《平行四邊形的面積》教學(xué)反思范文(精選5篇)
身為一位優(yōu)秀的教師,我們的工作之一就是教學(xué),借助教學(xué)反思我們可以拓展自己的教學(xué)方式,那么寫教學(xué)反思需要注意哪些問題呢?以下是小編為大家整理的《平行四邊形的面積》教學(xué)反思范文(精選5篇),僅供參考,希望能夠幫助到大家。
《平行四邊形的面積》教學(xué)反思1
小學(xué)數(shù)學(xué)關(guān)于幾何知識的安排,是按由易到難的順序進行的。本冊教材承擔(dān)著讓學(xué)生學(xué)會平行四邊形、三角形、梯形面積計算的任務(wù)。平行四邊形面積的計算,是在學(xué)生已經(jīng)掌握并能靈活運用長方形面積計算公式,理解平行四邊形特征的基礎(chǔ)上,進行教學(xué)的。本節(jié)課主要讓學(xué)生初步運用轉(zhuǎn)化的方法推導(dǎo)出平行四邊形面積公式,把平行四邊形轉(zhuǎn)化成為長方形,并分析長方形面積與平行四邊形面積的關(guān)系,再從長方形的面積計算公式推出平行四邊形的面積計算公式,然后通過實例驗證,使學(xué)生理解平行四邊形面積計算公式的推導(dǎo)過程,在理解的基礎(chǔ)上掌握公式。同時也有利于學(xué)生知道推導(dǎo)方法,為三角形、梯形的面積公式推導(dǎo)做準(zhǔn)備。
本課關(guān)鍵是平行四邊形與長方形的等積轉(zhuǎn)化問題的理解,通過“剪、移、拼”找出平行四邊形底和高與長方形長和寬的關(guān)系,及面積始終不變的特點,歸納出平行四邊形等積轉(zhuǎn)化成長方形。
心理學(xué)家皮亞杰指出:“活動是認知的基礎(chǔ),智慧從動作開始”。動手操作過程是學(xué)生學(xué)習(xí)的一種循序漸進的探索過程。所以,我主要采用了動手操作,自主探索,合作交流的學(xué)習(xí)方式,通過課件演示和實踐操作,以激發(fā)學(xué)生的學(xué)習(xí)興趣,調(diào)動學(xué)生的學(xué)習(xí)積極性。通過學(xué)生動手操作、觀察、實驗得出結(jié)論,體現(xiàn)了教學(xué)以學(xué)生為主體、老師為主導(dǎo)的教學(xué)原則。
我讓學(xué)生動手操作,想辦法將平行四邊形轉(zhuǎn)化為長方形。操作之后進行匯報,交流自己的驗證過程。匯報的時候,剪拼的方法有好多種,在這時,我及時拋給學(xué)生這樣一個問題:“為什么要沿高剪開?”引發(fā)學(xué)生積極開動腦筋思考。然后我又引導(dǎo)學(xué)生觀察這兩個圖形并比較,進而討論:拼出的長方形與原來平行四邊形什么變了,什么沒變?拼成長方形的長和寬與原來平行四邊形的底和高有什么聯(lián)系?通過上面問題的思考,學(xué)生對平行四邊形公式的推導(dǎo)有了更深的認識,這時我順勢引導(dǎo)學(xué)生得出推導(dǎo)過程:將一個平行四邊形通過剪、拼后轉(zhuǎn)化為一個長方形,拼成的長方形的長相當(dāng)于原來平行四邊形的底,拼成的長方形的寬相當(dāng)于原來平行四邊形的高,平行四邊形的面積就等于長方形的面積,因為長方形的面積=長×寬,所以平行四邊形的面積=底×高。接著我讓學(xué)生同桌互相說一說整個操作過程,使學(xué)生真正理解平行四邊形轉(zhuǎn)化成長方形的過程。
對于新知需要及時組織學(xué)生鞏固運用,才能得到理解與內(nèi)化。我本著“重基礎(chǔ)、驗?zāi)芰Α⑼厮季S”的原則,設(shè)計四個層次的練習(xí)題:
第一層:基本練習(xí)
有利于學(xué)生加深對圖形的認識,正確分清平行四邊形底和高的關(guān)系。
第二層:綜合練習(xí)
1、你能想辦法求出下面兩個平行四邊形的面積嗎?要求這兩個平行四邊形的面積必須先干什么?
讓學(xué)生自己動手作高,并量出平行四邊形的底和高,再計算面積,這個過程也體現(xiàn)了“重實踐”這一理念。
2、你會求出這個平行四邊形的面積嗎?
