毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

圓錐的體積教學(xué)反思

時(shí)間:2024-03-15 09:46:44 美云 教學(xué)反思 我要投稿

圓錐的體積教學(xué)反思(精選20篇)

  作為一名人民老師,課堂教學(xué)是我們的任務(wù)之一,寫教學(xué)反思能總結(jié)教學(xué)過程中的很多講課技巧,怎樣寫教學(xué)反思才更能起到其作用呢?以下是小編為大家整理的圓錐的體積教學(xué)反思,供大家參考借鑒,希望可以幫助到有需要的朋友。

圓錐的體積教學(xué)反思(精選20篇)

  圓錐的體積教學(xué)反思 1

  圓錐的體積是在學(xué)生直觀認(rèn)識圓錐的特征,會算圓的面積,以及長方體、正方體、圓柱體的體積的基礎(chǔ)上安排教學(xué)的。以往幾次,都是按老方法進(jìn)行,一開始教師就準(zhǔn)備了一個圓柱和一個圓錐,先比較它們的底面積相等,再分別量出它們的高也相等。進(jìn)而由老師做實(shí)驗(yàn),把圓錐裝滿水(或沙)往圓柱里倒,學(xué)生觀察倒了幾次正好把圓柱裝滿。接著推導(dǎo)圓錐的體積等于圓柱體積的三分之一,并重點(diǎn)強(qiáng)調(diào)求圓錐的體積一定要乘三分之一。一節(jié)課上下來非常輕松,非常順利,時(shí)間也充足,作業(yè)效果也還不錯。可是到了綜合運(yùn)用問題就出來了:忘記乘三分之一的,計(jì)算出錯的,已知圓錐的體積和底面積,求高時(shí),直接用體積除以底面積的,出的錯誤五花八門。

  再上這節(jié)課時(shí),我加強(qiáng)了以下幾個點(diǎn)的教學(xué),收到了較好的效果。

  1、教學(xué)新課時(shí),我出示一個圓柱體和一個圓錐體讓學(xué)生觀察并猜測圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,通過師生交流、問答、猜想等形式,調(diào)動學(xué)生的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過實(shí)驗(yàn)來證實(shí)自己的`猜想,所以做起實(shí)驗(yàn)就興趣盎然;

  2、實(shí)驗(yàn)時(shí),讓學(xué)生小組合作親自動手實(shí)驗(yàn),以實(shí)驗(yàn)要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計(jì)算方法。學(xué)生在學(xué)習(xí)的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗(yàn)。學(xué)生獲得的不僅是新活的數(shù)學(xué)知識,同時(shí)也獲得了探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價(jià)值。

  3、學(xué)生做圖形應(yīng)用題時(shí),引導(dǎo)學(xué)生審題,先確定是什么圖形,再想相應(yīng)的計(jì)算公式,最后根據(jù)公式列出算式。這樣對于后面的綜合運(yùn)用題,學(xué)生有了這種固定思維模式,就不會亂列式,

  4、列出算式后,不要按部就班的從左算到右,先觀察算式的特點(diǎn),尋求簡單的計(jì)算方法,把口算和計(jì)算有機(jī)結(jié)合。如:3.14×(4÷2)2×8時(shí),先口算(4÷2)2=4,再口算4×8=32,最后再計(jì)算3.14×32。又如:×3.14×(4÷2)2×9時(shí),先口算×9=3,(4÷2)2=4,3×4=12,再計(jì)算3.14×12。這樣就大大地減少了學(xué)生計(jì)算難度,提高了計(jì)算的正確率。

  圓錐的體積教學(xué)反思 2

  我認(rèn)為這節(jié)課的設(shè)計(jì)與教學(xué)具有下面的特點(diǎn):

  一、在教學(xué)新課時(shí),沒有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒水實(shí)驗(yàn),而是通過師生交流、問答、猜想等形式,調(diào)動學(xué)生學(xué)習(xí)的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望。學(xué)生迫切希望通過實(shí)驗(yàn)來證實(shí)自己的猜想,所以做起實(shí)驗(yàn)就興趣盎然。

  二、在實(shí)驗(yàn)時(shí),讓學(xué)生小組合作親自動手實(shí)驗(yàn),以實(shí)驗(yàn)要求為主線,既動手操作,又動腦思考,努力探索圓錐體制的計(jì)算方法。這樣的學(xué)習(xí),學(xué)生學(xué)得活,記得牢,既發(fā)揮教師的'主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗(yàn)。

  但是,這節(jié)課學(xué)生是在教師預(yù)設(shè)引導(dǎo)中探究。為什么要學(xué)的疑念,怎樣學(xué)的策略,可能還不夠突顯,與學(xué)生生活聯(lián)系還不是很緊密的。學(xué)生的問題意識不強(qiáng),都有待探究。

  圓錐的體積教學(xué)反思 3

  教學(xué)圓錐的體積是在掌握了圓錐的認(rèn)識和圓柱的體積的基礎(chǔ)上教學(xué)的。本課教學(xué)摒棄了以往把學(xué)生分成若干組,小組實(shí)驗(yàn)得出結(jié)論的方法。

  新課一開始,我就讓學(xué)生觀察,先猜測圓錐的`體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。然后讓學(xué)生看白板演示將圓錐里的水倒入等底等高的圓柱里,需要倒幾次。雖然孩子們沒有進(jìn)行實(shí)驗(yàn),但孩子目睹了過程,從中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。對圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實(shí)際的生活問題,鞏固深化知識點(diǎn)。

