數(shù)學(xué)解方程教學(xué)反思(精選5篇)
作為一位剛到崗的教師,我們要在教學(xué)中快速成長,通過教學(xué)反思可以快速積累我們的教學(xué)經(jīng)驗,那么大家知道正規(guī)的教學(xué)反思怎么寫嗎?下面是小編幫大家整理的數(shù)學(xué)解方程教學(xué)反思(精選5篇),歡迎閱讀與收藏。
數(shù)學(xué)解方程教學(xué)反思1
《解方程》是人教課標版小學(xué)數(shù)學(xué)五年級上冊第四單元內(nèi)容,本節(jié)課是在認識用字母表示數(shù)的基礎(chǔ)上進行教學(xué)的,新課程解方程教學(xué)與以往的最大不同就是,不是利用加減乘除各部分間的關(guān)系來解,而是利用天平保持平衡的原理,也就是我們常說的等式的基本性質(zhì)解方程。
我對課時安排及教學(xué)設(shè)計均做了較大調(diào)整。原訂計劃是第一課時完成“方程的解”及“解方程”概念教學(xué),要求學(xué)生掌握方程檢驗的書寫格式,第二課時完成加、減、乘、除各類型方程解法的教學(xué)。調(diào)整后的教案改為第一課時完成“方程的解”及“解方程”概念教學(xué)、會解形如X±A=B的方程,掌握檢驗的格式;第二課時只完成乘除法方程的解法。我上的是第一課時,其次對于教學(xué)設(shè)計也做了相應(yīng)處理,將例1改為:X+20=70,又將X—a=b形式的方程穿插學(xué)習(xí)過程之中。
為什么我會做如此改動呢?基于以下兩點原因:
1、考慮到學(xué)生一節(jié)課內(nèi)如要掌握加減乘除各種類型方程的解法、理解解方程的原理,規(guī)范書寫格式,內(nèi)容太多,怕影響教學(xué)效果。2、如果能將“解方程”與“方程的解”這兩個概念結(jié)合規(guī)范的解方程書寫過程和結(jié)果來向?qū)W生解釋,更利于學(xué)生理解掌握?傮w思路如下:
1、從復(fù)習(xí)天平保持平衡的道理入手,引出課題,引導(dǎo)學(xué)習(xí)質(zhì)疑,有利于激發(fā)學(xué)生主動探究、深入學(xué)習(xí)的積極性。
2、通過自主學(xué)習(xí)、組內(nèi)交流、合作,達到培養(yǎng)學(xué)生自主、互助的精神。
3、給足夠的時間讓學(xué)生學(xué)習(xí),讓學(xué)生發(fā)現(xiàn)。
4、多層次的練習(xí)形式,有利于學(xué)生對知識進一步的理解與掌握,并及時有效地鞏固強化概念。
5、教師始終把學(xué)生放在主體地位,為學(xué)生提供了一個自己去想去說,去回味知識掌握過程的舞臺,這樣將更有助于學(xué)生掌握正確的學(xué)習(xí)方法,總結(jié)失敗原因,發(fā)揚成功經(jīng)驗,培養(yǎng)良好的學(xué)習(xí)習(xí)慣。
6、自學(xué)思考匯報交流既有利于每個學(xué)生的自主探索,保證個性發(fā)展,也有利于教師考察學(xué)生思維的合理性和靈活性,考察學(xué)生是否能用清晰的數(shù)學(xué)語言表達自己的觀點。
在具體教學(xué)過程中,我從以下幾個方面入手:
一、感受天平的平衡現(xiàn)象,悟出等式的性質(zhì)變化。
教學(xué)中我先利用課件演示了“我說你答”的游戲讓學(xué)生回顧:天平兩端同時加上或減去同樣的重量,天平任然保持平衡,目的是讓學(xué)生直觀感受天平保持平衡原理,為學(xué)生遷移類推到方程中打基礎(chǔ)。然后出示例題X+20=70
二、利用等式性質(zhì)解方程—,初步感悟它的妙用