通過不同的高引起學(xué)生的混淆,在計算中讓學(xué)生明確在計算平行四邊形面積時底要找出與它相對應(yīng)的高,這樣才能準(zhǔn)確求出平行四邊形的面積。并且根據(jù)已求的面積和另一條高,求出與這條高相對應(yīng)的底。
第三層:擴展練習(xí)
1、下面這兩個平行四邊形的面積相等嗎?為什么?你還能在這里畫出與這兩個面積相等的平行四邊形嗎?可以畫幾個?(圖在課件中)
學(xué)生綜合運用知識,進行邏輯推理,明白平行四邊形的面積只與底和高有關(guān),等底同高的平行四邊形的面積相等。
整個習(xí)題設(shè)計部分,雖然題量不大,但卻涵蓋了本節(jié)課的所有知識點,題目呈現(xiàn)方式的多樣,吸引了學(xué)生的注意力,使學(xué)生面對挑戰(zhàn)充滿信心,激發(fā)了學(xué)生興趣、引發(fā)了思考、發(fā)展了思維。同時練習(xí)題排列遵循由易到難的原則,層層深入,也有效的培養(yǎng)了學(xué)生創(chuàng)新意識和解決問題的能力。
教學(xué)是一門永遠有遺憾的藝術(shù),雖然我也很努力地想上好這節(jié)課,但在教學(xué)中存在著很多問題,以下是我今后需要改進的地方:
數(shù)學(xué)課不僅要教給學(xué)生知識,回顧數(shù)學(xué)更應(yīng)該帶給孩子數(shù)學(xué)思想方法,本節(jié)課有兩個重要的思想,第一、平移的數(shù)學(xué)思想。在本節(jié)課中沒有體現(xiàn)出來。第二、本節(jié)課最重要的思想方法,“轉(zhuǎn)化”突出的還不夠,也就是說學(xué)生沒有真正體會到這種思想的重要性。
前面的環(huán)節(jié)太耽誤時間,今后要想辦法優(yōu)化,不僅是本節(jié)課,所有課都應(yīng)該這樣做,課堂上每一個環(huán)節(jié)的設(shè)置都要圍繞核心目標(biāo),對核心目標(biāo)重要性不大的都要舍掉,以保證核心目標(biāo)在課堂上的黃金時間解決。
通過教學(xué)發(fā)現(xiàn),練習(xí)設(shè)置要根據(jù)學(xué)生的學(xué)習(xí)情況和知識的掌握情況進行,不宜拔高,本課應(yīng)以基本練習(xí)鞏固為主。
《平行四邊形的面積》教學(xué)反思2
《平行四邊形的面積》一課的教學(xué),我著重培養(yǎng)學(xué)生通過剪、拼、擺等動手操作的活動來讓他們主動探究平行四邊形的面積計算公式,掌握平行四邊形面積計算公式并能解決實際問題,同時又培養(yǎng)了學(xué)生積極參與、團結(jié)合作、主動探索的精神。課結(jié)束后我進行反思了,本節(jié)課是能促進學(xué)生全面發(fā)展的課堂,體現(xiàn)新課標(biāo)理念的課堂,從中也總結(jié)了一些成功的經(jīng)驗和失敗的教訓(xùn),具體概括為以下幾點:
一、值得肯定的地方
1、注重數(shù)學(xué)專業(yè)思想方法的滲透
我們在教學(xué)中一貫強調(diào),“授人以魚,不如授人以漁”,在數(shù)學(xué)教學(xué)中,就是要注重數(shù)學(xué)專業(yè)思想方法的滲透。要讓學(xué)生了解或理解一些數(shù)學(xué)的基本思想,學(xué)會掌握一些研究數(shù)學(xué)的基本方法,從而獲得獨立思考的自學(xué)能力。在這節(jié)課中,先讓學(xué)生回憶平行四邊形與長方形的聯(lián)系,想一想長方形的面積是怎樣求的?讓學(xué)生想一想怎么求平行四邊形的面積,學(xué)生一下子就能看出可以把平行四邊形轉(zhuǎn)化成長方形求出它的面積,滲透了轉(zhuǎn)化的思想,為后面的學(xué)習(xí)奠定了基礎(chǔ)。
