《認(rèn)識(shí)分式》教學(xué)反思700字(精選6篇)
身為一名人民教師,我們要有一流的課堂教學(xué)能力,借助教學(xué)反思我們可以學(xué)習(xí)到很多講課技巧,那么寫教學(xué)反思需要注意哪些問(wèn)題呢?以下是小編收集整理的《認(rèn)識(shí)分式》教學(xué)反思700字(精選6篇),供大家參考借鑒,希望可以幫助到有需要的朋友。
《認(rèn)識(shí)分式》教學(xué)反思1
本節(jié)課我主要采取“361”的課堂教學(xué)模式,讓學(xué)生自習(xí)的基礎(chǔ)上進(jìn)上步加深對(duì)知識(shí)的掌握。這種學(xué)習(xí)模式符合課改要求,但是經(jīng)過(guò)教學(xué)發(fā)現(xiàn),以以往的教學(xué)中,學(xué)生在解分式方程時(shí)需要花費(fèi)很長(zhǎng)時(shí)間,學(xué)生在有限的時(shí)間內(nèi)難以完成教學(xué)任務(wù),但本節(jié)課,通過(guò)學(xué)生的課前的預(yù)習(xí),節(jié)約的課堂上的時(shí)間。
教學(xué)上應(yīng)多用類比的方法,與分?jǐn)?shù)進(jìn)行類比教學(xué),使學(xué)生明確分式與分?jǐn)?shù)、分式與整式等方面的區(qū)別與聯(lián)系,體會(huì)分式的模型思想,進(jìn)一步發(fā)展符號(hào)感,一定能取到事半功倍之效。而解分式方程的基本思想是把分式方程轉(zhuǎn)化為整式方程。解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時(shí)應(yīng)注意重新舊知識(shí)的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時(shí)要適當(dāng)復(fù)習(xí)一元一次方程的解法。
解可化為一元一次方程的分式方程,也是以一元一次方程的解法為基礎(chǔ),只是需把分式方程化成整式方程,所以教學(xué)時(shí)應(yīng)注意重新舊知識(shí)的聯(lián)系與區(qū)別,注重滲透轉(zhuǎn)化的思想,同時(shí)要適當(dāng)復(fù)習(xí)一元一次方程的解法。至于解分式方程時(shí)產(chǎn)生增根的原因只讓學(xué)生了解就可以了,重要的是應(yīng)讓學(xué)生掌握驗(yàn)根的方法。
要使學(xué)生掌握解分式方程的基本思路是將分式方程轉(zhuǎn)化整式方程,具體的方法是“去分母”,即方程兩邊統(tǒng)稱最簡(jiǎn)公分母。
在教學(xué)過(guò)程中,由于種種原因,存在著不少的不足。
1、回顧引入部分題目有點(diǎn)多,應(yīng)該選擇簡(jiǎn)單有代表性的一兩個(gè)題目,循序漸進(jìn),符合人類認(rèn)知規(guī)律。
2、教學(xué)重點(diǎn)強(qiáng)調(diào)力度不夠。對(duì)學(xué)生理解消化能力過(guò)于相信,而分式方程的難點(diǎn)就是第一步,即將分式方程轉(zhuǎn)化成整式方程。在這里,需要特別強(qiáng)化這個(gè)過(guò)程,應(yīng)該對(duì)其進(jìn)行專項(xiàng)訓(xùn)練或重點(diǎn)分析。例如,就學(xué)生的不同做法進(jìn)行分析,讓他們明白課本的這種方法最簡(jiǎn)單最方便。
3、時(shí)間掌握不太好。學(xué)生預(yù)習(xí)還不夠充分,導(dǎo)致突發(fā)事件過(guò)多,以致總結(jié)過(guò)于匆忙。
《認(rèn)識(shí)分式》教學(xué)反思2
