二項(xiàng)式定理教學(xué)反思
身為一名優(yōu)秀的人民教師,教學(xué)是我們的工作之一,對(duì)學(xué)到的教學(xué)技巧,我們可以記錄在教學(xué)反思中,我們?cè)撛趺慈?xiě)教學(xué)反思呢?以下是小編整理的二項(xiàng)式定理教學(xué)反思,希望能夠幫助到大家。
《二項(xiàng)式定理》這節(jié)內(nèi)容我采用以知識(shí)點(diǎn) “問(wèn)題串”的形式引導(dǎo)學(xué)生自主探究的教學(xué)方法,在循序漸進(jìn)中以小問(wèn)題帶動(dòng)大問(wèn)題,環(huán)環(huán)相扣,將知識(shí)點(diǎn)落實(shí)。而學(xué)生在自主討論中,初步認(rèn)識(shí)二項(xiàng)式定理是初中多項(xiàng)式乘法的繼續(xù),初步掌握展開(kāi)式的規(guī)律,充分而有效地訓(xùn)練了學(xué)生的思維。
整節(jié)課在學(xué)生討論探究中進(jìn)行,通過(guò)一連串層層遞進(jìn)的問(wèn)題,引導(dǎo)學(xué)生掌握展開(kāi)式形成的規(guī)律,比如:
(問(wèn)題1:請(qǐng)?jiān)诙囗?xiàng)式中圈出能得到(a+b)4展開(kāi)式中的項(xiàng)a4 b0的單項(xiàng)式a:(a+b)4 =(a+b)(a+b)(a+b) (a+b)---------
問(wèn)題2:請(qǐng)?jiān)诙囗?xiàng)式中用不同顏色的筆標(biāo)出得到(a+b)4展開(kāi)式中的項(xiàng)a3 b的單項(xiàng)式a和b
(a+b)4 =(a+b)(a+b)(a+b) (a+b)
(a+b)4 =(a+b)(a+b)(a+b) (a+b)
(a+b)4 =(a+b)(a+b)(a+b) (a+b)
(a+b)4 =(a+b)(a+b)(a+b) (a+b)------------
問(wèn)題3:請(qǐng)你用組合的觀點(diǎn)來(lái)探究(a+b)4 =(a+b)(a+b)(a+b) (a+b)展開(kāi)式中的項(xiàng)a2 b2的系數(shù))
以上三個(gè)問(wèn)題由淺入深,由簡(jiǎn)單到復(fù)雜,引導(dǎo)學(xué)生體驗(yàn)(a+b)4展開(kāi)式中的特殊項(xiàng)得來(lái)的過(guò)程,通過(guò)學(xué)生自己用筆動(dòng)手圈注和問(wèn)題“你是如何做到標(biāo)注時(shí)不重復(fù)無(wú)遺漏的?”的引導(dǎo),讓學(xué)生自己體驗(yàn)的到這些特殊的項(xiàng)需要兩個(gè)步驟:先取b再取a,進(jìn)而可以輕而易舉的把對(duì)特殊項(xiàng)的探究的方法轉(zhuǎn)移到計(jì)數(shù)原理上來(lái)。然后馬上引導(dǎo)學(xué)生完成問(wèn)題4:類(lèi)比以上探究項(xiàng)a4b0和a3b 及a2b2構(gòu)成規(guī)律的方法, 請(qǐng)你寫(xiě)出 (a+b)4 二項(xiàng)展開(kāi)式的每一項(xiàng)(把展開(kāi)式按照a的降冪,b的升冪進(jìn)行排列)(a+b)4 = ____ 。
在這個(gè)過(guò)程中非常具有挑戰(zhàn)性問(wèn)題的引入能使學(xué)生產(chǎn)生新奇感,激發(fā)了學(xué)生的學(xué)習(xí)興趣和積極性.進(jìn)一步把這一研究方法推廣到展開(kāi)式的每一項(xiàng),從而得到(a+b)4二項(xiàng)展開(kāi)式,又把這一問(wèn)題往前推進(jìn)了一步,引導(dǎo)學(xué)生找出展開(kāi)式的通項(xiàng),進(jìn)而推廣到一般情形。
教學(xué)中我特別注重運(yùn)用通項(xiàng)意識(shí),凡涉及到展開(kāi)式的項(xiàng)及其系數(shù)等問(wèn)題,常是先寫(xiě)出其通項(xiàng)公式,然后再據(jù)題意進(jìn)行求解。但也有意外出現(xiàn),對(duì)于二項(xiàng)式定理的逆運(yùn)用,上課過(guò)程中重視不夠,以為學(xué)生在推導(dǎo)展開(kāi)式的同時(shí)也能夠推導(dǎo)它的逆公式,所以在上課過(guò)程中一筆帶過(guò),導(dǎo)致作業(yè)中的問(wèn)題比較多,基于此,在另一個(gè)班級(jí)的教學(xué)中,我決定把這個(gè)知識(shí)點(diǎn)跟展開(kāi)式的推導(dǎo)融為一體來(lái)落實(shí)知識(shí)點(diǎn)。
本節(jié)課的亮點(diǎn):
1、從“特殊出發(fā)、發(fā)現(xiàn)規(guī)律、猜想結(jié)論、邏輯證明”的科學(xué)方法,帶給學(xué)生積極的情感體驗(yàn)和無(wú)盡的思考.?dāng)?shù)學(xué)思想、方法和數(shù)學(xué)文化得到了較好的體現(xiàn).
