《勾股定理》優(yōu)秀教學反思(通用13篇)
身為一名剛到崗的教師,教學是我們的工作之一,教學的心得體會可以總結在教學反思中,怎樣寫教學反思才更能起到其作用呢?下面是小編為大家整理的《勾股定理》優(yōu)秀教學反思,歡迎大家借鑒與參考,希望對大家有所幫助。
《勾股定理》優(yōu)秀教學反思 篇1
數(shù)學學習中工作量最大的部分就是解數(shù)學習題,這也是講所學基礎知識轉化為基本技能的必經(jīng)之路,沒有大量習題的跟進是不可能很好的形成基本解題技能的。習題課就是通過各種相關習題的練習,期望能夠鞏固和深化對所學基礎知識的理解和認識,將這些基礎知識盡快的轉化為基本技能。
今天是第十七章《勾股定理》的一節(jié)全章小結部分的習題課,在學生講解習題的時候,講的最不好的地方就是這個或這類習題的解題思路和解題的方法,還有就是解題的基本入手點。也就是說很多的孩子,他們在做課后習題的時候,沒有在分析、思考各類習題的解題思路或方法或入手點方面投入更多的精力,這一點也是我們的學生學習一直不能有大幅度提高的主要問題,也是制約他們有效學習的基本因素。
新的課程理念把教師的角色定義為“教師是學生學習的組織者、引導者和合作者”,教師的主要作用是組織、引導、參與學生的課堂學習活動。而教師在學生的學習活動中更多的是一種指導的作用,而教師的`指導更多的應該側重于方法、思想的指導。教師必須介入的就是解題的思路和方法。在這一點上應該是必須的。特別是習題課,教師可以完全不講題,但是在解題方法、思路、入手點這些方面必修介入,以提高學生學習的效率和效果。
另外,學生講題過程中的語言的運用也需要不斷地加以指導,爭取能夠用較為簡練的語言講清楚一個問題的解決過程。
《勾股定理》優(yōu)秀教學反思 篇2
勾股定理是中學數(shù)學幾個重要定理之一,它揭示了直角三角形三邊之間的數(shù)量關系,既是直角三角形性質的拓展,也是后續(xù)學習“解直角三角形”的基礎。它緊密聯(lián)系了數(shù)學中兩個最基本的量——數(shù)與形,能夠把形的特征(三角形中一個角是直角)轉化成數(shù)量關系(三邊之間滿足a2+b2=c2)堪稱數(shù)形結合的典范,在理論上占有重要地位。
八年級學生已具備一定的分析與歸納能力,初步掌握了探索圖形性質的基本方法。但是學生對用割補方法和面積計算證明幾何命題的意識和能力存在障礙,對于如何將圖形與數(shù)有機的結合起來還很陌生。
基于以上原因,本節(jié)課把學生的探索活動放在首位,一方面要求學生在教師引導下自主探索,合作交流,另一方面要求學生對探究過程中用到的數(shù)學思想方法有一定的領悟和認識。從而教給學生探求知識的方法,教會學生獲取知識的本領。并確立了如下的教學目標:
1、學生經(jīng)歷從數(shù)到形再由形到數(shù)的轉化過程,經(jīng)歷探求三個正方形面積間的關系轉化為三邊數(shù)量關系的過程。并從過程中讓學生體會數(shù)形結合思想,發(fā)展將未知轉化為已知,由特殊推測一般的.合情推理能力。
2、讓學生經(jīng)歷圖形分割實驗、計算面積的過程,嘗試從不同的角度尋求解決問題的方法,并能有效地解決問題,積累解決問題的經(jīng)驗,在過程中養(yǎng)成獨立思考、合作交流的學習習慣;通過解決問題增強自信心,激發(fā)學習數(shù)學的興趣。
3、通過老師的介紹,體會一種新的證明的方法——面積證法。并在老師的介紹中感受勾股定理的豐富文化內涵,激發(fā)生的熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感。
教學難點將邊不在格線上的圖形轉化為邊在格線上的圖形,以便于計算圖形面積。