  思考:雖然學(xué)生在學(xué)習(xí)的過程中,應(yīng)該成為一個探索者、研究者、發(fā)現(xiàn)者,但不是并不是每個知識的獲得都必須學(xué)生動手操作。從課后的作業(yè)反饋來看,學(xué)生的出錯率比以前小組合作的學(xué)習(xí)的還要好。看來,這樣的學(xué)習(xí),學(xué)生學(xué)的活,記得牢,即發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。

  圓錐的體積教學(xué)反思 4

  圓錐的體積是圓柱體積的延伸,所以再學(xué)生了解圓柱體積計(jì)算公式以后,我有意識地讓學(xué)生來解決圓錐的體積,有的同學(xué)說圓錐的體積公式是V=sh,也有的同學(xué)說不是V=sh,而是V=sh÷3,當(dāng)我問及為什么是V=sh÷3時(shí),這位同學(xué)說,是書上是這樣說的。我知道這位同學(xué)在老師講新課之前,他已提前預(yù)習(xí)了。接著我把提前準(zhǔn)備好的兩個學(xué)具擺在學(xué)生面前,找人上來操作,讓學(xué)生從實(shí)際操作中驗(yàn)證圓錐的體積公式到底是V=sh,還是V=sh÷3。因?yàn)閿?shù)學(xué)由于語言的嚴(yán)謹(jǐn)性,我說“圓錐的體積是圓柱體積的1/3”這句話是否正確。有不少同學(xué)通過剛才的試驗(yàn),絕大多數(shù)同學(xué)都說這句話是對的。然而也有極少數(shù)同學(xué)認(rèn)為這句話不夠嚴(yán)謹(jǐn),還應(yīng)該加上“當(dāng)圓錐與圓柱等底、等高時(shí),圓錐的`體積才是圓柱體積的1/3.”通過辨析,我讓學(xué)生不僅明白了圓錐體積公式的推導(dǎo)過程,還讓學(xué)生明白圓錐體積公式與圓柱體積公式之間的內(nèi)在聯(lián)系。

  一節(jié)好的數(shù)學(xué)課不是老師教出來的,而是學(xué)生通過試驗(yàn)總結(jié)、歸納、體驗(yàn),通過活動“做”出來的。

  圓錐的體積教學(xué)反思 5

  通過本節(jié)課的教學(xué),我意識到在平時(shí)的課堂教學(xué)中,我們要善于利用以學(xué)生認(rèn)識發(fā)展規(guī)律為依托:發(fā)現(xiàn)問題,提出問題探究解決問題,探究解決問題得出結(jié)論,實(shí)際應(yīng)用使學(xué)生在“認(rèn)識—實(shí)踐—再認(rèn)識、再實(shí)踐”中理解運(yùn)用知識。反思教學(xué)過程,主要有以下幾點(diǎn)體會:

  一、觀察引導(dǎo)

  讓學(xué)生觀察用卷筆刀削鉛筆,明白剛才那一截是圓柱體,現(xiàn)在這一截變成了圓錐體。啟發(fā)學(xué)生:削成后的這一部分體積與原體積比較有無變化?學(xué)生回答是肯定的,削后體積變小了。變小了以后的圓錐體是原圓柱體的幾分之幾?也就是說圓錐體體積與圓柱體體積有什么聯(lián)系?圓錐體體積公式如何推導(dǎo)?帶著問題去看書。

  二、巧置陷阱

  學(xué)生看書后知道圓錐體體積等于等底等高圓柱體積的三分之一。但對“等底、等高”這個條件往往不注意。為了突出“等底、等高”這個條件的重要性,我巧置陷阱,讓學(xué)生分組操作,(有一組的圓柱和圓錐體的容器不是等底等高的,有一組的圓柱和圓錐體的容器是等底等高的.),去驗(yàn)證課本上的知識。學(xué)生進(jìn)行倒水實(shí)驗(yàn):用圓錐體容器盛滿水倒入圓柱體容器。過了一會兒,一個小組倒了3次水,還沒灌滿;而另一小組的同學(xué)卻大叫:“水溢出來了!”這是什么緣故呢?學(xué)生們議論紛紛。

  三、柳暗花明

  這時(shí)正是學(xué)生思維活動進(jìn)入高潮時(shí),我拿出等底等高的圓柱體和圓錐體兩個容器,用圓錐體量水三次正好灌滿圓柱體,引導(dǎo)學(xué)生與上次演示比較,1比3的關(guān)系是在什么基礎(chǔ)上建立的?學(xué)生恍然大悟,明白圓錐體和圓柱體等底、等高,圓錐體體積才是圓柱體體積的三分之一。而在這樣的過程中我放手讓學(xué)生去想、去做,鼓勵學(xué)生以多角度去思考問題。學(xué)生在學(xué)習(xí)的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗(yàn)。

  四、歸納總結(jié)

  剛才同學(xué)們發(fā)現(xiàn)圓錐體體積等于等底、等高圓柱體體積的,現(xiàn)在圓錐體體積公式如何推導(dǎo)?學(xué)生很容易得出:

  v圓錐體=sh÷3

  但在教學(xué)過程中我發(fā)現(xiàn)了幾個值得我思考和改正的問題:

  1、在教學(xué)之后感覺到遺憾的是,由于教具有限,參與實(shí)驗(yàn)的學(xué)生不多。

  2、有些學(xué)生在計(jì)算過程中常忘記除以3,需要加強(qiáng)練習(xí)。

  3、對學(xué)生的操作關(guān)注不夠到位。

  采取的措施:

  1、培養(yǎng)學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,做題時(shí)認(rèn)真仔細(xì)。

  2、上課要用心去感受學(xué)生課堂上出現(xiàn)的各種情況,使自己更有激情,把自己更好地融入到課堂教學(xué)中去。同時(shí)也會把時(shí)間更多的放在鉆研教材上,把每一節(jié)課上得有聲有色。