在計算過程中,重點突出了“等式”與“等式兩邊都加上或減去同一個數(shù),等式仍然成立”這個規(guī)律,通過討論:方程X+20=70中左右兩邊同時減去的為什么是20,而不是其它數(shù)呢?讓學(xué)生明白:左邊減去20是為了使方程左邊只剩,右邊減去20是為了使方程兩邊仍然相等!不斷對孩子們進行潛移默化地滲透,促使絕大部分的學(xué)生都能靈活地運用此規(guī)律來解方程。從而,我驚喜地發(fā)現(xiàn)孩子們的學(xué)習(xí)活動是那么的有滋有味,進而使我很順利地就完成了本課的教學(xué)任務(wù)。
三、確保正確率,及時進行檢驗。
原來的檢驗過程需要完整地寫出左邊與右邊相等的過程,小學(xué)生在這個方面就會顯得不耐煩,在經(jīng)歷了一個詳細的檢驗過程之后,然后教給學(xué)生一個簡便的檢驗方法,學(xué)生都很興奮,積極性也很高漲,而且主動性也很好,這樣解決問題的正確率也提高了。
通過教學(xué),發(fā)現(xiàn)學(xué)生對這種方法掌握的很好,而且很樂意用等式的性質(zhì)來解方程,但同時讓我感到了一點困惑:
從教材的編排上,整體難度下降,有意避開了,形如:A—X=B和A÷X=B等類型的題目。把用等式解決的方法單一化了。在實際教學(xué)中,如果用等式性質(zhì)來解就比較麻煩。很顯然這種方法存在著目前的局限性。對于好的學(xué)生來說,我們會讓他們嘗試接受——解答X在后面這類方程的解答方法,就是等號二邊同時加上X,再左右換位置,再二邊減一個數(shù),真有點麻煩了。而且有的學(xué)生還很難掌握這樣方法。但是用減法和除法各部分之間的關(guān)系解答就比較簡單。這會不會與教材主倡導(dǎo)的用等式的性質(zhì)解決問題有矛盾呢?
數(shù)學(xué)解方程教學(xué)反思2
教學(xué)重難點是掌握較復(fù)雜方程的解法,會正確分析題目中的數(shù)量關(guān)系;教學(xué)目的是進一步掌握列方程解決問題的方法。這一小節(jié)內(nèi)容是在前面初步學(xué)會列方程解比較容易的應(yīng)用題的基礎(chǔ)上,教學(xué)解答稍復(fù)雜的兩步計算應(yīng)用題。例1若用算術(shù)方法解,需逆思考,思維難度大,學(xué)生容易出現(xiàn)先除后減的錯誤,用方程解,思路比較順,體現(xiàn)了列方程解應(yīng)用題的優(yōu)越性。
一、從學(xué)生喜聞樂見的事物入手,降低問題的難度。
解答例1這類應(yīng)用題的關(guān)鍵是找題里數(shù)量間的相等關(guān)系。為了幫助學(xué)生找準題量的等量關(guān)系。我從學(xué)生喜歡的足球入手,引出數(shù)學(xué)問題,激發(fā)學(xué)生的學(xué)習(xí)數(shù)學(xué)的興趣,建立學(xué)生熱愛體育1
運動的良好情感,又為學(xué)習(xí)新知識做了很多的鋪墊。
二、放手讓學(xué)生思考、解答,選擇解題最佳方案。
讓學(xué)生當(dāng)小老師,從問題中找出數(shù)量之間的關(guān)系,弄清解決問題的思路,展示講解自己的思考過程和結(jié)果,這樣既增加學(xué)生學(xué)習(xí)的信心,又培養(yǎng)學(xué)生分析問題的能力,發(fā)展學(xué)生的思維空間;然后,我大膽放手,讓學(xué)生用自己學(xué)過的方法來解答例1,最后老師讓學(xué)生把各種不同的解法板演在黑板上,讓學(xué)生分析哪種解法合理,再從中選擇最佳解題方案。這樣既突出了最佳解題思路,又強化了列方程解題的優(yōu)越性和解題的關(guān)鍵,促進了學(xué)生邏輯思維的發(fā)展。