本節(jié)課根據(jù)學生的認知結構采用“觀察——猜想——歸納——驗證——應用”的教學方法,這一流程體現(xiàn)了知識發(fā)生、形成和發(fā)展的過程,讓學生體會到觀察、猜想、歸納、驗證的思想和數(shù)形結合的思想。另外,我在探索的過程中補充了一個倒水實驗,(放片子)我個人覺得效果很好,它讓學生深刻的體會到了,不是所有三角形三邊都有a2+b2=c2的關系,只有直角三角形三邊才存在這種關系,并且實驗很具有直觀性,便于學生理解,而且是在學生的學習疲勞期出現(xiàn),達到了再次點燃學生學習熱情的目的,一舉多得。
除了探究出勾股定理的內容以外,本節(jié)課還適時地向學生展現(xiàn)勾股定理的歷史,特別是通過介紹我國古代在勾股定理研究和運用方面的成就,激發(fā)學生愛國熱情,培養(yǎng)學生的民族自豪感和探索創(chuàng)新的精神。練習反饋中既有勾股定理的基本應用,還有貼近學生生活的實例,既讓學生感受到學習知識應用于生活的成就感,又使學生深刻了解勾股定理的廣泛應用。讓學生總結本堂課的收獲,從內容,到數(shù)學思想方法,到獲取知識的途徑等方面。給學生自由的空間,鼓勵學生多說。這樣引導學生從多角度對本節(jié)課歸納總結,感悟點滴,使學生將知識系統(tǒng)化,提高學生素質,鍛煉學生的綜合及表達能力。作業(yè)為了達到提高鞏固的目的,期望學生能主動地探求對勾股定理更深入的認識、拓展學生的視野。
《勾股定理》優(yōu)秀教學反思 篇3
星期四上午第三節(jié)講了《勾股定理逆定理》第一課時,課后效果和我預想的一樣,由于探究內容偏多,課堂容量大,后半部分感覺倉促,留給學生的思考時間顯得不足。
回頭反思,這節(jié)課的設計思路比較合理:定理來源于生活,服務于生活。我由勾股定理引出一道生活實際問題,引起學生的求知欲,然后和學生分三種方法探究,得出“勾股定理逆定理”,經(jīng)過課堂練習夯實基礎,最后利用新知解決開課時提出的生活實際問題,首尾呼應,學以致用。
怎么避免上述授課時間緊張問題,取得更高的課堂效率呢?我簡單談兩點建議,希望各位數(shù)學老師以后教此課時得到共勉。
一是在設計探究時應注重簡化。我設計了三個探究:探究1是古埃及人用結繩打樁法得到直角;探究2是師生用尺規(guī)作圖法得到直角;探究3是利用三角形全等的知識通過證明得到直角。現(xiàn)在覺得應把探究2簡化,老師就“勾三股四弦五”給學生當堂做尺規(guī)作圖演示,沒有必要再讓學生親自作圖,因為教師的演示,效果明顯,學生已經(jīng)理解,達到目標要求,這樣就可以節(jié)約5分鐘時間。
二是對互逆命題,原命題,逆命題,互逆定理,逆定理等概念的講解可隨題點化,而詳細講解、隨堂練習可做為第二課時的重點,讓出更多時間來做勾股定理逆定理的'相應練習,特別是應加大有靈活度和難度生活習題的練習,拓寬學生知識面,提高學生的發(fā)散思維能力。
總之,課堂設計要做到一個“狠”字,該刪除的就刪,教學目標不可貪多。我們圍繞授課重點做相應探究,練習,次重點可放在下個課時重點講解,探究時間要預留充足,相應練習寧精勿多,注重雙基才是根本。
《勾股定理》優(yōu)秀教學反思 篇4
課堂教學中要正確地、充分地引導學生探究知識的形成過程,應創(chuàng)造讓學生主動參與學習過程的條件,培養(yǎng)學生的觀察能力、合作能力、探究能力,從而達到提高學生數(shù)學素質的目的。多媒體教學的優(yōu)化組合,在幫助學生形成知識的過程中扮演著重要的角色。通過面積計算來猜想勾股定理或是通過面積割補來驗證勾股定理并不是所有的學生都是很清楚,教者可通過多媒體來演示其過程不僅使知識的形成更加的直觀化,而且可以提高學生的學習興趣。