  圓錐的體積教學(xué)反思 6

  【案例】

  師:同學(xué)們,前面我們已經(jīng)認(rèn)識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計(jì)算呢?下面我們就來研究這個問題.(板書:圓錐的體積)

  (1)創(chuàng)發(fā)懸念出示圓柱與圓錐(“等底等高”)同學(xué)猜一猜,這個圓錐的體積是這個圓柱體積的幾分之幾(有的說1/3,有的說1/2)

  (2)分組實(shí)驗(yàn):究竟是1/2,還是1/3呢?我們來做個實(shí)驗(yàn)好嗎?(把事先準(zhǔn)備好的圓柱、圓錐體等容器發(fā)給各組,每組白、紅、黑的圓柱、圓錐體容器各一個,兩個白的等底等高,兩個紅的等底不等高,兩個黑的等高不等底。讓學(xué)生用圓錐容器盛滿水往相同顏色的圓柱容器中倒,觀察它們之間的關(guān)系。

  (3)各小組報(bào)實(shí)驗(yàn)結(jié)果,幾次正好灌滿(三次正好灌滿)“三次正好灌滿,說明了什么?”

  生:圓錐體積是圓柱體積的1/3。(師板書)

  師:同意嗎?

  (4)集體實(shí)驗(yàn)(師取等底不等高的`圓柱和圓錐容器,讓兩個同學(xué)上臺實(shí)驗(yàn),其它同學(xué)觀察)(三次沒有灌滿)

  師:“灌滿了嗎?”(沒有)“為什么沒有灌滿?問題出在哪里呢?是不是剛才的結(jié)論不對?”(師將圓柱與圓錐容器放在一起比較,引導(dǎo)學(xué)生觀察、討論)

  討論得出:圓錐體積是等底等高圓柱體積的1/3。(師板書補(bǔ)充:“等底等高”)

  一、學(xué)生成為學(xué)習(xí)活動的主動者。

  在探究圓錐體積計(jì)算方法的學(xué)習(xí)過程中,學(xué)生不再是實(shí)驗(yàn)演示的被動的觀看者,而是參與操作的主動探索者,真正成為學(xué)習(xí)的主人。在整個學(xué)習(xí)過程中,學(xué)生獲得的不僅是新活的數(shù)學(xué)知識,獲得更多的是探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價(jià)值。

  二、在操作中體驗(yàn)

  兒童的思維是從動作開始的,切斷了動作和思維的聯(lián)系,思維就得不到發(fā)展。《新課程標(biāo)準(zhǔn)》指出“讓學(xué)生在做中學(xué)”。實(shí)踐證明:開放學(xué)生的雙手,讓學(xué)生手、眼、腦等多種感官協(xié)同活動并參與學(xué)習(xí)活動。它不僅能使學(xué)生學(xué)得生動活潑,而且能啟迪大腦思維,對所學(xué)過的知識理解更深刻,掌握得更牢固。因此,在圓錐體積的教學(xué)中我多為學(xué)生創(chuàng)設(shè)實(shí)踐操作的機(jī)會,并提供豐富的材料.讓他們在動手操作中學(xué)生經(jīng)歷了“獨(dú)立探究圓錐體積的算法、交流中比較體會圓錐與圓柱體積的關(guān)系”的過程。這一系列活動,讓抽象的概念變的生動形象。通過這樣的步驟讓學(xué)生在操作中體驗(yàn),在操作中發(fā)現(xiàn),學(xué)生學(xué)得興趣盎然,不但主動地掌握了數(shù)學(xué)知識,還感受到發(fā)現(xiàn)和探索知識的樂趣。使他們親身體驗(yàn)探討問題和尋求結(jié)論的過程,增進(jìn)學(xué)生對數(shù)學(xué)現(xiàn)象的體驗(yàn)。

  圓錐的體積教學(xué)反思 7

  在本節(jié)課中,通過用排水法測量外形類似于圓錐的體積(比如鉛錘)不但麻煩,而且有時(shí)還不能用(比如測量麥堆的體積),體會此方法具有一定的局限性而引入新課。從面上的相似性知道圓錐的體積可能與圓柱的有關(guān),然后經(jīng)歷大膽猜測、實(shí)驗(yàn)驗(yàn)證、分析實(shí)驗(yàn)結(jié)果,從而得出體積公式的過程。再利用適當(dāng)?shù)木毩?xí)鞏固公式而達(dá)到本節(jié)課的教學(xué)目的。本節(jié)課總體感覺很順暢,學(xué)生思維活躍。在課堂上利用實(shí)物演示,較好地引導(dǎo)學(xué)生思考,總結(jié)出等底等高的圓柱與圓錐之間的關(guān)系,突出了重點(diǎn),突破了難點(diǎn)。

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》明確指出,要讓學(xué)生能夠“初步學(xué)會運(yùn)用數(shù)學(xué)的思維方式去觀察、分析現(xiàn)實(shí)社會,去解決日常生活中和其他學(xué)科學(xué)習(xí)中的問題,增強(qiáng)應(yīng)用數(shù)學(xué)的意識。”本課的設(shè)計(jì)充分體現(xiàn)了這一理念。課中讓學(xué)生動手分別用圓錐和圓柱盛沙,讓學(xué)生感受到數(shù)學(xué)與生活的密切聯(lián)系,通過自己的探究,運(yùn)用數(shù)學(xué)的思維方式解決問題,又能運(yùn)用掌握的知識去研究解決生活的'其它數(shù)學(xué)問題,培養(yǎng)了學(xué)生的應(yīng)用意識。同時(shí),課堂教學(xué)注重讓學(xué)生自主學(xué)習(xí),合作探究,充分發(fā)揮了學(xué)生的學(xué)習(xí)主動性,也培養(yǎng)了學(xué)生的創(chuàng)新能力。

