dǎo)教學(xué),較好的處理了主導(dǎo)和主體、知識(shí)和能力、過程和結(jié)論的關(guān)系,充分調(diào)動(dòng)了學(xué)生的積極性,引導(dǎo)全體學(xué)生動(dòng)腦、動(dòng)手、動(dòng)口參與學(xué)習(xí)的全過程。整節(jié)課教學(xué)目標(biāo)明確,教學(xué)層次清楚。結(jié)構(gòu)嚴(yán)謹(jǐn),重點(diǎn)突出,取得了良好的教學(xué)效果。

  圓錐的體積教學(xué)反思 篇19

  就小學(xué)現(xiàn)有的知識(shí),把圓錐體積轉(zhuǎn)化為體積相等的其它物體有些困難。因此,教學(xué)圓錐體積公式采用的方法與圓柱不同,沒有采用“轉(zhuǎn)化”的思想。因而這節(jié)課首先出示例5,讓學(xué)生從圖畫直觀上感受——圓錐體的體積比等底等。就小學(xué)現(xiàn)有的知識(shí),把圓錐體積轉(zhuǎn)化為體積相等的其它物體有些困難。因此,教學(xué)圓錐體積公式采用的方法與圓柱不同,沒有采用“轉(zhuǎn)化”的思想。因而這節(jié)課首先出示例5,讓學(xué)生從圖畫直觀上感受——圓錐體的體積比等底等高的圓柱體體積小。在此直觀的基礎(chǔ)上,讓學(xué)生猜想該圓錐的體積是圓柱的幾分之幾。當(dāng)然這里教師并不追究學(xué)生猜想的是否準(zhǔn)確,可以說1/2,1/3,或其它的分?jǐn)?shù)都可以。,關(guān)鍵在猜想的基礎(chǔ)上讓他們明白,估計(jì)的結(jié)果一定要經(jīng)過驗(yàn)證才能確認(rèn)或修正。

  讓他們明白“估計(jì)——驗(yàn)證”是解決問題的一種策略。因而,在估計(jì)的基礎(chǔ)上,我再讓學(xué)生親自動(dòng)手實(shí)驗(yàn),這里除了培養(yǎng)學(xué)生的自主探究、發(fā)現(xiàn)的能力,還讓學(xué)生在操作實(shí)驗(yàn)的過程中,各種能力得到鍛煉,同時(shí)還讓學(xué)生在實(shí)驗(yàn)中感受數(shù)學(xué)的嚴(yán)密性,感受數(shù)學(xué)的內(nèi)在魅力,激發(fā)學(xué)生對(duì)數(shù)學(xué)的熱愛。學(xué)生學(xué)識(shí)的關(guān)鍵還在于會(huì)不會(huì)運(yùn)用,因而,在學(xué)生探索好后,讓學(xué)生用自己探索到的結(jié)論,解決生活中的一些實(shí)際問題,讓他們真正感受到數(shù)學(xué)的用處——生活中處處離不開數(shù)學(xué)。最后讓學(xué)生談?wù)勈斋@,鞏固這節(jié)課的重點(diǎn),加深印象。

  圓錐的體積教學(xué)反思 篇20

  一、課堂提問沒有給學(xué)生留下足夠的思考空間。

  如:“你打算用什么方法測(cè)量這個(gè)圓錐的體積?”問題提出后,我僅停頓了2秒,沒有學(xué)生舉手我就接著說“我們解決一個(gè)未知問題通常會(huì)把它轉(zhuǎn)化為已知問題,那么圓錐的體積可以轉(zhuǎn)化為我們?cè)瓉韺W(xué)過的哪個(gè)立體圖形的體積呢?”說完這句話,我就意識(shí)到,這個(gè)地方應(yīng)該讓學(xué)生充分的思考,充分的說一說方法,如果學(xué)生說不出,我再說這些話,學(xué)生可能會(huì)給我很多驚喜。

  二、實(shí)驗(yàn)結(jié)束后,你想說什么。

  學(xué)生經(jīng)歷了猜想、體驗(yàn)、探究、驗(yàn)證的過程,在實(shí)驗(yàn)的過程中肯定會(huì)發(fā)現(xiàn)很多問題、矛盾。實(shí)驗(yàn)結(jié)束后,學(xué)生應(yīng)該有很多話要說。此時(shí)問一問,你想說什么?既給了學(xué)生一個(gè)思維提升的過程,又能順利的總結(jié)出這節(jié)課的結(jié)論。

  三、如何有效的調(diào)動(dòng)起學(xué)生的積極性,讓高年級(jí)的學(xué)生也能積極回答問題。

  這個(gè)問題,我曾經(jīng)百思不得其解,總以為就是高年級(jí)學(xué)生的公開課比低年級(jí)的公開課難上,這節(jié)課后也豁然找到了原因:一是出在我平時(shí)的課堂上。由于平時(shí)上課總要照顧后進(jìn)生,所以在回答問題時(shí),往往不去叫舉手的好學(xué)生,總?cè)c(diǎn)不舉手的后進(jìn)生,公開課時(shí)也不由自主地這樣做。但是這樣做的后果就是導(dǎo)致,舉手的同學(xué)本來就有些害怕,我還總不去叫他。不但打擊了舉手同學(xué)的積極性,還打消了其他同學(xué)舉手的念頭。另一個(gè)很重要的原因是緣于教師上課的心態(tài)。對(duì)著低年級(jí)學(xué)生上課,我們很容易放下姿態(tài),去“哄”他們,有一點(diǎn)做的好、說的好了,教師就會(huì)給很高的評(píng)價(jià)。而且態(tài)度還“和藹可親”。但是對(duì)著六年級(jí)學(xué)生,就覺得他們是大孩子了。自己首先都沒有用同樣的態(tài)度去對(duì)待他們,又怎么能向他們要同樣的課堂效果呢?