在本節(jié)課的教學中,老師可以從多方面對學生進行合適的.評價。如以學生的課前知識準備是一種態(tài)度的評價,上課的拼圖能力是一種動手能力的評價,對所結論的分析是對猜想能力的一種評價,對實際問題的分析是轉化能力的一種評價等等。只有老師給予學生適時的適當?shù)脑u價,才能使學生充分認識到自身的價值,從而達到提高學生學習自信心的目的,反過來自信心的提高又促使學生學習的積極性大幅度的提高,真正達到從他律轉為自律的目的。也只有這樣才能提高課堂的教學效果,提高學生的學習成績。
我相信教者只有不斷的反思自己的教學,不但能很好地實施新課改,實現(xiàn)課改的根本目的,同時能真正的提高學生學習成績。
《勾股定理》優(yōu)秀教學反思 篇5
首先,激發(fā)了學生學習數(shù)學的興趣。
一直以來,數(shù)學作為一門主要學科,在各階段考試中都占有重要的地位,而且數(shù)學也是自然科學的基礎學科,因此學生學習的好與壞,即直接影響的最終成績,也對其他理科的學習有一定的影響。目前,人們獲得數(shù)學知識的場所主要在數(shù)學課堂,而在中學大多數(shù)課堂教學的模式是“教師講、學生聽”的傳統(tǒng)教學,教師處于主動地位,學生被動接收知識。教師上課前認真?zhèn)湔n,想方設法讓學生把問題想清楚。學生課堂上可以走神,對教師講的問題可認真想,也可不去想,反正最后老師要給出答案的。于是出現(xiàn)了這樣一種情況:數(shù)學家在“做”數(shù)學,數(shù)學教師在“講”數(shù)學,而學生在“聽”數(shù)學。
然而數(shù)學光靠聽,當然學生也就漸漸失去了學習數(shù)學的興趣。都說興趣是最好的老師,可是傳統(tǒng)的數(shù)學教學本身就具有抽象性,光靠講,很難不去乏味。在多媒體的教學環(huán)境下,教學信息的呈現(xiàn)方式是立體、豐富且生動有趣的,學生對于如此眾多的信息呈現(xiàn)形式,表現(xiàn)出的是強烈的興趣,真正做到了全方位地調動學生的多種感官參與學習,使抽象的內容變得更具體、易懂,更有利于激發(fā)學習興趣,極大提高學生的參與度。多媒體可以產(chǎn)生一種新的圖文并茂、豐富多彩的人機對話方式,而且可以立即對學習的內容掌握情況進行反饋。在這種交互式學習環(huán)境中,老師的作用和地位主要表現(xiàn)在培養(yǎng)學生掌握信息處理工具的方法和分析問題、解決問題的能力上。
其次,運用多媒體可以優(yōu)化教學設計,有利于呈現(xiàn)過程。
傳統(tǒng)的`數(shù)學教學,僅借助一塊黑板,一支粉筆、一本書、一張嘴,如此一節(jié)課下來,不僅教師累得夠嗆,學生也不輕松,易產(chǎn)生疲勞感甚至厭煩情緒,使得課堂教學信息傳遞結構效率較低。
而通過多媒體教學,可以為教學提供強大的情景資源,能展示知識發(fā)生的過程,注重學生思維能力的培養(yǎng),多媒體課件采用動態(tài)圖像演示,具有較強的刺激作用,有助于理解概念的本質特征,促進學生在原有的認知基礎上,形成新的認知結構。例如這次上課,我制作了幾何畫板動畫,學生可以自己通過變化圖形,得到直角三角形三邊的關系,這要比直接上課舉例證明更生動,印象更深刻,也更具有說服性。
最后,多媒體教學也有助于提高教師的業(yè)務水平和計算機使用能力。
教師要上好一節(jié)數(shù)學課,必須要認真的備課,需要查閱大量的資料,獲取很多信息,去優(yōu)化教學效果。龐大的書庫也只有有限的資源,況且還要找,要去翻。
而網(wǎng)絡為教師提供了無窮無盡的教學資源,為廣大教師開展教學活動開辟了一條捷徑,大大節(jié)省了教師的備課時間。我們可以在網(wǎng)上下載到很多有助于自己教學的資料,包括教學課件和試卷等。通過網(wǎng)絡,我們還可以學習到先進的教學思想、教學理念、教學方法。經(jīng)常將多媒體信息技術運用到課堂教學的教師,他的教學方法應該總能走到前列。而且在教學中使用多媒體,要求教師有相當?shù)挠嬎銠C使用能力,也是對我們現(xiàn)代年輕教師個人文化素質提高的鍛煉。