本節(jié)是學(xué)習(xí)了分式的基本性質(zhì)后的內(nèi)容,是分式的基本運(yùn)算內(nèi)容之一。其中,分式加減運(yùn)算是本節(jié)課的重點(diǎn),異分母的分式加減是本節(jié)課的難點(diǎn),而異分母的分式加減運(yùn)算是本節(jié)課的難點(diǎn)。而異分母的分式加減運(yùn)算可以轉(zhuǎn)化到同分母的分式加減運(yùn)算中,因此,掌握好同分母的分式加減運(yùn)算是關(guān)鍵,本人從以下幾方面作反思:
。1)成功之處
本課從實(shí)際問(wèn)題引入,讓學(xué)生直接感受到實(shí)際生活中會(huì)碰到分式的加減運(yùn)算,這就有必要掌握分式加減運(yùn)算的方法,從而引出本節(jié)內(nèi)容。
由于分?jǐn)?shù)與分式有著很多類似的性質(zhì),因而從直觀的分?jǐn)?shù)加減法運(yùn)算開(kāi)始。先探究同分母分式的加減運(yùn)算的法則,通過(guò)類比的思想方法,由數(shù)的運(yùn)算引出式的運(yùn)算規(guī)律,體現(xiàn)數(shù)學(xué)知識(shí)由具體到抽象,從特殊到一般的內(nèi)在聯(lián)系,符合學(xué)生的認(rèn)知規(guī)律,并在得出結(jié)論的過(guò)程中,與學(xué)生一起探討,注重學(xué)生的參與,學(xué)生很快融入了課堂,調(diào)動(dòng)了學(xué)生學(xué)習(xí)的積極性。而后,同樣利用類比方法,安排了異分母分式加減運(yùn)算的學(xué)習(xí),這樣由簡(jiǎn)到繁,由易到難,符合學(xué)生認(rèn)知的發(fā)展規(guī)律,有助于知識(shí)的層層落實(shí)與掌握,而且通過(guò)通分將異分母的分式加減轉(zhuǎn)化為同分母的分式加減運(yùn)算上,注重知識(shí)間的聯(lián)系,體現(xiàn)了數(shù)學(xué)中轉(zhuǎn)化的思想方法,課堂上氣氛活躍,學(xué)生們積極參與,從課堂學(xué)生做習(xí)題的情況來(lái)看,知識(shí)掌握比較好,知識(shí)已落實(shí)到位。
。2)不足之處
本課出現(xiàn)了有頭無(wú)尾的情況,前后呼應(yīng)還沒(méi)做到位,沒(méi)有解決引例中“分式的加減教學(xué)反思”如何計(jì)算這個(gè)問(wèn)題,這是本節(jié)課的一個(gè)最大的遺憾。課堂教學(xué)真的是“一門缺憾的藝術(shù)”正是有著這樣或那樣的缺憾,才使我們更有動(dòng)力的在探索地道路上大步前行。
一節(jié)數(shù)學(xué)課,經(jīng)過(guò)反思,會(huì)發(fā)現(xiàn)許多值得推敲的地方,會(huì)發(fā)覺(jué)好多細(xì)節(jié)的地方需要精心設(shè)計(jì),在反思中,能提升自己的認(rèn)識(shí),為以后的教學(xué)積累寶貴的經(jīng)驗(yàn),讓自己更貼近學(xué)生。
《認(rèn)識(shí)分式》教學(xué)反思3
一、設(shè)計(jì)思路:
在學(xué)習(xí)本章之前已學(xué)過(guò)了一元一次方程的解法,對(duì)解整式方程特別是一元一次方程的解法思路比較了熟悉,在教受本節(jié)課是要改變教師講例題,學(xué)生模仿的教學(xué)模式,通過(guò)說(shuō)一說(shuō),試一試,想一想,練一練等多個(gè)教學(xué)環(huán)節(jié),由學(xué)生預(yù)習(xí),自主學(xué)習(xí),然后再由教師考查和點(diǎn)撥,但是由于種種原因,最終決定給學(xué)生一個(gè)半開(kāi)半閉的區(qū)間,我先作一示范,學(xué)生練習(xí)格式,接著出現(xiàn)沒(méi)有根的練習(xí)題,依然讓學(xué)生解決,由于學(xué)生不會(huì)檢驗(yàn)培根的情況,所以,再詳究沒(méi)有根產(chǎn)生的原因,怎樣檢驗(yàn)沒(méi)有根等問(wèn)題。