2、注重學(xué)生數(shù)學(xué)思維的發(fā)展
數(shù)學(xué)教學(xué)的核心是促進學(xué)生思維的發(fā)展。教學(xué)中,教師要千方百計地通過學(xué)生學(xué)習(xí)數(shù)學(xué)知識,全面揭示數(shù)學(xué)思維過程,啟迪和發(fā)展學(xué)生思維,將知識發(fā)生、發(fā)展過程與學(xué)生學(xué)習(xí)知識的心理活動統(tǒng)一起來。課堂教學(xué)中充分有效地進行思維訓(xùn)練,是數(shù)學(xué)教學(xué)的核心,它不僅符合素質(zhì)教育的要求,也符合知識的形成與發(fā)展以及人的認知過程,體現(xiàn)了數(shù)學(xué)教育的實質(zhì)性價值。在這節(jié)課中,我設(shè)計了猜一猜、剪一剪、拼一拼等學(xué)習(xí)活動,逐步引導(dǎo)學(xué)生觀察思考:長方形的面積與原平行四邊形的面積有什么關(guān)系?長方形的長和寬與平行四邊形底和高有什么關(guān)系?使學(xué)生得出結(jié)論:因為長方形的面積=長乘寬,所以平行四邊形的面積=底乘高。學(xué)生掌握了平行四邊形的求證方法,也為今后求證三角形、梯形等面積公式和其他類似的問題提供了思維模式。這個求證過程也促進了學(xué)生猜測、驗證、抽象概括等思維能力的發(fā)展。
3、注重了師生互動、生生互動
現(xiàn)在我們都在提倡學(xué)生的自主學(xué)習(xí),在課堂教學(xué)中主張以學(xué)生為主體,注重師生互動和生生互動。師生應(yīng)該互有問答,學(xué)生與學(xué)生之間要互有問答。在這節(jié)課中,我能始終面向全體學(xué)生,以學(xué)生為主體,教師為主導(dǎo),通過教學(xué)中師生之間、同學(xué)之間的互動關(guān)系,產(chǎn)生教與學(xué)之間的共鳴。例如:驗證完猜想后,師問:兩種猜想,兩個結(jié)果,到底哪一個才是正確的,哪一個才是我們要的間接測量的先進方法呢?還有當(dāng)學(xué)生展示完自己的方法后,教師引導(dǎo):你認為他的方法怎么樣?好在哪兒?你還有什么問題?通過教師設(shè)計的這些問題,不斷地把課堂引上了師生互動,生生互動的高潮。
4、練習(xí)設(shè)計層層遞進
本環(huán)節(jié),我出示了不同層次的練習(xí),如:知道了平行四邊形的兩個高一個底怎么樣求它的面積?出示幾個看起來不相等的平行四邊形,其實面積是相等的,讓學(xué)生明白等底等高的平行四邊形面積相等。這樣從“基本題—變式題—發(fā)展題”,層層遞進,讓學(xué)困生有奔頭,中間生有提高,優(yōu)秀生有發(fā)展,讓我們的數(shù)學(xué)課堂收獲遍地開花的效果,最終實現(xiàn)課標(biāo)要求的“讓不同的孩子得到不同的發(fā)展”。
二、教學(xué)中的不足
1、教師靈活性不強,對個別細節(jié)處理的不夠,不能有效的抓住學(xué)生出現(xiàn)的問題。
2、小組合作的能力差,缺乏對學(xué)生小組交流能力的培養(yǎng),也缺乏師生間的互動交流。
《平行四邊形的面積》教學(xué)反思3
20XX年10月24日,我參加了經(jīng)開區(qū)數(shù)學(xué)基本功比賽,執(zhí)教《平行四邊形的面積》這節(jié)課,實施教學(xué)后一些問題讓我陷入思考。下面從我備課及執(zhí)教的經(jīng)歷談起。