  雖然本節(jié)課達(dá)到了教學(xué)目的,取得了不錯的教學(xué)效果,但也存在一些不足,由于受條件限制,學(xué)具準(zhǔn)備不夠充分;課堂語言還不夠簡練;在學(xué)生匯報(bào)時(shí),沒有抓住生成;沒有認(rèn)真研究不等底不等高的體積關(guān)系等。在以后的教學(xué)過程中一定會注意這些問題,使自己不斷地進(jìn)步。

  圓錐的體積教學(xué)反思 8

  就小學(xué)現(xiàn)有的知識,把圓錐體積轉(zhuǎn)化為體積相等的其它物體有些困難。因此,教學(xué)圓錐體積公式采用的方法與圓柱不同,沒有采用“轉(zhuǎn)化”的思想。因而這節(jié)課首先出示例5,讓學(xué)生從圖畫直觀上感受——圓錐體的體積比等底等。就小學(xué)現(xiàn)有的知識,把圓錐體積轉(zhuǎn)化為體積相等的其它物體有些困難。因此,教學(xué)圓錐體積公式采用的方法與圓柱不同,沒有采用“轉(zhuǎn)化”的思想。因而這節(jié)課首先出示例5,讓學(xué)生從圖畫直觀上感受——圓錐體的體積比等底等高的圓柱體體積小。在此直觀的基礎(chǔ)上,讓學(xué)生猜想該圓錐的體積是圓柱的幾分之幾。當(dāng)然這里教師并不追究學(xué)生猜想的是否準(zhǔn)確,可以說1/2,1/3,或其它的分?jǐn)?shù)都可以,關(guān)鍵在猜想的`基礎(chǔ)上讓他們明白,估計(jì)的結(jié)果一定要經(jīng)過驗(yàn)證才能確認(rèn)或修正。

  讓他們明白“估計(jì)——驗(yàn)證”是解決問題的一種策略。因而,在估計(jì)的基礎(chǔ)上,我再讓學(xué)生親自動手實(shí)驗(yàn),這里除了培養(yǎng)學(xué)生的自主探究、發(fā)現(xiàn)的能力,還讓學(xué)生在操作實(shí)驗(yàn)的過程中,各種能力得到鍛煉,同時(shí)還讓學(xué)生在實(shí)驗(yàn)中感受數(shù)學(xué)的嚴(yán)密性,感受數(shù)學(xué)的內(nèi)在魅力,激發(fā)學(xué)生對數(shù)學(xué)的熱愛。學(xué)生學(xué)識的關(guān)鍵還在于會不會運(yùn)用,因而,在學(xué)生探索好后,讓學(xué)生用自己探索到的結(jié)論,解決生活中的一些實(shí)際問題,讓他們真正感受到數(shù)學(xué)的用處——生活中處處離不開數(shù)學(xué)。最后讓學(xué)生談?wù)勈斋@,鞏固這節(jié)課的重點(diǎn),加深印象。

  圓錐的體積教學(xué)反思 9

  圓錐的體積是在學(xué)生直觀認(rèn)識圓錐的特征,會算圓的面積,以及長方體、正方體、圓柱體的體積的基礎(chǔ)上安排教學(xué)的。因此,我有針對性地設(shè)計(jì)、制作了本節(jié)課的輔助教學(xué)課件,既突出重點(diǎn)、突破難點(diǎn),又激發(fā)學(xué)生的學(xué)習(xí)興趣,優(yōu)化教學(xué)過程,提高課堂教學(xué)質(zhì)量。一節(jié)課下來,我靜心思考,有以下幾點(diǎn)反思:

  一、學(xué)生動手操作,激發(fā)興趣,培養(yǎng)了學(xué)生自主學(xué)習(xí)的精神。

  我在教學(xué)圓錐的體積計(jì)算公式時(shí),為了讓學(xué)生直觀感知圓錐的體積與它等底等高的圓柱的體積的關(guān)系。首先讓學(xué)生在課前自己動手做實(shí)驗(yàn),加深學(xué)生對圓柱和圓錐的認(rèn)識。在課堂上改教師演示為學(xué)生分組動手實(shí)驗(yàn),用圓錐裝滿水倒入和它等底等高的圓柱里的過程。

  并在動畫下面巧設(shè)問題:用圓錐裝滿水倒入和它等底等高的空圓柱里,倒幾次正好倒?jié)M?每次水的高度是圓柱高度的幾分之幾?有層次的教學(xué)設(shè)計(jì),豐富多彩的教學(xué)活動,充分體現(xiàn)以教師為主導(dǎo),以學(xué)生為主體的教與學(xué)的雙邊活動。學(xué)生通過認(rèn)真操作實(shí)驗(yàn),觀察思考,都明白了圓錐的體積等于和它等底等高的圓柱體積的1/3,從而推導(dǎo)出圓錐體積的計(jì)算公式,這樣就有一種水到渠成的感覺。同時(shí)也培養(yǎng)學(xué)生觀察、操作、討論、歸納、整理等技能,形成良好的學(xué)習(xí)習(xí)慣和認(rèn)真操作的'態(tài)度。