這節(jié)課的關(guān)鍵在前面的這步過(guò)渡,究竟是給學(xué)生一個(gè)完全自由的空間還是說(shuō)讓學(xué)生在老師的引導(dǎo)下去完成,我們先后作了多次試驗(yàn)和論證,認(rèn)為“完全開(kāi)放”符合設(shè)計(jì)思路,但是學(xué)生在有限的時(shí)間內(nèi)難以完成教學(xué)任務(wù),故我們最終決定采用第二套方案。
二、教學(xué)知識(shí)點(diǎn):
在本課的教學(xué)過(guò)程中,我認(rèn)為應(yīng)從這樣的幾個(gè)方面入手:
1.分式方程和整式方程的'區(qū)別:分清楚分式分式方程必須滿足的兩個(gè)條件,⑴方程式里必須有分式,⑵分母中含有未知數(shù)。這兩個(gè)條件是判斷一個(gè)方程是否為分式方程的充要條件。同時(shí),由于分母中含有未知數(shù),所以將其轉(zhuǎn)化為整式方程后求出的解就應(yīng)使每一個(gè)分式有意義,否則,這個(gè)根就不是原方程的根。正是由于分式方程與整式方程的區(qū)別,在解分式方程時(shí)必須進(jìn)行檢驗(yàn)。
2、分式方程和整式方程的聯(lián)系:分式方程通過(guò)方程兩邊都乘以最簡(jiǎn)公分母,約去分母,就可以轉(zhuǎn)化為整式方程來(lái)解,教學(xué)時(shí)應(yīng)充分體現(xiàn)這種化歸思想的教學(xué)。
3、解分式方程時(shí),如果分母是多項(xiàng)式時(shí),應(yīng)先寫出將分母進(jìn)行因式分解的步驟來(lái),從而讓學(xué)生準(zhǔn)確無(wú)誤地找出最簡(jiǎn)公分母
4、對(duì)分式方程可能產(chǎn)生沒(méi)有根的原因,要啟發(fā)學(xué)生認(rèn)真思考和討論。
《認(rèn)識(shí)分式》教學(xué)反思4
一.設(shè)計(jì)思路:
設(shè)計(jì)思路建立在我校目標(biāo)教學(xué)的前提下,由學(xué)生自主導(dǎo)學(xué),然后再由教師考查和點(diǎn)撥,但是由于種種原因,我最終決定給學(xué)生一個(gè)半開(kāi)半閉的區(qū)間。這節(jié)課的關(guān)鍵在前面的這步過(guò)渡,究竟是給學(xué)生一個(gè)完全自由的空間還是說(shuō)讓學(xué)生在老師的引導(dǎo)下去完成,我先后作了多次試驗(yàn)和論證,認(rèn)為“完全開(kāi)放”符合設(shè)計(jì)思路,但是學(xué)生在有限的時(shí)間內(nèi)難以完成教學(xué)任務(wù),故我們最終決定和學(xué)生一起共同完成。
二.教學(xué)知識(shí)點(diǎn):
1.在本課的教學(xué)過(guò)程中,掌握范圍分式方程的解法是關(guān)鍵,所以由兩個(gè)習(xí)題過(guò)渡后,我復(fù)習(xí)了一元一次方程的解法,然后引導(dǎo)學(xué)生嘗試?yán)媒庖辉淮畏匠谭椒ǖ幕A(chǔ)上一起探索探索解分式方程的解法。我先作一示范,學(xué)生練習(xí)格式,接著出現(xiàn)有增根的練習(xí)題,依然讓學(xué)生解決,由于學(xué)生不會(huì)檢驗(yàn)根的情況,所以,些時(shí)再詳究增根產(chǎn)生的原因,怎樣檢驗(yàn)增根等問(wèn)題。
2.在利用類比法解分式方程這一過(guò)程中,分式方程通過(guò)方程兩邊都乘以最簡(jiǎn)公分母,約去分母,就可以轉(zhuǎn)化為整式方程來(lái)解,教學(xué)時(shí)應(yīng)滲透種化歸思想的教學(xué)。
