毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

《完全平方公式》教學(xué)反思

時間:2023-11-30 09:41:01 美云 教學(xué)反思 我要投稿

《完全平方公式》教學(xué)反思范文(通用10篇)

  作為一位剛到崗的人民教師,課堂教學(xué)是我們的任務(wù)之一,通過教學(xué)反思可以有效提升自己的課堂經(jīng)驗,快來參考教學(xué)反思是怎么寫的吧!以下是小編幫大家整理的《完全平方公式》教學(xué)反思范文,歡迎大家借鑒與參考,希望對大家有所幫助。

《完全平方公式》教學(xué)反思范文(通用10篇)

  《完全平方公式》教學(xué)反思 1

  學(xué)習(xí)了乘法公式中的完全平方,一個是兩數(shù)和的平方,另一個是兩數(shù)差的平方,兩者僅一個“符號”不同。相乘的結(jié)果是兩數(shù)的平方和,加上(或減去)兩數(shù)的積的2倍,兩者也僅差一個“符號”不同,運用完全平方公式計算時,要注意:

 。1)切勿把此公式與平方差公式混淆,而隨意寫。

 。2)切勿把“乘積項”2ab中的2丟掉。

 。3)計算時,要先觀察題目是否符合公式的條件。若不符合,應(yīng)先變形為符合公式的.條件的形式,再利用公式進(jìn)行計算;若不能變?yōu)榉蠗l件的形式,則應(yīng)運用乘法法則進(jìn)行計算。

  今后在教學(xué)中,要注意以下幾點:

  1、讓學(xué)生自編幾道符合平方差公式結(jié)構(gòu)的計算題,目的是辨認(rèn)題目的結(jié)構(gòu)特征。

  2、引入完全平方公式,讓學(xué)生用文字概括公式的內(nèi)容,培養(yǎng)抽象的數(shù)字思維能力。

  《完全平方公式》教學(xué)反思 2

  本節(jié)課的教學(xué)已基本達(dá)到了教學(xué)目的。本課的知識要點是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應(yīng)公式進(jìn)行簡單的計算。

  理解公式的推導(dǎo)過程,了解公式的幾何背景,會應(yīng)用公式進(jìn)行簡單的計算。并滲透建模、化歸、對稱、數(shù)形結(jié)合、邏輯推理等思想方法。經(jīng)歷探索完全平方公式的過程,培養(yǎng)學(xué)生的發(fā)現(xiàn)能力、求簡意識、應(yīng)用意識、解決問題的能力和創(chuàng)新能力。培養(yǎng)學(xué)生敢于挑戰(zhàn),勇于探索的.精神和善于觀察,大膽創(chuàng)新的思想品質(zhì)。作用在于讓其體會公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),并會運用公式進(jìn)行簡單的計算,理解公式中的字母含義,及公式的應(yīng)用。

  針對初一學(xué)生的形象思維大于抽象思維,注意力不能持久等年齡特點,及本節(jié)課實際,采用自主探索、啟發(fā)引導(dǎo)、合作交流展開教學(xué)。引導(dǎo)學(xué)生主動地進(jìn)行觀察、猜測、驗證和交流,讓不同層次的學(xué)生都能主動參與并都能得到充分的發(fā)展。邊啟發(fā),邊探索,邊歸納,突出以學(xué)生為主體的探索性學(xué)習(xí)的原則。

  《完全平方公式》教學(xué)反思 3

  小班化教學(xué)的理論已經(jīng)學(xué)習(xí)交流了很長一段時間,大家都在自己的工作實踐中進(jìn)行嘗試,也取得了一些效果。通過本次上公開課,對小班化教學(xué)又有了一點新的認(rèn)識,反思如下。

  從思想上注重學(xué)生的主動參與。本節(jié)課我講的'內(nèi)容是完全平方公式,在課堂上完成完全平方公式的推導(dǎo)應(yīng)用,完全平方公式的面積表示。如果單純從教學(xué)內(nèi)容上看,用傳統(tǒng)的授課方式,很容易讓學(xué)生記住公式會用公式。但是,如果注重學(xué)生的參與的話,在公式推導(dǎo)尤其是面積的表達(dá)上,放給學(xué)生自己,花費的時間很長。這樣做雖然看起來教學(xué)效率偏低,但實際上在整個過程中,學(xué)生是全身心的投入進(jìn)去了,自己是學(xué)習(xí)的主體,符合小班化教學(xué)的思想。本節(jié)課的主動參與還體現(xiàn)在公式的運用上,讓學(xué)生出錯,讓學(xué)生嘗試,讓學(xué)生從錯誤中反思,從而學(xué)會正確的應(yīng)用。這是本節(jié)課里,比較符合小班化理念的做法。