當然,網(wǎng)絡在上課時,也有一些不方便之處需要去解決。例如數(shù)學講究敘理過程的書寫。但是學生的打字輸入技能還不能滿足,因此網(wǎng)絡課的習題都是以填空或者選擇為主,書寫的鍛煉還是要靠紙幣去完成。可是,事在人為,任何事情都是可以解決的。我想在科技發(fā)展迅速的今天,很快就有新技術去解決這些問題。作為年輕教師,我們要敢于挑戰(zhàn)和嘗試,在教學中學習,不斷提高自身的業(yè)務水平。
《勾股定理》優(yōu)秀教學反思 篇6
本學期我們學習了人教版第十八章《勾股定理》這一章節(jié),現(xiàn)在總結如下:
一、 變學生被動學為主動學
節(jié)課前一個星期教師布置給學生任務:查有關勾股定理的資料(可上網(wǎng)查,也可查閱報刊、書籍)。提前兩三天由幾位學生匯總(教師可適當指導)。這樣可使學生在上這節(jié)課前就對勾股定理歷史背景有全面的理解,從而使學生認識到勾股定理的重要性,學習勾股定理是非常必要的,激發(fā)學生的學習興趣,對學生也是一次愛國主義教育,培養(yǎng)民族自豪感,特別是“趙爽弦圖”激勵他們奮發(fā)向上。同時培養(yǎng)學生的自學能力及歸類總結能力。
二、注重學生自主探究學習模式
首先,創(chuàng)設情境,由實例引入,激發(fā)學生的學習興趣,然后通過動手操作、大膽猜想、勇于驗證等一系列自主探究、合作交流活動得出定理,并運用定理進一步鞏固提高。體現(xiàn)了學生是數(shù)學學習的主人,人人學有價值的數(shù)學,人人都能獲得必需的數(shù)學,不同的人在數(shù)學上得到不同的發(fā)展。對于拼圖驗證,學生還沒有接觸過,所以在教學中教師給予學生適當指導與鼓勵。充分體現(xiàn)了教師是學生數(shù)學學習的組織者、引導者、合作者。
三、培養(yǎng)學生多種能力,教會學生多種思維
課前查資料,培養(yǎng)學生的自學能力及歸類總結能力;課上的探究培養(yǎng)學生的動手動腦的能力、觀察能力、猜想歸納總結的能力、合作交流的能力。課后加強學生自學能力,總結的能力。
四、培養(yǎng)數(shù)學應用意識
數(shù)學來源于生活,而又應用于生活。因此必須從實例引入,最后通過定理解決引例中的問題,并在定理的應用中,讓學生舉生活中的例子,充分體現(xiàn)了數(shù)學的應用價值。整節(jié)課都是在生生互動、師生互動的`和諧氣氛中進行的,在教師的鼓勵、引導下學生進行了自主學習。學生上講臺表達自己的思路、解法,體驗了數(shù)形結合的數(shù)學思想方法,培養(yǎng)了細心觀察、認真思考的態(tài)度。
五、不足之處:
本節(jié)課拼圖驗證的方法以前學生沒接觸過,稍嫌吃力。舉勾股定理在生活中的例子時,學生思路不夠開闊。實際問題中,學生難將實際問題轉化為數(shù)學問題來解決,使得學過的知識和實際問題有點脫離,所以在后面的教學過程中要多培養(yǎng)學生實驗操作能力及應用拓展能力,使學生思路更開闊。
新課程改革要求我們:將數(shù)學教學置身于學生自主探究與合作交流的數(shù)學活動中;將知識的獲取與能力的培養(yǎng)置身于學生形式各異的探索經(jīng)歷中;關注學生探索過程中的情感體驗,并發(fā)展實踐能力及創(chuàng)新意識。為學生的終身學習及可持續(xù)發(fā)展奠定堅實的基礎?傊虒W中要多思考,多反思,真真切切讓我們的學生學好數(shù)學,將數(shù)學學好。
《勾股定理》優(yōu)秀教學反思 篇7
本節(jié)課的設計目的是培養(yǎng)學生準確地將實際問題轉化為數(shù)學問題,建立幾何模型(即直角三角形),能正確遠用勾股定理解釋生活中問題,通過運用勾股定理對實際問題的解釋和應用,進一步加強培養(yǎng)學生注意從身邊的事物中抽象出幾何模型(直角三角形)的能力,使學生更加深刻地認識到數(shù)學的本質:“數(shù)學來源于生活,同時又能服務于生活”,激起廣大學生對數(shù)學對生活的熱愛。