3.本節(jié)課的難點(diǎn)是對(duì)分式方程可能產(chǎn)生增根的原因,我為了讓學(xué)生更深刻的理解就用了兩個(gè)分式方程的解答過(guò)程進(jìn)行對(duì)比,體現(xiàn)驗(yàn)根的重要性及必要性,充分體現(xiàn)學(xué)生為主體,教師為主導(dǎo)的教學(xué)體系。
三.課堂效果:
在這節(jié)公開(kāi)課上,學(xué)生狀態(tài)不錯(cuò),所有的學(xué)生都能積極思考,踴躍回答問(wèn)題,在課堂練習(xí)和最后的課堂小測(cè)里,學(xué)生的作答規(guī)范正確,而且對(duì)于增根產(chǎn)生的原因及相關(guān)知識(shí)點(diǎn)的難題的突破學(xué)生掌握的不錯(cuò)。
整節(jié)課下來(lái),基本能夠達(dá)成教學(xué)目標(biāo),但是作為年輕教師,我在一些細(xì)節(jié)的處理上仍然需要改進(jìn)。個(gè)別教學(xué)語(yǔ)言不夠規(guī)范,而且利用新知識(shí)的學(xué)習(xí)過(guò)程,對(duì)舊知識(shí)的復(fù)習(xí)仍然不夠,語(yǔ)速有點(diǎn)快,個(gè)別問(wèn)題的引導(dǎo)可以更深層次,沒(méi)有充分放手讓學(xué)生突破難點(diǎn),也是比較遺憾的地方,希望聽(tīng)課的老師給我多提意見(jiàn),我會(huì)珍惜的。
《認(rèn)識(shí)分式》教學(xué)反思5
通過(guò)本周的教學(xué),學(xué)生已基本掌握了分式的有關(guān)知識(shí),并且獲得了學(xué)習(xí)代數(shù)知識(shí)的常用方法,感受到代數(shù)學(xué)習(xí)的實(shí)際應(yīng)用價(jià)值。下面是我在教學(xué)中的幾點(diǎn)體會(huì):
一、深挖教材,合理滲透數(shù)學(xué)思想方法,培養(yǎng)學(xué)生各種能力。
本章可以讓學(xué)生通過(guò)觀察、類比、猜想、嘗試等活動(dòng)學(xué)習(xí)分式的運(yùn)算法則,發(fā)展他們的合情推理能力,所以教學(xué)時(shí)重點(diǎn)應(yīng)放在對(duì)法則的探索過(guò)程上。一定要讓學(xué)生充分活動(dòng)起來(lái)。在觀察、類比、猜想、嘗試當(dāng)一系列思想活動(dòng)中發(fā)現(xiàn)法則、理解法則、應(yīng)用法則,同時(shí)還要關(guān)注學(xué)生對(duì)算理的理解,以培養(yǎng)學(xué)生的代數(shù)表達(dá)能力、運(yùn)算能力和有理的思考問(wèn)題能力。可是我在知識(shí)的傳授上并沒(méi)有注重探索、類比法則,而重在對(duì)分式四則運(yùn)算法則的運(yùn)用和分式方程的運(yùn)用上,沒(méi)有抓住教學(xué)的關(guān)鍵環(huán)節(jié)恰當(dāng)?shù)倪x擇教學(xué)方法。今后要避免類似事情的發(fā)生。
二、著力體現(xiàn)建構(gòu)主義思想,展現(xiàn)數(shù)學(xué)的連續(xù)性與延展性。
本部分內(nèi)容應(yīng)建立在學(xué)生對(duì)分?jǐn)?shù)的認(rèn)識(shí)的基礎(chǔ)上,通過(guò)已有的知識(shí)進(jìn)行建構(gòu),適當(dāng)?shù)膶?duì)比能極大提高學(xué)生的認(rèn)知質(zhì)量。
分式運(yùn)算是代數(shù)恒等變形的基礎(chǔ)之一,但是不能盲目的加大運(yùn)算量與題目的難度,重點(diǎn)應(yīng)放在對(duì)運(yùn)算過(guò)程推理的理解上。
冪的運(yùn)算,前期已經(jīng)掌握了正整數(shù)指數(shù)冪的運(yùn)算,本次應(yīng)拓展到整數(shù)指數(shù)冪的運(yùn)算,注意銜接過(guò)程。