  本節(jié)課里自認(rèn)為不是很理想的一些做法。比如教態(tài)比較嚴(yán)肅,有時顯得比較急躁。還有,學(xué)生的學(xué)習(xí)效果不是特別理想,學(xué)習(xí)的效率有待于進(jìn)一步提高。

  《完全平方公式》教學(xué)反思 4

  做得較好的方面:

  1、本課的知識要點是經(jīng)歷探索完全平方公式的過程,了解公式的幾何背景,會應(yīng)公式進(jìn)行簡單的計算,教學(xué)已基本達(dá)到了預(yù)期目標(biāo),能突出重點,兼顧難點。

  2、本節(jié)課上學(xué)生體會了數(shù)形結(jié)合及轉(zhuǎn)化的數(shù)學(xué)思想,并知道猜想的結(jié)論必須要加以驗證;授課思維流暢,知識發(fā)生發(fā)展過渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極、氣氛活躍,教學(xué)效果較好。

  做得不足的方面:

  1、應(yīng)該引導(dǎo)學(xué)生用文字概括公式的內(nèi)容,從而培養(yǎng)學(xué)生抽象的數(shù)學(xué)思維能力和語言表達(dá)能力。

  2、對需要幫助的`學(xué)生進(jìn)行針對性的個別指導(dǎo)較少。

  3、對于學(xué)生計算中存在的問題應(yīng)讓學(xué)生自己糾錯,教師不應(yīng)全權(quán)代勞。如利用兩數(shù)和的公式計算(a+b)2環(huán)節(jié),兩位學(xué)生分別講述自己的想法之后,教師應(yīng)該讓全體學(xué)生根據(jù)其方法進(jìn)行計算,自主驗證,即使有些學(xué)生寫不出來,也會因為經(jīng)過思考而印象深刻,如果為了節(jié)省時間教師自己代勞,那樣就不能夠充分體現(xiàn)學(xué)生的主體作用,而且效果也較前者差些。

  《完全平方公式》教學(xué)反思 5

  這一節(jié)課主要研究完全平方公式的證明方法,關(guān)鍵是引導(dǎo)學(xué)生正確理解完全平方公式的推導(dǎo)過程,以及這兩個公式的幾何背景。

  這節(jié)課我做的比較好的方面:

  經(jīng)歷探索完全平方公式的'過程,通過拼圖游戲,從形到數(shù)又從數(shù)到形,讓學(xué)生了解公式的幾何背景,學(xué)生體會了數(shù)形結(jié)合的數(shù)學(xué)思想,并知道猜想的結(jié)論必須加以驗證,本節(jié)授課思維流暢,知識發(fā)生發(fā)展過程過渡自然,學(xué)生容易得到一些結(jié)論但在老師的引導(dǎo)下又使問題的探討得以不斷深入,學(xué)生思考積極,氣氛活躍,教學(xué)效果較好。

  這節(jié)課采用小組自主探究,小組合作的學(xué)習(xí)方式,緊張而愉快,學(xué)生及相互交流的同時又相互合作,極大的調(diào)動了學(xué)生學(xué)習(xí)的熱情同時我也比較關(guān)注那些積極動腦,熱情參與的同學(xué),及時的給予表揚和鼓勵,進(jìn)而促進(jìn)課堂教學(xué)的有效性。

  從幾何意義出發(fā),激發(fā)學(xué)生的圖形觀,利用拼圖游戲,使學(xué)生在動手的過程中發(fā)現(xiàn)結(jié)論,并通過小組合作,探究歸納公式,從而突出以學(xué)生為主體的的探究性學(xué)習(xí)原則。

  這節(jié)課做的不足的方面有對學(xué)生個別指導(dǎo)較少,應(yīng)到各小組當(dāng)中去積極參與學(xué)生的活動;學(xué)生拼圖時間略微有些偏長,對后面的教學(xué)稍有影響,顯的前松后緊。

  《完全平方公式》教學(xué)反思 6

  這節(jié)課學(xué)習(xí)的主要內(nèi)容是運用平方差公式進(jìn)行因式分解,學(xué)習(xí)時如果直接就給同學(xué)們講把前面在整式的乘法中學(xué)習(xí)到的平方差公式反過來運用就形成了因式分解的平方差公式,然后就是反復(fù)的運用、反復(fù)的操練的話,學(xué)生學(xué)起來就會覺得沒有味道,對數(shù)學(xué)有一種厭煩感,所以我就想到了運用逆向思維的方法來學(xué)習(xí)這節(jié)課的內(nèi)容,而且非常不利于學(xué)生理解整式乘法和因式分解之間的互逆的`關(guān)系。