這節(jié)課主要是圍繞“課前預習、設置問題、幾何建模、解決問題、相應練習、拓展延伸”這一主線軸展開教學工作。其中主要體現(xiàn)在:
第一、創(chuàng)設情境,激發(fā)興趣。
由教材中的實例引入,讓學生猜一猜,梯的頂端下滑0.5米,問梯的底端將滑動多少米?也是滑動0.5米嗎?學生將會得出不同的反應,甚至爭論;這時教師就恰到好處地引導學生建立幾何模型(即直角三角形)再運用勾股定理解決問題,最終來驗證彼此的猜想,這樣一來,課堂氣氛特別輕松,學生解決問題的興趣也格外濃。
第二、注重學生自主探究,合作交流。
在探討例1、例2時都是先讓學生根據(jù)生活經(jīng)驗,猜一猜結論,然后再動手建摸、驗證、質疑、討論,充分體現(xiàn)了學生的.主體地位,學生是發(fā)現(xiàn)者、探索者,教師是參入學習的啟發(fā)者、協(xié)調者、激勵者,體現(xiàn)出了教師的主導作用。
第三、創(chuàng)設機會,讓學生學會思考,樂于思考、善于思考。
在教學中有意識地安排一些問題讓學生多途徑思考,發(fā)現(xiàn)答案多種多樣,讓他們體味出教學的精彩,享受做數(shù)學的成功喜悅。
通過備課、上課后,雖然取得一定成功,但感到作為一位數(shù)學教師,要不斷地及時學習新的知識,接受新信息;不斷地及時充電、更新、常常使用詼諧幽默的語言;既要有領導者組織指導、調控能力,又要有被學生欣賞佩服的魅力;要讓學生課堂上配合你、信任你、喜歡你,只要達到了這一高度,我們才能輕松自如地駕御課堂,高效、高質、高量地完成教學預設目標。
《勾股定理》優(yōu)秀教學反思 篇8
我用了4課時講授了八年級下冊數(shù)學人教版的第十八章第一節(jié)勾股定理:
第一課時我主要講授的是勾股定理的探究和驗證,并舉例計算有關直角三角形已知兩邊長求第三邊的問題;
第二課時我主要講授了各種類型的有關直角三角形邊長或者面積相關問題;
第三課時講授了如何用勾股定理解決生活中的實際問題;
第四課時主要講授了怎樣在數(shù)軸上找出無理數(shù)對應的點。
這4個課時我采用的教學方法是:引導—探究—發(fā)現(xiàn)法;為學生設計的學習方法是:自主探究與合作交流相結合。
第一課時的課堂教學中,我始終注意了調動學生的積極性。
興趣是最好的老師,所以無論是引入、拼圖,還是歷史回顧,我都注意去調動學生,讓學生滿懷激情地投入到活動中。因此,課堂效率較高。勾股定理作為“千古第一定理”,其魅力在于其歷史價值和應用價值,因此我注意充分挖掘了其內涵。特別是讓學生事先進行調查,再在課堂上進行展示,這極大地調動了學生,既加深了對勾股定理文化的理解,又培養(yǎng)了他們收集、整理資料的能力。勾股定理的驗證既是本節(jié)課的重點,也是本節(jié)課的'難點,為了突破這一難點,我設計了拼圖活動,并自制精巧的課件讓學生從形上感知,再層層設問,從面積(數(shù))入手,師生共同探究突破了本節(jié)課的難點。
第二課時我依據(jù)“學生是學習的主體”這一理念,
在探索勾股定理的整個過程中,本節(jié)課始終采用學生自主探索和與同伴合作交流相結合的方式進行主動學習。教師只在學生遇到困難時,進行引導或組織學生通過討論來突破難點。為了讓學生在學習過程中自我發(fā)現(xiàn)勾股定理,本節(jié)課首先情景創(chuàng)設激發(fā)興趣,再通過幾個探究活動引導學生從探究等腰直角三角形這一特殊情形入手,自然過渡到探究一般直角三角形,學生通過觀察圖形,計算面積,分析數(shù)據(jù),發(fā)現(xiàn)直角三角形三邊的關系,進而得到勾股定理.