  二、激發(fā)學(xué)生的求知欲。

  數(shù)學(xué)課程要關(guān)注學(xué)生的生活經(jīng)驗(yàn)和已有的知識體驗(yàn),教師在引入新知時(shí),創(chuàng)設(shè)了一個有趣的童話情境,使枯燥的數(shù)學(xué)問題變?yōu)榛钌纳瞵F(xiàn)實(shí),讓數(shù)學(xué)課堂充滿生命活力。學(xué)生在判斷公平與不公平中蘊(yùn)涵了對等底等高圓柱和圓錐體積關(guān)系的猜想,他們在這一情境中敢猜想、要猜想、樂猜想,在猜想中交流,在交流中感悟,自然地提出了一個富有挑戰(zhàn)性的數(shù)學(xué)問題,從而引發(fā)了學(xué)生進(jìn)一步探究的強(qiáng)烈欲望。在應(yīng)用公式的教學(xué)中,又把問題轉(zhuǎn)向到課初學(xué)生猜測且還沒有解決的問題,引導(dǎo)學(xué)生計(jì)算出圓錐的體積,終于使懸念得出了滿意的結(jié)果,使學(xué)生獲得了成功的喜悅。

  三、全體學(xué)生的積極參與,突出學(xué)生的主體作用。

  由于我平時(shí)非常重視讓學(xué)生參與教學(xué)的全過程,重視培養(yǎng)學(xué)生的思維想象力,因此,學(xué)生在這節(jié)課上,表現(xiàn)也相當(dāng)?shù)某錾。我在教學(xué)中大膽放手,讓學(xué)生自主探索,經(jīng)歷“再創(chuàng)造”的過程。學(xué)生在教師的引導(dǎo)下,通過觀察、實(shí)驗(yàn)、猜測、驗(yàn)證、推理與交流等數(shù)學(xué)活動,積極主動地發(fā)現(xiàn)了等底等高的圓柱與圓錐體積間的關(guān)系,進(jìn)而推導(dǎo)出圓錐體積的計(jì)算公式。

  特別是數(shù)學(xué)交流體現(xiàn)得很充分,有學(xué)生與教師之間的交流、學(xué)生與學(xué)生之間的交流以及小組或大組的多向交流,這種交流是立體、交叉型的,它能催化學(xué)生的意義建構(gòu)。在有的小組實(shí)驗(yàn)失敗后,引導(dǎo)學(xué)生在反思中不斷進(jìn)行自我調(diào)控,在調(diào)控中增強(qiáng)了體驗(yàn)的力度,有效培養(yǎng)了學(xué)生的元認(rèn)知能力。調(diào)動了學(xué)生的學(xué)習(xí)積極性,突出了學(xué)生的主體作用。

  總之,這節(jié)課,每個學(xué)生都經(jīng)歷了“猜想---實(shí)驗(yàn)---發(fā)現(xiàn)”的自主探究學(xué)習(xí)的過程。學(xué)生獲得的不僅是鮮活的數(shù)學(xué)知識,獲得更多的是科學(xué)探究的學(xué)習(xí)方法和研究問題的方法,孩子們體驗(yàn)到了探究成功的喜悅,進(jìn)行了探究失敗的深刻反思,有利于從小樹立科學(xué)的實(shí)驗(yàn)觀。我思考:如果長期在這樣的探究中去學(xué)習(xí)知。

  圓錐的體積教學(xué)反思 10

  以前教學(xué)《圓錐的體積》時(shí)多是先由教師演示等底等高情況下的三分之一,再讓學(xué)生驗(yàn)證,最后教師通過對比實(shí)驗(yàn)說明不等底等高的差異,但效果不太好,學(xué)生對等底等高這一重要前提條件,掌握得并不牢固,理解很模糊。為了讓學(xué)生理解“等底等高”是判斷圓錐的體積是圓柱體積的三分之一的前提條件,我就設(shè)計(jì)了以上的教學(xué)片斷:讓學(xué)生自選空圓柱和圓錐研究圓柱和圓錐體積之間的關(guān)系,學(xué)生通過動手操作得出的結(jié)論與書上的結(jié)論有很大的差異,有三分之一、四分之一、二分之一,思維出現(xiàn)激烈的'碰撞,這時(shí)我沒有評判結(jié)果,而是讓學(xué)生經(jīng)歷一番觀察、發(fā)現(xiàn)、合作、創(chuàng)新過程,得出圓錐體積等于等底等高的圓柱體積的三分之一,這樣讓學(xué)生裝在看似混亂無序的實(shí)踐中,增加對實(shí)驗(yàn)條件的辨別及信息的批判。既圓滿地推導(dǎo)出了圓錐的體積公式,又促進(jìn)了學(xué)生實(shí)踐能力和批判意識的發(fā)展。而這些目標(biāo)的達(dá)成完全是靈活機(jī)智地利用“錯誤”這一資源,所產(chǎn)生的效果。

  在平時(shí)的課堂教學(xué)中,我們要善于利用“錯誤”這一資源,讓學(xué)生思考問題幾經(jīng)碰壁終于找到解決問題的方法,把思考問題的實(shí)際過程展現(xiàn)給學(xué)生看,讓學(xué)生經(jīng)過思維的碰撞,這樣做實(shí)際上是非常富于啟發(fā)性的.學(xué)習(xí)數(shù)學(xué)不僅要學(xué)會這道題的解法,而且更要學(xué)會這個解法是如何找到的。

  教學(xué)不僅僅是告訴,更需要經(jīng)歷。真正關(guān)注學(xué)生學(xué)習(xí)的過程,就要有效利用錯誤這一資源,教師要勇于樂于向?qū)W生提供充分研究的機(jī)會,幫助他們真正理解和掌握數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗(yàn),這樣,我們的課堂才是學(xué)生成長和成功的場所。