  在新課引入的過程中,首先讓學(xué)生回憶了前面在整式的乘法中遇到的乘法公式,比如平方差公式、完全平方公式。然后,巧妙的將剛才用平方差公式計算得出的三個多項式作為因式分解的題目請學(xué)生嘗試一下?梢哉f,對新問題的引入,是采取了由淺入深的方法,使學(xué)生對新知識不產(chǎn)生任何的畏懼感。

  在這節(jié)課中就明顯出現(xiàn)了這個問題,許多學(xué)生容易產(chǎn)生的問題都集中在一起讓學(xué)生解決,反而將學(xué)生搞得不清不楚。所以,通過這節(jié)展示課也讓我學(xué)到了很多,比如,化解難點時要考慮到學(xué)生的思維障礙,不可操之過急,否則適得其反。

  《完全平方公式》教學(xué)反思 7

  十二周周四上完新教師見面課《乘法公式——完全平方公式》,這次見面課從準(zhǔn)備到實施的過程中,在教學(xué)方面學(xué)到了很多很多。首先非常感謝科組的各位老師,試講后科組的老師們對我的設(shè)計指出不當(dāng)?shù)牡胤,提出了很多建議,而這些是我從來沒有接觸過和考慮過的教學(xué)有效性。

  上完課后心情很沉重,總感覺各個環(huán)節(jié)都不對勁。本節(jié)課的教學(xué)目標(biāo)是會推導(dǎo)完全平方公式,并能運用公式進(jìn)行簡單的運算。課后學(xué)生學(xué)習(xí)目標(biāo)未完全達(dá)成,對運用公式進(jìn)行簡單運算存在一定的困難。通過認(rèn)真反思,認(rèn)識到自己在教學(xué)上存在以下問題:

  1.引入不當(dāng)。學(xué)生剛接觸完全平方公式,計算時容易漏掉公式等號右邊三項式的`中間項,已經(jīng)很難一下子接受新知,而本節(jié)教學(xué)中又將完全平方和與完全平方差公式放到一起引入,增加了學(xué)生學(xué)習(xí)負(fù)擔(dān),從而使得學(xué)生在練習(xí)時對公式各項符號正負(fù)難以確定。

  2.本節(jié)課缺少自主探索合作交流。特別是在引入的時候,公式等號右邊三項式應(yīng)該放多點時間給學(xué)生觀察,讓學(xué)生用文字來概括公式的內(nèi)容,描述完全平方公式的結(jié)構(gòu)特征。而本節(jié)教學(xué)基本上采用灌輸式教學(xué)模式,從引入到新知基本都是教師帶著學(xué)生走,學(xué)生缺少探索機會。

  3.高估學(xué)生的接受能力,沒有正確分析學(xué)情。這是自己開學(xué)至今一直沒有做好的環(huán)節(jié)!學(xué)生已經(jīng)會的知識花大篇幅講,而對學(xué)生來說較陌生的知識,又一言帶過或講解速度過快。

  4.板書不夠規(guī)范。例題與引入的板書接在一起,看起來雜亂無章。

  5.缺乏教學(xué)機智。課堂上,坐在后面的三個平時很調(diào)皮的學(xué)生舉手示意我過去,跟我說老師我一點都不會,一點都聽不明白。而自己只是很匆忙地讓他們對照公式結(jié)構(gòu),課后再來問我講知識點。這樣的處理方式只會讓這些調(diào)皮的學(xué)生覺得不受老師關(guān)注,從而更加不愛學(xué)習(xí)。到現(xiàn)在還是沒想好這種情況的處理方式!

  6.課堂不夠穩(wěn)。巡查學(xué)生做練習(xí)時,發(fā)現(xiàn)兩三個學(xué)生出現(xiàn)同樣的錯誤就匆匆忙忙講同類型例題。但對于本班學(xué)生,練習(xí)中斷后講題,事實上他們都還沒進(jìn)入狀態(tài),導(dǎo)致出現(xiàn)講完類型題后學(xué)生還是不知道該題型的做法。

  7.學(xué)卷沒能根據(jù)學(xué)生的學(xué)情設(shè)計,難度偏大,容量偏多,練習(xí)也未能體現(xiàn)坡度性。

  對于自己的不足,在以后的教學(xué)中要努力改正。具體做到:

  《完全平方公式》教學(xué)反思 8

  本節(jié)課的重點有兩個,一個是完全平方公式的運用,即對特殊數(shù)字的平方的計算,另一個是添括號用以計算三個項的完全平方以及靈活運用兩個公式進(jìn)行計算,因為有了平方差公式做基礎(chǔ),學(xué)生對于數(shù)字的平方有所感覺,知道將數(shù)字拆分,而問題出得比較多的`是添括號的處理,也就是如何將三項合并成三項。尤其是在將部分項移入到帶有負(fù)號的括號的時候,經(jīng)常忘記變號。所以在上課的時候?qū)@個內(nèi)容進(jìn)行的專門的訓(xùn)練。