三、教會學(xué)生學(xué)習(xí)方法,比教會知識更重要。
應(yīng)用題的教學(xué),關(guān)鍵是理清思路,教給方法,啟迪思維,提高解題能力。這節(jié)課的教學(xué)中,教師敢于大膽放手,讓學(xué)生觀察圖畫,了解畫面信息,白色皮多少塊,黑色皮多少塊,白色皮比黑色皮少多少等信息,組織學(xué)生小組討論交流,再在練習(xí)本上畫線段圖,然后指導(dǎo)學(xué)生根據(jù)線段圖,分析數(shù)量之間的關(guān)系,討論交流解決問題的方法,讓學(xué)生
成為學(xué)習(xí)的'主人,參與到教學(xué)的全過程中去。所以在應(yīng)用題的教學(xué)中,教師要指導(dǎo)學(xué)生學(xué)會分析應(yīng)用題的解題方法,一句話,教會學(xué)生學(xué)習(xí)方法比教會知識更重要,讓學(xué)生真正成為學(xué)習(xí)的主體。教師是教學(xué)過程的組織者、引導(dǎo)者。
數(shù)學(xué)解方程教學(xué)反思3
解方程的內(nèi)容主要是在五年級就學(xué)過的,但六年級上期仍然出現(xiàn)了解方程的內(nèi)容,說明了這個知識點的重要性,既是重點,又是難點。在具體的解方程過程中,通過學(xué)生的課堂活動和課后作業(yè)反饋,總的說來,還是存在很大的問題。我出了12個題,全對的占少數(shù),一般要錯四個左右。下來后我進行了深刻的反思。發(fā)現(xiàn)了幾個主要錯誤:
1、馬虎。體現(xiàn)在抄題抄錯,全班64人有6個抄錯了題。
2、較復(fù)雜點的解方程,思路混亂,不知道把哪一部分看作“整體”。
3、過于依賴計算器,對于除不盡的筆算出錯。
4、錯得最多的是減數(shù)和除數(shù)中含有未知數(shù)的情況。
針對以上幾個錯誤,我認真做了分析,主要的原因有下面幾個:
1、課前過于高估學(xué)生,沒有系統(tǒng)的復(fù)習(xí)相關(guān)內(nèi)容。
2、現(xiàn)在這個班是上個五年級兩個班重新分的班,下來我問了前面教過的數(shù)學(xué)老師,兩個老師教的方法不一樣。
3、作業(yè)量不夠。
所以,在后期的教學(xué)中做了一些調(diào)整:
1、系統(tǒng)復(fù)習(xí)了相關(guān)知識。
2、多作例題講解,由易入難。
3、有針對性的出題,容易出錯的地方進行大量的練習(xí)。
4、搞了一個“我是一個小老師”的活動,全對的同學(xué)給其他同學(xué)當(dāng)老師,一個對一個的教。
5、要求每個同學(xué)都獨立的出一個解方程的題,然后請一個同學(xué)完成并作評價。
經(jīng)過鍛煉,現(xiàn)在對解方程這個這知識點,同學(xué)們興趣和完成率大有提高。
數(shù)學(xué)解方程教學(xué)反思4
這節(jié)課的內(nèi)容包括兩個方面:一是探索并理解“等式兩邊同時加上或減去同一個數(shù),所得結(jié)果仍然是等式”;二是應(yīng)用等式的性質(zhì)解只含有加法和減法運算的簡便方程。解方程是學(xué)生剛接觸的新鮮知識,學(xué)生在知識經(jīng)驗的儲備上明顯不足,因此數(shù)學(xué)中老師要時刻關(guān)注學(xué)生的學(xué)習(xí)狀態(tài),引領(lǐng)學(xué)生經(jīng)歷將現(xiàn)實、具體的問題加以數(shù)學(xué)化,引導(dǎo)學(xué)生通過操作、觀察、分析和比較,由具體到抽象理解等式的性質(zhì),并應(yīng)用等式的性質(zhì)解方程。在這節(jié)課的教學(xué)中,讓學(xué)生理解并掌握等式的性質(zhì)應(yīng)是解決一系列問題的關(guān)鍵。