首先,對于內(nèi)容的分析,我在教學(xué)設(shè)計中已經(jīng)闡明,因此不再贅述。對于學(xué)情,我以本校五年級學(xué)生為參照,調(diào)研了本校學(xué)生對此知識的想法,根據(jù)學(xué)生問卷的回答情況發(fā)現(xiàn)了這樣的問題:
1、長方形的面積公式學(xué)生基本都能寫對,但出現(xiàn)與算周長混淆的情況,并且已經(jīng)想不起來長方形的面積是由數(shù)方格推導(dǎo)出來的。
2、求平行四邊形的面積時出現(xiàn)這樣幾類情況。
。1)用算周長的方法計算,占15%;
(2)用鄰邊相乘的方法計算,占35%;
。3)知道轉(zhuǎn)化成長方形,但不能正確計算,占23%;
(4)其他(包括不知道怎么算),占27%。
雖然我深知讀懂教材、讀懂學(xué)生的重要性,但理解有限,在設(shè)計與執(zhí)教過程中,反映出以下三個問題。
一、學(xué)情分析能力不足
我雖然進行了學(xué)情分析,但由于自己的理解有限,我沒有分析到其實學(xué)生對于找原來的.平行四邊形與轉(zhuǎn)化后的長方形之間的等量關(guān)系其實是不理解的,是一個難點,導(dǎo)致我以如何向?qū)W生滲透轉(zhuǎn)化思想為重心了。
二、課堂調(diào)控能力有限
在實施教學(xué)的時候由于學(xué)生的學(xué)情不同,執(zhí)教班級學(xué)生基本已經(jīng)知道平行四邊形的面積等于底乘高,加之我的現(xiàn)場調(diào)控能力有限,因此并不能順著學(xué)生的思維進行教學(xué),跟我設(shè)計的初衷產(chǎn)生了水土不服的現(xiàn)象,但后來我仔細回想了執(zhí)教過程中的一些學(xué)生表現(xiàn),優(yōu)等生知道公式,并不代表所有學(xué)生都知道,應(yīng)該具備一些調(diào)控能力讓所有學(xué)生經(jīng)歷驗證的過程,但錯過了,這一點也說明我的課堂調(diào)控能力是需要加強的。
另外一個問題是找等量關(guān)系時,我由于時間的限制,代替了學(xué)生的觀察發(fā)現(xiàn),帶領(lǐng)學(xué)生直接演示了原來的平行四邊形與轉(zhuǎn)化后的長方形之間的關(guān)系,推導(dǎo)出了公式,這點挺遺憾的。
三、數(shù)學(xué)語言不嚴謹
在此次教學(xué)中,我的數(shù)學(xué)語言不夠嚴謹,比如數(shù)學(xué)上專業(yè)的術(shù)語“平移”等說得不規(guī)范。
針對以上問題我想教師的調(diào)控能力這些非一日之功,在以后的課堂教學(xué)中我會盡量注意記錄自己的問題與語言,不斷反思,從而慢慢提高,增強自己上現(xiàn)場課的經(jīng)驗。
對《平行四邊形的面積》的設(shè)計,我沒實現(xiàn)的是,找等量關(guān)系過程對學(xué)生是一個難點,我對突破這個難點的想法如下。
預(yù)設(shè)教學(xué)片段:
師:同學(xué)們,把我們的長方形還原為平行四邊形,你能標(biāo)出平行四邊形的底和對應(yīng)的高嗎?請同學(xué)們動手標(biāo)一標(biāo)吧。
師:同學(xué)們,把平行四邊形轉(zhuǎn)化成長方形,你能找出原來的平行四邊形和轉(zhuǎn)化后的長方形有哪些相等的關(guān)系嗎?小組討論并相互說說你的發(fā)現(xiàn)。
當(dāng)然,這是我的初步想法還沒有進行實際教學(xué),因此不知道這些能不能突破難點。
通過本次講課,讓我真正樂趣無窮的是對課不斷地思考,發(fā)現(xiàn)課的奧妙,有遺憾,有困惑、有思考……我想這些都是成長,教學(xué)時間那么長,我想讀懂教材,讀懂學(xué)生,這不容易的事總會慢慢理清,然后,不斷成長!