第三課時在課堂教學中,始終注重學生的自主探究。
由實例引入,激發(fā)了學生的學習興趣,然后通過動手操作、大膽猜想、勇于驗證等一系列自主探究、合作交流活動得出定理,并運用定理進一步鞏固提高,切實體現(xiàn)了學生是數(shù)學學習的主人的新課程理念。對于拼圖驗證,學生還沒有接觸過,所以,教學中,教師給予了學生適當?shù)闹笇c鼓勵,教師較好地充當了學生數(shù)學學習的組織者、引導者、合作者。另外教會學生思維,培養(yǎng)學生多種能力。課前查資料,培養(yǎng)了學生的自學能力及歸類總結能力;課上的探究培養(yǎng)了學生的動手動腦的能力、觀察能力、猜想歸納總結的能力、合作交流的能力……但本節(jié)課拼圖驗證的方法以前學生沒接觸過,稍嫌吃力。因此,在今后的教學中還需要進一步關注學生的實驗操作活動,提高其實踐能力。
第四課時我另外向學生介紹了勾股定理的證明方法:
以趙爽的“弦圖”為代表,用幾何圖形的截、割、拼、補,來證明代數(shù)式之間的恒等關系;以歐幾里得的證明方法為代表,運用歐氏幾何的基本定理進行證明;以劉徽的“青朱出入圖”為代表,“無字證明”。
總的來看,學生掌握的情況比較好,都能夠達到預期要求,但介于有關勾股定理的類型題很多,不能一一為學生講解,但我還是建議將北師大版本中的《螞蟻怎樣走最近》的類型題加入本教材。
《勾股定理》優(yōu)秀教學反思 篇9
勾股定理的探索和證明蘊含著豐富的數(shù)學思想和數(shù)學方法,是培養(yǎng)學生良好思維品質的最佳載體。它以簡潔優(yōu)美的圖形結構,豐富深刻的內涵刻畫了自然界的和諧統(tǒng)一的關系,是數(shù)形結合的完美典范。著名數(shù)學家華羅庚就曾提出把“數(shù)形關系”(勾股定理)帶到其他星球,作為地球人與其他星球“人”進行第一次“談話”的語言。為讓學生通過對這節(jié)課的學習得到更好的歷練,在教學時,特別注重從以下幾個方面入手:
一、注重知識的自然生發(fā)。
傳統(tǒng)的教學中,教師往往喜歡壓縮理論傳授過程,用充足的時間做練習,以題代講,搞題海戰(zhàn)術。但從學生的發(fā)展來著,如果壓縮數(shù)學知識的形成過程,不講究知識的自然生發(fā),學生獲取知識的過程是被動的,形成的體系也是孤立的',長此以往,學生必將錯過或失去思維發(fā)展和能力提高的機遇。在這節(jié)課上,不刻意追求所謂的進度,更沒有直接給出勾股定理,而是組織學生開展畫一畫、看一看、想一想、猜一猜、拼一拼的活動,學生在活動思考、交流、展示中,逐漸的形成了對知識的自我認識和自我感悟。這樣做不僅能幫助學生牢固掌握勾股定理,更重要的是使學生體會用自己所學的舊知識而獲取新知識過程,使他們獲得成功的喜悅,增強了學生主動性,同時他們的思維能力在知識自然形成的過程中不斷發(fā)展。
二、注重數(shù)學課上的操作性學習
操作性學習是自主探究性學習有效途徑之一,學生通過在實踐活動中的感受和體驗,有利于幫助學生理解和掌握抽象的數(shù)學知識。在這節(jié)課上,首先讓學生動手畫直角三角形,得出研究題材,然后又讓學生利用四個直角三角形拼一拼,驗證猜想。這樣充分的調動了學生的手、口、腦等多種感官參與數(shù)學學習活動,既享受了操作的樂趣,又培養(yǎng)了學生的動手能力,加深了對知識的理解。
三、注重問題設計的開放性