一、讓學(xué)生在操作中發(fā)現(xiàn)
課開始,老師出示天平并在兩邊各放一個50克的砝碼,“你能用式子表示出兩邊的關(guān)系嗎?”學(xué)生寫出50=50;老師在天平的一邊增加一個20克砝碼,“這時的關(guān)系怎么表示?”學(xué)生寫出50+20>50,“這時天平的兩邊不相等,怎樣才能讓天平兩邊相等?”學(xué)生交流得出在天平的另一邊增加同樣重量的砝碼;“你有什么發(fā)現(xiàn)嗎?”“自己寫幾個等式看一看!蓖ㄟ^具體的操作為學(xué)生探究問題,尋找結(jié)論提供了真實的情境,輔以啟發(fā)性、引領(lǐng)性的問題,讓學(xué)生經(jīng)歷了解決問題的過程,并在問題的解決中發(fā)現(xiàn)并獲得知識。
二、讓學(xué)生在發(fā)現(xiàn)中操作
引入了等式的性質(zhì),其目的就是讓學(xué)生應(yīng)用這一性質(zhì)去解方程,第一次學(xué)生解方程,學(xué)生心理上難免會有些準備不足,為了幫助學(xué)生應(yīng)用等式的性質(zhì)解方程,教者先利用天平所顯示的數(shù)量關(guān)系,引導(dǎo)學(xué)生發(fā)現(xiàn)“在方程的兩邊都減去100,使方程的左邊只剩下x”,通過這樣有步驟的練習(xí),幫助學(xué)生逐漸掌握解方程的方法。
數(shù)學(xué)解方程教學(xué)反思5
縱觀整節(jié)課教學(xué),我認為已經(jīng)基本把握教材的重難點。在講解“方程的解”定義時,能從驗算例子答案出發(fā),讓學(xué)生體會到“方程左右兩邊相等”的特征,從而能更好地理解“方程的解”的定義。
在講授“解方程”定義概念時,我主要從教材思想出發(fā),通過讓學(xué)生說出采用各自不同的方法求解方程的解,讓學(xué)生明白“解方程的各種方法,目的只有一個,那就是求出解,但不同的方法有自身不同的求解過程”著重讓學(xué)生理解“求解過程”。
在這基礎(chǔ)上,讓學(xué)生討論發(fā)現(xiàn)兩個概念定義之間的區(qū)別。
在講授“解方程:X+7=13”例題時,我安排一個成績中等的學(xué)生上來解答(因為是新課,學(xué)生還沒有接觸過正確規(guī)范的書寫格式,學(xué)生的求解方法和過程步驟,能代表整個班級的情況。況且學(xué)生的求解過程能起到反例的作用,為下面比較教學(xué)——從對比中認識正確的求解過程做好鋪墊)
板書正確書寫格式后,讓學(xué)生通過比較發(fā)現(xiàn)該如何正確規(guī)范地求解方程的解。
整節(jié)課教學(xué)存在幾點不足:
1、學(xué)生課堂練習(xí)量少。這與定義的教學(xué)花費太多時間有關(guān)。
2、對學(xué)生新課之前的求解方程的解的方法缺少關(guān)注。解方程是可以有很多方法的,需要鼓勵學(xué)生的多向發(fā)散思維。
3、教師課堂上雖然提到“對于一個X的值,它究竟是不是方程的解呢?為什么?”,但還是缺乏相關(guān)練習(xí),因為這一內(nèi)容對理解“方程的解”有極強的意義。
【數(shù)學(xué)解方程教學(xué)反思(精選5篇)】相關(guān)文章:
大學(xué)數(shù)學(xué)教學(xué)反思02-22
解方程說課稿11-02
高二數(shù)學(xué)教學(xué)反思(精選15篇)02-28
高二數(shù)學(xué)教學(xué)反思精選15篇01-22
數(shù)學(xué)課后教學(xué)反思(精選20篇)02-24