2、課堂小結(jié)順其自然地引導(dǎo)學(xué)生把握知識(shí)之間的內(nèi)在本質(zhì)聯(lián)系,引導(dǎo)學(xué)生用擴(kuò)展、深化等方式提出新問(wèn)題,并用問(wèn)題鏈引向課外或后續(xù)課程。
3、掌握二項(xiàng)式定理和二項(xiàng)展開(kāi)式的通項(xiàng)公式,并能用它們解決與二項(xiàng)展開(kāi)式有關(guān)的簡(jiǎn)單問(wèn)題。教材的探求過(guò)程將歸納推理與演繹推理有機(jī)結(jié)合起來(lái),教學(xué)過(guò)程中,學(xué)生充分體驗(yàn)到歸納推理不僅可以猜想到一般性的.結(jié)果,而且可以啟發(fā)他們發(fā)現(xiàn)一般性問(wèn)題的解決方法
4、本節(jié)課教學(xué),我采用“問(wèn)題――探究”的教學(xué)模式,以“問(wèn)題鏈”組織課堂教學(xué),讓學(xué)生體會(huì)研究問(wèn)題的方式方法,培養(yǎng)學(xué)生觀察、分析、概括的能力,以及化歸意識(shí)與方法遷移的能力,體會(huì)從特殊到一般的思維方式,讓學(xué)生體驗(yàn)定理的發(fā)現(xiàn)和創(chuàng)造歷程.
本節(jié)課不足之處:
1、我認(rèn)為在師生互動(dòng)環(huán)節(jié)中再多一些效果會(huì)更好。但是我認(rèn)為這樣面對(duì)學(xué)生的展示課,難以操作.因?yàn)樽寣W(xué)生自主學(xué)習(xí),必須課前作充分的準(zhǔn)備,學(xué)生帶著問(wèn)題到課堂上進(jìn)行匯報(bào)和交流,師生共同釋疑、糾錯(cuò).否則,對(duì)于有一定難度的數(shù)學(xué)課。
2、本節(jié)課教學(xué)過(guò)程中還不夠生動(dòng)有趣。正因?yàn)槎?xiàng)式定理在初等數(shù)學(xué)中與其他內(nèi)容聯(lián)系較少,所以教材上教法就顯得呆板,單調(diào),課本上先給出一個(gè)(a+b)4用組合知識(shí)來(lái)求展開(kāi)式的系數(shù)的例子.然后推廣到一般形式,再用數(shù)學(xué)歸納法證明,因?yàn)樽C明寫(xiě)得很長(zhǎng),上課時(shí)的板書(shū)幾乎占了整個(gè)黑板,所以課必然上得累贅,學(xué)生必然感到被動(dòng).那么多的算式學(xué)生看都不及細(xì)看,記也感到吃力,又怎能發(fā)揮主體作用?
總之,本節(jié)課遵循學(xué)生的認(rèn)識(shí)規(guī)律,由特殊到一般,由感性到理性.重視學(xué)生的參與過(guò)程,問(wèn)題引導(dǎo),師生互動(dòng).重在培養(yǎng)學(xué)生觀察問(wèn)題,發(fā)現(xiàn)問(wèn)題,歸納推理問(wèn)題的能力,從而形成自主探究的學(xué)習(xí)習(xí)慣。
【二項(xiàng)式定理教學(xué)反思】相關(guān)文章:
二項(xiàng)式定理數(shù)學(xué)教學(xué)反思09-23