課堂教學是教師組織、引導、參與和學生自主、合作、探究學習的雙邊活動。這其中教師的“引導”起著關鍵作用。這里的“引導”,很大程度上靠設疑提問來實現(xiàn)。在教學實踐中,問題設計要具有開放性。因為開放性問題更有利于培養(yǎng)學生的創(chuàng)造性思維、體現(xiàn)學生的主體意識和個性差異。本節(jié)課在設計涂鴉直角三角形時,安排學生在方格紙上任意涂鴉一個直角三角形;在設計拼圖驗證環(huán)節(jié)時,安排學生任意拼出一個正方形或直角梯形,有意沒指定畫一個具體邊長的直角三角形和正方形,就是不想對學生的思維給出太多的限制條件,給出更多的想象和創(chuàng)造空間。雖然探究的時間會更長,但這更符合實際知識的產(chǎn)生環(huán)境,學生只有在這樣的環(huán)境下進行創(chuàng)造、發(fā)現(xiàn)和磨練,能力素養(yǎng)才會得到更有效的歷練。
四、注重讓學生經(jīng)歷完整的數(shù)學知識的發(fā)現(xiàn)過程。
新《數(shù)學課程標準》在關于課程目標的闡述中,首次大量使用了"經(jīng)歷(感受)、體驗(體會)、探索"等刻畫數(shù)學活動水平的過程性目標動詞,就是要求在數(shù)學學習的過程中,讓學生經(jīng)歷知識與技能形成與鞏固過程,經(jīng)歷數(shù)學思維的發(fā)展過程,經(jīng)歷應用數(shù)學能力解決問題的過程,從而形成積極的數(shù)學情感與態(tài)度。教學從學生感興趣的涂鴉開始,再經(jīng)歷觀察、分析、猜想、驗證的全過程,讓學生充分的經(jīng)歷了完整的數(shù)學知識的發(fā)現(xiàn)過程,使學生獲得對數(shù)學理解的同時,在知識技能、思維能力以及情感態(tài)度等多方面都得到了進步和發(fā)展。
如果有機會再上這節(jié)課,我想我會投入更多的精力對學生可能會給出的答案進行預想,以便在課堂上給予學生更多的啟迪,讓他們走的更遠。一堂課,雖已結束,但對于生命課堂的領悟這條路,還有很長的路要走,我將繼續(xù)上下求索,做學生更好的支點。
《勾股定理》優(yōu)秀教學反思 篇10
《勾股定理》是人教版教材八年級數(shù)學(下)的內容,第一課時的教學重點是讓學生經(jīng)歷勾股定理的探索和證明過程,了解勾股定理的背景知識,在學習知識的同時,感受勾股定理的豐富文化內涵,激發(fā)學生的學習興趣,對學生進行思想品德教育。
針對教材的任務要求,我是按照如下的教學流程進行的:
一、欣賞圖片引入新課,激發(fā)學生學習興趣
通過欣賞20xx年在我國北京召開的國際數(shù)學家大會的會徽圖案,引出“趙爽弦圖”,讓學生了解我國古代輝煌的數(shù)學成就,引入課題。
接下來,讓學生欣賞傳說故事:相傳2500年前,畢達格拉斯在朋友家做客時,發(fā)現(xiàn)朋友家用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關系。通過故事使學生明白:科學家的偉大成就多數(shù)都是在看似平淡無奇的現(xiàn)象中發(fā)現(xiàn)和研究出來的;生活中處處有數(shù)學,我們應該學會觀察、思考,將學習與生活緊密結合起來。
這樣,一方面激發(fā)學生的求知欲望,另一方面,也對學生進行了學習方法指導和解決問題能力的'培養(yǎng)。
二、動手探究,得出猜想
通過對地板圖形中的等腰直角三角形三邊關系到一般直角三角形中三邊關系的探究,讓同學們體驗由特殊到一般的探究過程,學習這種研究方法。
在這一過程中,學生充分利用學具去嘗試解決,力求讓學生自己探索,先在小組內討論,然后在全班討論,盡量學習更多的方法。
三、動手實踐,得出定理
先了解趙爽的證明思路,然后讓學生利用學具自己動手剪拼,并利用圖形進行證明。
由于難度比較大,組織學生開展小組合作學習。教師要巡回輔導,給予學生必要的幫助。
《勾股定理》優(yōu)秀教學反思 篇11
根據(jù)學生的認知結構與教材地位,為了達到本節(jié)課的教學目標,我設計了以下幾個環(huán)節(jié):
1.創(chuàng)設情境,提出猜想讓學生判斷兩位同學的畫法是否都能得到斜邊為10cm的直角三角形,通過對不同畫法的探究,溫故知新,為用構造全等三角形的方法證明勾股定理的逆定理做好鋪墊.同時,引導學生從特殊到一般提出猜想。