  圓錐的體積教學(xué)反思 11

  實(shí)踐出真知,我覺得這句話講得非常的好。對于學(xué)生的學(xué)習(xí),我覺得也是這樣。讓學(xué)生真正成為活動的主動者,才能讓學(xué)生真正的感受自己是學(xué)習(xí)的主人。特別是在圖形的教學(xué)中,根據(jù)學(xué)習(xí)內(nèi)容的特點(diǎn),注重操作,注重實(shí)踐,可以讓教學(xué)達(dá)到最高效。在教學(xué)圓錐的體積時(shí),我感悟特深刻。

  以前教學(xué)圓錐的體積后,學(xué)生在實(shí)際運(yùn)用公式時(shí)容易出錯誤的地方還是和往屆一樣,圓錐的體積=等底等高圓柱體積的三分之一,這個三分之一,在計(jì)算的時(shí)候經(jīng)常出現(xiàn)遺漏。

  怎樣讓學(xué)生自己探究出圓錐的體積公式,并且時(shí)時(shí)記住那個容易被人遺忘的三分之一呢?我這次把學(xué)習(xí)的主動權(quán)交給了學(xué)生,讓每個學(xué)生都經(jīng)歷提出猜測--設(shè)計(jì)實(shí)驗(yàn)--動手操作--得出公式的自主探究學(xué)習(xí)的過程,我讓學(xué)生拿出自己的學(xué)具等底等高的圓柱和圓錐,走出課堂,深入實(shí)踐,到操場上去裝沙子,到水池邊去裝水,看幾個圓錐的體積才能把圓柱裝滿。在我適當(dāng)?shù)囊龑?dǎo)下,讓學(xué)生根據(jù)自己的設(shè)想自由探究等底等高的圓錐體和圓柱體體積之間的關(guān)系,圓錐體體積的計(jì)算方法。讓每個學(xué)生都經(jīng)歷一次探究學(xué)習(xí)的過程。教學(xué)中我感到學(xué)生真正地成為了學(xué)習(xí)的主人,我沒有牽著學(xué)生走,只是為他們創(chuàng)設(shè)了一個猜想圓錐體積方法的`情境,讓學(xué)生在猜測中找到驗(yàn)證的方法,并且通過動手操作驗(yàn)證自己的猜測。最后得出圓錐體積的計(jì)算方法,激發(fā)了他們主動探究的欲望。

  推導(dǎo)公式時(shí),我沒有代替學(xué)生的操作,始終只以組織者、引導(dǎo)者與合作者的身份參與其中,使學(xué)生與學(xué)生之間,教師與學(xué)生之間互動起來,在這種形式下,學(xué)生運(yùn)用獨(dú)立思考、合作討論、動手操作等多種方式進(jìn)行了探索。另外,為了突出等底、等高這個條件的重要性,我巧置陷阱,我還特意安排了一組等底不等高,一組不等底也不等高的圓柱和圓錐,結(jié)果學(xué)生的實(shí)驗(yàn)結(jié)論和其他組的不一致,這時(shí)候就出現(xiàn)了爭論,這時(shí),我時(shí)機(jī)引導(dǎo)學(xué)生與上次演示比較,1比3的關(guān)系是在什么基礎(chǔ)上建立的?學(xué)生恍然大悟,明白圓錐體和圓柱體等底、等高,圓錐體體積才是圓柱體體積的三分之一。相信今天通過同學(xué)們自己的動手體驗(yàn),對圓錐的體積計(jì)算方法印象深刻,只有自己經(jīng)歷了才會牢牢記!

  圓錐的體積教學(xué)反思 12

  該學(xué)習(xí)“圓錐的認(rèn)識和體積”這部分知識了,想到在學(xué)生的生活中,純圓錐的物體并不多見,所以這樣安排本部分內(nèi)容的教學(xué)。

  第一節(jié)課帶領(lǐng)學(xué)生做圓錐,畫圓——剪圓——再剪出圓心角不同的扇形——把兩條半徑無縫隙的粘住,放在桌上,一個圓錐成型了,如果你想粘上底面也可以,可是得知道底面的半徑。。ㄍ卣乖鯓又郎刃蔚陌霃胶蛨A心角的度數(shù),求出圓錐底面半徑的大。

  學(xué)生自己做出來的圓錐,對它的認(rèn)識肯定是比較深刻的——圓錐由一個底面和一個曲面圍城,底面是圓,側(cè)面展開是一個扇形,還有強(qiáng)調(diào)對圓錐的高的`理解。直角三角形沿一條直角邊所在的直線旋轉(zhuǎn)可以得到一個圓錐,讓學(xué)生試一試,想象一下。

  第一節(jié)課圓錐的認(rèn)識,因?yàn)榧由狭俗寣W(xué)生動手制作這一環(huán)節(jié),教學(xué)效果出奇的好,也為下一節(jié)課做好的鋪墊。

  圓錐的體積教學(xué)反思 13

  課前,我給每組學(xué)生準(zhǔn)備一盆沙和等底等高的空心圓柱體、圓錐體各一個。課堂上組織學(xué)生4人一組,利用手中的學(xué)具一起來探索圓柱和圓錐體積之間的關(guān)系。

  學(xué)生們有的將圓錐中裝滿沙倒入圓柱中;有的將圓柱中裝滿沙倒入圓錐中……很快推導(dǎo)出圓錐的.體積公式。在交流中,學(xué)生經(jīng)常把“等底等高”漏掉,作業(yè)時(shí)不注意“等底等高”條件,錯誤率也很高。