另外,對(duì)《教材》上關(guān)于分式的具體問(wèn)題一定要重視,并關(guān)注學(xué)生在這些具體活動(dòng)中的投入程度,看他們能否積極主動(dòng)地參與,其次看學(xué)生在這些活動(dòng)中的思維發(fā)展水平——能否獨(dú)立思考,能否用數(shù)學(xué)語(yǔ)言表達(dá)自己的想法,能否反思自己的思維過(guò)程,進(jìn)而發(fā)現(xiàn)新的問(wèn)題。
《認(rèn)識(shí)分式》教學(xué)反思6
教師想方設(shè)法為學(xué)生設(shè)計(jì)好的問(wèn)題情景,同時(shí)給學(xué)生提供充分的思維空間,學(xué)生在參與發(fā)現(xiàn)和探索的過(guò)程中思維就會(huì)創(chuàng)在一個(gè)又一個(gè)的點(diǎn)上,這樣的教學(xué)日積月累對(duì)于培養(yǎng)學(xué)生的創(chuàng)新意識(shí)和創(chuàng)新能力是有巨大的作用的。我認(rèn)為學(xué)好數(shù)學(xué)最好的方法是在發(fā)現(xiàn)中學(xué)習(xí),在學(xué)生的再創(chuàng)造中學(xué)習(xí),并引導(dǎo)學(xué)生去學(xué)習(xí)。
教學(xué)設(shè)計(jì)中教師要根據(jù)目的要求,內(nèi)容多少,重點(diǎn)難點(diǎn),學(xué)生的條件,以及教學(xué)設(shè)備等合理地分配教學(xué)時(shí)間。其次,要注意節(jié)省時(shí)間,特別是在講授新知識(shí)時(shí),要抓住重點(diǎn),不能企圖一下講深講透。要安排一定的練習(xí)時(shí)間。通過(guò)練習(xí)的反饋,再采取必要的講解或補(bǔ)充練習(xí)。再次,要注意盡量安排全班學(xué)生的活動(dòng),如操作、練習(xí)鞏固,解應(yīng)用題等,避免由少數(shù)人代替全班學(xué)生的思維活動(dòng),使大多數(shù)學(xué)生成為旁觀者。要注意在一節(jié)課內(nèi)提高學(xué)生的平均做題率。此外,還要注意選擇有效的練習(xí)方式和收集反饋信息的方式,以便節(jié)約教學(xué)時(shí)間,并能及時(shí)發(fā)現(xiàn)問(wèn)題。
班級(jí)的學(xué)生有整體的特點(diǎn),當(dāng)一定存在個(gè)體差異。如果要求每一個(gè)教學(xué)目標(biāo)都人人過(guò)關(guān),實(shí)屬不智行為。效率是整體利益的平衡結(jié)果,不能因?yàn)閭(gè)別同學(xué)目標(biāo)未達(dá)成而犧牲整體的時(shí)間利益,這會(huì)造成新的教學(xué)問(wèn)題。所以在集體教學(xué)時(shí),把握大多數(shù),將整體利益平衡好,這樣的集體教學(xué)才是有效率可言的。當(dāng)然教師在教學(xué)過(guò)程還是要關(guān)注每一位學(xué)生,關(guān)注其是否在聽(tīng)教師的講解分析,以及自身是否在積極思考問(wèn)題。千萬(wàn)不可只顧自己按照教案設(shè)計(jì)去講,而忽視學(xué)生的思維。
【《認(rèn)識(shí)分式》教學(xué)反思700字(精選6篇)】相關(guān)文章:
《認(rèn)識(shí)昆蟲(chóng)》教學(xué)反思12-27
《認(rèn)識(shí)厘米》教學(xué)反思08-28
《認(rèn)識(shí)鐘表》教學(xué)反思12-12
《認(rèn)識(shí)空氣》教學(xué)反思范文12-23
《認(rèn)識(shí)日歷》教學(xué)反思總結(jié)12-21
《面積的認(rèn)識(shí)》教學(xué)反思10-29
認(rèn)識(shí)水果教學(xué)反思范文12-23