  通過訓(xùn)練,學(xué)生對變號的規(guī)則有了詳盡的認(rèn)識后,做起來比較輕松,但仍然有不少人犯錯。于是我在想:添括號本來就是一個比較復(fù)雜的過程,既然復(fù)雜,干嘛不把復(fù)雜問題簡單化?通過添括號完成后,直接利用結(jié)果分析得出:多項加減的完全平方則是將各項平方和再加上任意兩項的積的兩倍,這樣學(xué)生得到結(jié)論更直接,更快速,學(xué)生的信心也更足。

  《完全平方公式》教學(xué)反思 9

  單純從內(nèi)容來說,完全平方公式其實并不難掌握,但是問題在于學(xué)生如何理解并接受公式,因此本節(jié)課花了比較多的時間來理解掌握公式上,農(nóng)田的例子的目的在于讓學(xué)生能直觀的理解完全平方公式,讓學(xué)生有一個初步的數(shù)形結(jié)合的思想,此外利用多項式乘以多項式的方法驗證完全平方公式是為了讓學(xué)生鞏固多項式之間的乘法運算,從而體會公式的.優(yōu)越性。在體會了公式后,學(xué)生在練習(xí)當(dāng)中出現(xiàn)的問題主要集中在2個方面:一個是符號的處理,(1/2-2y)的平方,中積的兩倍前面不清楚是加還是減,尤其是(-x-y)的平方這個問題;第二個是有不少人漏掉了積的兩倍這個項。

  為了讓學(xué)生徹底弄清楚這個問題,在這兩個方面的問題花了不少時間進(jìn)行個別輔導(dǎo)。從整體上來看,學(xué)生對公式的來歷還是基本上能理解,只是在實際的運用中比較容易犯常見問題,下節(jié)課需要加強這兩個方面的訓(xùn)練。

  《完全平方公式》教學(xué)反思 10

  公式法進(jìn)行因式分解,除了逆用平方差公式之外,還有兩個相對來說較難的公式逆用即完全平方和(或差)公式:(a+b)2=a2+2ab+b2。

  逆用完全平方公式進(jìn)行因式分解關(guān)鍵同樣是搞清完全平方公式的結(jié)構(gòu)特點:等號左邊是一個二項式的平方,等號右邊是一個二次三項式,其中有兩項是公式左邊二項式中每一項的平方,另一項是左邊二項式中那兩項乘積的.2倍;虻忍栍疫呌涀鳎菏灼椒,尾平方,2倍之積中間放。

  有了前邊學(xué)習(xí)完全平方公式為基礎(chǔ),逆用完全平方公式進(jìn)行因式分解只需要“顛倒使用”即可:等號右邊作為“條件”,左邊作為“結(jié)果”,但對學(xué)生來說,還是相當(dāng)困難的。

  逆用完全平方公式進(jìn)行因式分解的步驟可分三步:

  1、寫成“首平方,尾平方,2倍之積中間放”的形式。

  2、按公式寫出“兩項和的平方”的形式,即因式分解。

  3、兩項和中能合并同類項的合并。

  例題及練習(xí)的呈現(xiàn)次序盡量本著先易后難、先單一后綜合的螺旋上升原則。

  1、a、b代表單獨單項式,如:

 。1)m2—6m+9

 。2)4a2—4ab+b2

  2、a、b代表多項式,如:

 。1)(a+2b)2—8a(a+2b)+16a2

 。2)4(x+y)2+25—20(x+y)

  在此要有“整體思想”的意識,注意:相同部分作為一個整體然后再套用公式。

  3、先提取公因式,再用完全平方和(或差)公式如:

  (1)ay2—2a2y+a3

 。2)16xy2—9x2y—y2

  4、先轉(zhuǎn)化一步,再用完全平方和(或差)公式,如:

  —m2+2mn—n2(2)3a2+6a+27

  盡管課前進(jìn)行了充分的準(zhǔn)備工作,但是學(xué)生作業(yè)中仍暴露出許多問題,如部分學(xué)生直接感到無從下手。

【《完全平方公式》教學(xué)反思】相關(guān)文章:

完全平方公式教學(xué)反思10-22

完全平方公式教學(xué)反思10-22

《完全平方公式》教學(xué)反思06-27

完全平方公式教學(xué)反思15篇11-14

完全平方公式教學(xué)反思15篇11-14

《完全平方公式》教學(xué)設(shè)計01-21

《完全平方和差公式》教學(xué)反思01-14

《完全平方公式》教案02-15

完全平方公式的教案06-23

完全平方公式教案04-26