  反思:教師為了讓學(xué)生快速完成操作推導(dǎo)出公式,給學(xué)生準(zhǔn)備學(xué)具,只讓學(xué)生來體驗(yàn)得出結(jié)果的一部分操作。這樣做截?cái)嗔酥R的本源,學(xué)生忽視了對“等底等高”這一重要條件的認(rèn)識,因而對發(fā)現(xiàn)的規(guī)律認(rèn)識不全面,最終運(yùn)用規(guī)律去解決新問題時(shí)也錯誤百出。其實(shí),教師可以讓學(xué)生準(zhǔn)備“等底等高”的圓柱、圓錐;不等底不等高的圓柱、圓錐,這樣4組來裝沙操作。這樣的探究具有很強(qiáng)的選擇性、探索性和創(chuàng)造性,學(xué)生在不斷地測量、比較、猜測、驗(yàn)證中發(fā)現(xiàn)“只有圓柱與圓錐等底等高”,圓錐的體積才是圓柱體積的1/3。

  收獲:

 、偬骄炕顒訒r(shí),教師應(yīng)避免探究問題開放中“材料過少”的現(xiàn)象;

 、谔骄康膯栴}應(yīng)該在材料準(zhǔn)備上開放;

 、圩寣W(xué)生在充足、具有比較性的實(shí)驗(yàn)操作材料的基礎(chǔ)上達(dá)到全面探究的目的。

  圓錐的體積教學(xué)反思 14

  在評教評學(xué)中我所講的內(nèi)容是《圓錐的體積》,是學(xué)生在掌握了圓錐的認(rèn)識和圓柱的體積的基礎(chǔ)上進(jìn)行的。教學(xué)時(shí)我先讓學(xué)生回顧上一節(jié)學(xué)過的內(nèi)容,再讓學(xué)生大膽的猜想圓錐的體積公式。然后通過實(shí)驗(yàn)操作來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,或圓柱的體積是等底等高圓錐體積的3倍。

  并能運(yùn)用這個關(guān)系計(jì)算圓錐的體積。本節(jié)課我重點(diǎn)讓學(xué)生動手實(shí)驗(yàn)探究充分發(fā)揮學(xué)生小組合作的精神,大膽放手讓學(xué)生動手操作,實(shí)驗(yàn),并記錄下整個實(shí)驗(yàn)過程和發(fā)現(xiàn)的結(jié)果。在匯報(bào)時(shí),由于準(zhǔn)備的材料不同,范耀君同學(xué)的小組和郝子龍小組發(fā)生了爭論,也是本課要解決的重點(diǎn)問題,我及時(shí)抓住這一個環(huán)節(jié),引導(dǎo)學(xué)生得出必須在等底等高的條件下,從而推導(dǎo)出圓錐的體積計(jì)算公式,并懂得圓錐體和圓柱體之間的關(guān)系。

  在感知事物,獲取感性知識中,操作與思維緊密結(jié)合,加深對圓錐及體積的.認(rèn)識。遺憾的是學(xué)生動手實(shí)驗(yàn)時(shí),占據(jù)了較長的時(shí)間,以至練習(xí)的時(shí)間不多,沒有達(dá)到充分的鞏固。在以后的教學(xué)中要合理的安排和調(diào)控好課堂,使學(xué)生有充分發(fā)揮的空間。

  圓錐的體積教學(xué)反思 15

  圓錐的體積這一部分內(nèi)容是圓柱體積的遷移。在這節(jié)的設(shè)計(jì)上我主要是采用讓學(xué)生自主探究----動手實(shí)踐-----得出結(jié)論的模式進(jìn)行教學(xué)的。在操作的過程中,我充分的利用學(xué)具,先讓學(xué)生觀察手中的.圓柱與圓錐有什么關(guān)系,學(xué)生觀察到他們是等底等高的,我的目的就是為了深化學(xué)生對這一個條件的認(rèn)識。緊接著學(xué)生開始嘗試用學(xué)具研究圓柱與圓錐體積的關(guān)系。當(dāng)他們一切進(jìn)行的都很順利的時(shí)候,有一個小組突然提出用“圓柱向圓錐里倒水也是可以的!痹捯魟偮,另一個小組的學(xué)生馬上說道:“那樣很麻煩的,還得測量出圓柱的體積,計(jì)算出來!憋@然圓柱與圓錐之間的體積公式的推導(dǎo)過程已經(jīng)牢牢的印在腦海中,這就已經(jīng)達(dá)到了我所需要的效果了。

  記得有位老師曾經(jīng)說過:老師說了,學(xué)生記住了,沒有多久就忘了,只有動手操作了,學(xué)生記住了,形象的記憶就會產(chǎn)生了。讓我們多創(chuàng)造一些動手的機(jī)會給他們吧!

  圓錐的體積教學(xué)反思 16

  最近教學(xué)了《圓柱與圓錐》,內(nèi)容包括圓柱的表面積、圓柱的體積、圓錐的體積等,并參與實(shí)踐活動。從教材編寫的層面上講力圖體現(xiàn)以下特點(diǎn):

  1.結(jié)合具體情境和操作活動,引導(dǎo)學(xué)生經(jīng)歷“點(diǎn)動成線”“線動成面”“面動成體”的過程,體會“點(diǎn)、線、面、體”之間的聯(lián)系教材的第一個活動體現(xiàn)的內(nèi)容是“由平面圖形經(jīng)過旋轉(zhuǎn)形成幾何體”,這不僅是對幾何體形成過程的學(xué)習(xí),同時(shí)體會面和體的關(guān)系也是發(fā)展空間觀念的重要途徑,這也是教材將此課題目定為“面的旋轉(zhuǎn)”的原因。教材呈現(xiàn)了幾個生活中的具體情境,鼓勵學(xué)生進(jìn)行觀察,激活學(xué)生的生活經(jīng)驗(yàn),使學(xué)生經(jīng)歷“點(diǎn)動成線”“線動成面”“面動成體”的過程。在結(jié)合具體情境感受的基礎(chǔ)上,教材又設(shè)計(jì)了一個操作活動,通過快速旋轉(zhuǎn)小旗,引導(dǎo)學(xué)生結(jié)合空間想象體會立體圖形的形成過程,發(fā)展空間觀念。教材還提供了若干由面旋轉(zhuǎn)成體的練習(xí)。