2.證明猜想,得出新知。由于有前一環(huán)節(jié)的鋪墊,通過啟發(fā)、引導、討論,讓學生體會用構造全等三角形的方法證明問題的思想,突破定理證明這一難點,并適時出示課題。
3.應用訓練,鞏固新知為了鞏固新知,靈活運用所學知識解決相應問題,提高學生的分析解題能力,我設計了三個層次的問題,以達到教學目標.第一層次是讓學生直接運用定理判斷三角形是否是直角三角形,掌握定理基本運用;第二層次是強調已知三角形三邊長或三邊關系,就有意識的判斷三角形是否是直角三角形,這樣既鞏固了勾股定理的逆定理的應用,又為下一個層次做好了鋪墊;第三層次是靈活運用勾股定理與逆定理解決圖形面積的計算問題.根據(jù)學生原有的認知結構,讓學生更好地體會分割的思想.設計的題型前后呼應,使知識有序推進,有助于學生的理解和掌握;讓學生通過合作、交流、反思、感悟的過程,激發(fā)學生探究新知的興趣,感受探索、合作的樂趣,并從中獲得成功的體驗.真正體現(xiàn)學生是學習的主人.。
4.歸納小結,形成體系讓學生交流學習的`收獲、課堂經(jīng)歷的感受和對數(shù)學思想方法的感悟體會等.幫助學生內化新知,優(yōu)化學生的認知結構,形成能力,減輕課后負擔。
5.布置作業(yè),課外延伸分層布置作業(yè),目的是讓不同的學生得到不同層次的發(fā)展
《勾股定理》優(yōu)秀教學反思 篇12
勾股定理是代數(shù)與幾何溝通的橋梁,學習勾股定理是促進學生具備數(shù)形結合思想的重要契機。在這個內容中,數(shù)形結合思想的.具體體現(xiàn)就是幾何問題數(shù)量化——應用直角三角形三邊之間的數(shù)量關系得到方程求解,再回歸到幾何元素來解決問題。本節(jié)復習課是為了幫助學生將學過的勾股定理進行再學習,再認識,并通過學生的實踐對所學知識進行系統(tǒng)梳理,達到概括和綜合提高的目的,從而實現(xiàn)知識的遷移和建構,并形成初步的數(shù)形結合意識。
勾股定理是基本定理,是解決有關線段計算問題的重要依據(jù)。但是它單獨命題比較少,更多的時候是與其他知識綜合應用,在綜合題中如何找到適當?shù)闹苯侨切问墙忸}的關鍵。
本節(jié)課采用題組形式練習,由淺入深,層層深入,真正做到讓學生動起來,讓課堂活起來。
《勾股定理》優(yōu)秀教學反思 篇13
今天聽了馬牧池中學吉老師的一節(jié)課和薛校長的報告學到了很多東西,特別是在小組合作學習方面。吉老師的這節(jié)課勾股定理是節(jié)很難講的一節(jié)課,吉老師從知識的形成過程讓學生知道了勾股定理是怎么來的,從而鍛煉了學生的思維能力。在平時的學習過程中吉老師也很注意及時的總結規(guī)律性的東西。特別是在小組方面的問題比如有的學生之間的差異比較大,他們會對同步進行分布置任務。每節(jié)課他們都會有課堂達標的小測驗,學校也會進行抽測。
薛校長的報告從很多的.實際介紹了他們的經(jīng)驗。要夯實自主學習,給學生自主學習的時間。我們要把臺階難度要都設的小一點,讓學生都能參入進來從而讓他們體會到學習的樂趣。我們還要給學生充分的自主學習的時間和空間。只有他們把問題討論清楚了以后再遇到他們才能找到頭緒。我們在課堂上要注重追問,注重互助,探究結論的形成過程。
通過這次的學習以后在自己的課堂中要注意這些問題,真正培養(yǎng)起學生的邏輯思維能力來。
【《勾股定理》優(yōu)秀教學反思】相關文章:
《勾股定理》的教學反思07-04
《勾股定理》教學反思06-29
勾股定理的教學反思10-08
勾股定理教學反思06-13
勾股定理的教學反思10-09
勾股定理教學反思10-10
勾股定理的教學反思11-24