《平行四邊形的面積》教學(xué)反思4
在教學(xué)設(shè)計時,我創(chuàng)設(shè)一個把長方形變成平行四邊形,猜測面積是否變化的情境,激發(fā)學(xué)生的探究欲望。學(xué)生根據(jù)以前學(xué)過的知識自然會想到用數(shù)方格的方法求面積,但我沒想到學(xué)生在數(shù)平行四邊形的底和高時,有些難度,此時我進行了適當(dāng)?shù)闹笇?dǎo),體現(xiàn)了教師的主導(dǎo)作用。
新課標(biāo)指出“有效的數(shù)學(xué)活動不能單純地依賴模仿與記憶,教師是要引導(dǎo)學(xué)生通過動手實踐、自主探索、合作交流等學(xué)習(xí)方式真正理解和掌握基本的數(shù)學(xué)知識、技能、思想和方法!北竟(jié)課的教學(xué)重點為“探究平行四邊形的面積公式”,難點設(shè)立為“理解平等四邊形的面積計算公式的推導(dǎo)過程”。為了突出重點,突破難點,我先引導(dǎo)學(xué)生自主探索,然后讓學(xué)生交流,對學(xué)生難以理解的平行四邊形與長方形的關(guān)系,我又利用課件演示,并讓學(xué)生在觀察的基礎(chǔ)上交流評議,最后學(xué)生分組邊剪拼邊說平行四邊形面積公式的推導(dǎo)過程。這樣讓學(xué)生親身經(jīng)歷操作過程,在交流演示中理解掌握了平行四邊形面積的求法,在語言描述過程中鍛煉了自己的語言表達能力。在這個環(huán)節(jié)里我注重的是讓學(xué)生動手實踐和自主探索發(fā)現(xiàn)規(guī)律,讓學(xué)生經(jīng)歷知識的形成過程,使學(xué)生空間觀念得到進一步發(fā)展。這樣不僅讓學(xué)生學(xué)到知識,更重要的是對學(xué)生滲透了平移和轉(zhuǎn)化的數(shù)學(xué)思想方法,培養(yǎng)了學(xué)生觀察、分析、概括和能力。
我認為本節(jié)課的不足之處是:
。1)在學(xué)生把平行四邊形轉(zhuǎn)化成長方形時,沒有給學(xué)生充裕的時間展示不同的割補方法,局限了學(xué)生的思維。應(yīng)讓學(xué)生充分展示,從而明確不同的割補方法,其結(jié)果是一樣的。三種剪法。
。2)在學(xué)生匯報時,當(dāng)學(xué)生的語言羅嗦時,我有點過急,常把學(xué)生的話打斷,應(yīng)允許學(xué)生用自己的語言去表達或讓學(xué)生自己修改語言。
。3)對知識的鞏固運用做的不夠。本打算在基本練習(xí)之后,讓學(xué)生探究把長方形框架拉成平行四邊形后什么變了,什么沒變,以此拓展學(xué)生的能力。但由于在用數(shù)格子的方法求面積時,教師應(yīng)變能力不強,耽誤了時間,此題沒來得及做,教師本人的能力還需多鍛煉。
《平行四邊形的面積》教學(xué)反思5
本節(jié)課內(nèi)容在學(xué)生學(xué)習(xí)了長方形、正方形、平行四邊形、三角形和梯形的特征以及長方形、正方形面積計算的基礎(chǔ)上進行教學(xué)的,同時又是進一步學(xué)習(xí)三角形面積、梯形面積等知識的基礎(chǔ)。
成功之處:
1、創(chuàng)設(shè)問題情境,引發(fā)矛盾沖突,激發(fā)學(xué)生的學(xué)習(xí)興趣。在教學(xué)中,通過創(chuàng)設(shè)“這兩個花壇哪一個大呢?”的情境,引發(fā)學(xué)生的思考,比較這兩個花壇的大小,就是比較它們的面積大小,而長方形的面積學(xué)生已學(xué)過,非常簡單就可以得出,但是平行四邊形的面積學(xué)生沒有學(xué)過,如何求平行四邊形的面積呢?通過這樣的疑問,引領(lǐng)學(xué)生探索平行四邊形的面積計算公式。
2、滲透“轉(zhuǎn)化”思想。轉(zhuǎn)化思想是學(xué)生學(xué)習(xí)數(shù)學(xué)的非常重要的思維方式,利用轉(zhuǎn)化思想學(xué)生可以把新知識轉(zhuǎn)化為已學(xué)過的舊知識,利用舊知識解決新問題。在本課教學(xué)中,學(xué)生首先通過數(shù)方格的方法初步發(fā)現(xiàn)了長方形和平行四邊形這兩個圖形的面積是相等的,也發(fā)現(xiàn)長方形的面積是底乘高,平行四邊形的面積是底乘高,但是如何驗證這個計算公式呢?學(xué)生通過手中的平行四邊形會聯(lián)想到把它轉(zhuǎn)化為長方形,這時教師放手讓學(xué)生通過剪一剪、拼一拼,自己動手研究推到平行四邊形的面積計算公式。這樣設(shè)計教學(xué)過程由淺入深、由易到難、由具體到抽象,學(xué)生在探索的過程中逐步體會轉(zhuǎn)化思想在學(xué)習(xí)中的重要作用。
不足之處:
學(xué)生雖然能夠推導(dǎo)出平行四邊形的面積計算公式,但是仍有個別學(xué)生在表述上還存在一些困難。
再教設(shè)計:
加強學(xué)生的語言表述能力,做到規(guī)范、嚴謹。