  通過不斷的反思自己,讓我發(fā)現(xiàn)了很多自己的問題。這一節(jié)課,可以說是我從教以來對(duì)我打擊最大的一節(jié)課,卻又是讓我收獲最大的一節(jié)課。課堂上留下了很多遺憾,有機(jī)會(huì)真想再重新上一遍這節(jié)課。

  圓錐的體積教學(xué)反思 篇21

  在評(píng)教評(píng)學(xué)中我所講的內(nèi)容是《圓錐的體積》,是學(xué)生在掌握了圓錐的認(rèn)識(shí)和圓柱的體積的基礎(chǔ)上進(jìn)行的。教學(xué)時(shí)我先讓學(xué)生回顧上一節(jié)學(xué)過的內(nèi)容,再讓學(xué)生大膽的猜想圓錐的體積公式。然后通過實(shí)驗(yàn)操作來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,或圓柱的體積是等底等高圓錐體積的3倍。

  并能運(yùn)用這個(gè)關(guān)系計(jì)算圓錐的體積。本節(jié)課我重點(diǎn)讓學(xué)生動(dòng)手實(shí)驗(yàn)探究充分發(fā)揮學(xué)生小組合作的精神,大膽放手讓學(xué)生動(dòng)手操作,實(shí)驗(yàn),并記錄下整個(gè)實(shí)驗(yàn)過程和發(fā)現(xiàn)的結(jié)果。在匯報(bào)時(shí),由于準(zhǔn)備的材料不同,范耀君同學(xué)的小組和郝子龍小組發(fā)生了爭(zhēng)論,也是本課要解決的重點(diǎn)問題,我及時(shí)抓住這一個(gè)環(huán)節(jié),引導(dǎo)學(xué)生得出必須在等底等高的條件下,從而推導(dǎo)出圓錐的體積計(jì)算公式,并懂得圓錐體和圓柱體之間的關(guān)系。

  在感知事物,獲取感性知識(shí)中,操作與思維緊密結(jié)合,加深對(duì)圓錐及體積的認(rèn)識(shí)。遺憾的是學(xué)生動(dòng)手實(shí)驗(yàn)時(shí),占據(jù)了較長(zhǎng)的時(shí)間,以至練習(xí)的時(shí)間不多,沒有達(dá)到充分的鞏固。在以后的教學(xué)中要合理的安排和調(diào)控好課堂,使學(xué)生有充分發(fā)揮的空間。

  圓錐的體積教學(xué)反思 篇22

  圓錐的體積這一部分內(nèi)容是圓柱體積的遷移。在這節(jié)的設(shè)計(jì)上我主要是采用讓學(xué)生自主探究——?jiǎng)邮謱?shí)踐——得出結(jié)論的模式進(jìn)行教學(xué)的。在操作的過程中,我充分的利用學(xué)具,先讓學(xué)生觀察手中的圓柱與圓錐有什么關(guān)系,學(xué)生觀察到他們是等底等高的,我的目的就是為了深化學(xué)生對(duì)這一個(gè)條件的認(rèn)識(shí)。緊接著學(xué)生開始嘗試用學(xué)具研究圓柱與圓錐體積的關(guān)系。當(dāng)他們一切進(jìn)行的都很順利的時(shí)候,有一個(gè)小組突然提出用“圓柱向圓錐里倒水也是可以的!痹捯魟偮,另一個(gè)小組的學(xué)生馬上說道:“那樣很麻煩的,還得測(cè)量出圓柱的體積,計(jì)算出來。”顯然圓柱與圓錐之間的體積公式的推導(dǎo)過程已經(jīng)牢牢的印在腦海中,這就已經(jīng)達(dá)到了我所需要的效果了。

  記得有位老師曾經(jīng)說過:老師說了,學(xué)生記住了,沒有多久就忘了,只有動(dòng)手操作了,學(xué)生記住了,形象的記憶就會(huì)產(chǎn)生了。讓我們多創(chuàng)造一些動(dòng)手的機(jī)會(huì)給他們吧!

【圓錐的體積教學(xué)反思范文(精選22篇)】相關(guān)文章:

有關(guān)圓錐體積教學(xué)課件09-21

圓錐的體積說課稿10篇11-08

圓柱的體積教學(xué)反思15篇03-28

《小排球》的教學(xué)反思范文【精選】03-25

談禮貌的教學(xué)反思范文【精選】03-25

圓柱的體積10-12

《望岳》教學(xué)反思范文精選11-16

數(shù)學(xué)角的分類教學(xué)反思范文【精選】12-25

關(guān)于初中地理教學(xué)反思的范文【精選】03-25

《平均分》的數(shù)學(xué)教學(xué)反思范文【精選】03-24