  2.重視操作與思考、想象相結(jié)合,發(fā)展學(xué)生的空間觀念操作與思考、想象相結(jié)合是學(xué)生認(rèn)識圖形、探索圖形特征、發(fā)展空間觀念的重要途徑。在本單元中,教材重視學(xué)生操作活動的安排,在每個主題活動中都安排了操作活動,促進(jìn)學(xué)生理解數(shù)學(xué)知識、發(fā)展空間觀念。如“圓柱的表面積”的教學(xué)中,教材引導(dǎo)學(xué)生通過操作來說明圓柱的側(cè)面展開后是一個怎樣的圖形,并呈現(xiàn)了兩種操作的方法:一種是把圓柱形紙盒剪開,側(cè)面展開后是一個長方形;另一種是用一張長方形紙卷成圓柱形。再如本單元的最后專門安排了一個“用長方形紙卷圓柱形”的實(shí)踐活動,先讓學(xué)生用兩張完全一樣的長方形紙,一張橫著卷成一個圓柱形,另一張豎著卷成一個圓柱形,研究兩個圓柱體積的大。蝗缓蠼M織學(xué)生將兩張完全一樣的長方形紙裁開,把變化形狀后的紙?jiān)倬沓蓤A柱形,研究圓柱體積的變化,引導(dǎo)學(xué)生發(fā)現(xiàn)規(guī)律,深化對圓柱表面積、體積的認(rèn)識,并體會變量之間的關(guān)系。

  3.引導(dǎo)學(xué)生經(jīng)歷圓柱和圓錐體積計(jì)算方法的探索過程,體會類比等數(shù)學(xué)思想方法類比是一種重要的數(shù)學(xué)思想方法,是合情推理時(shí)常用的方法。教材重視類比、轉(zhuǎn)化等數(shù)學(xué)思想方法的滲透。在“圓柱的體積”教學(xué)時(shí),教材引導(dǎo)學(xué)生經(jīng)歷“類比猜想—驗(yàn)證說明”的探索過程。由于圓柱和長方體、正方體都是直柱體,而且長方體與正方體的體積都等于“底面積×高”,由此可以產(chǎn)生猜想:圓柱的體積計(jì)算方法也可能是“底面積×高”。在形成猜想后,教材再引導(dǎo)學(xué)生“驗(yàn)證說明”自己的猜想。在“圓錐的體積”教學(xué)時(shí),教材繼續(xù)滲透類比的思想,再次引導(dǎo)學(xué)生經(jīng)歷“類比猜想—驗(yàn)證說明”的探索過程。另外,教材還注意轉(zhuǎn)化、化曲為直等思想方法的滲透,如在驗(yàn)證說明“圓柱的體積=底面積×高”時(shí),引導(dǎo)學(xué)生把圓柱切割拼成近似的長方體進(jìn)行研究,體現(xiàn)了化曲為直的思想方法。

  4.在解決實(shí)際問題中鞏固所學(xué)知識,感受數(shù)學(xué)與生活的聯(lián)系圓柱和圓錐的知識在生活中有著較為廣泛的應(yīng)用,教材在編排練習(xí)時(shí),選擇了來自于現(xiàn)實(shí)生活的問題,引導(dǎo)學(xué)生靈活運(yùn)用所學(xué)知識解決問題。如學(xué)習(xí)“圓柱的表面積”時(shí),鼓勵學(xué)生計(jì)算薯片盒的包裝紙的'大小、通風(fēng)管需要的鐵皮的面積、壓路機(jī)壓路的面積等,由于實(shí)際情形變化比較多,需要學(xué)生根據(jù)實(shí)際情況靈活地選擇有關(guān)數(shù)據(jù)進(jìn)行計(jì)算。在學(xué)習(xí)“圓柱和圓錐的體積”后,教材鼓勵學(xué)生計(jì)算水桶的容積、圓木的體積、圓錐形小麥堆的體積、鉛錘的質(zhì)量等。這些實(shí)際問題的解決,將使學(xué)生鞏固對所學(xué)知識的理解,體會數(shù)學(xué)知識在生活中的廣泛應(yīng)用,豐富對現(xiàn)實(shí)空間的認(rèn)識,逐步形成學(xué)好數(shù)學(xué)的情感和態(tài)度。

  從教學(xué)層面上講,我覺得要注意這么幾點(diǎn):

  1、讓學(xué)生經(jīng)歷知識的生成,理解公式的由來。

  2、熟記相關(guān)公式和一些常見數(shù)據(jù),提高計(jì)算的正確率和速度。

  3、注意知識的拓展應(yīng)用,體現(xiàn)數(shù)學(xué)的應(yīng)用價(jià)值,發(fā)展學(xué)生的思維能力。

  圓錐的體積教學(xué)反思 17

  《圓錐的體積》是在掌握了圓錐的認(rèn)識和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)時(shí)讓學(xué)生通過實(shí)驗(yàn)來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體積等于和它等底等高的圓柱體積的三分之一,并能運(yùn)用這個關(guān)系計(jì)算圓錐的體積,讓學(xué)生從感性認(rèn)識上升到理性認(rèn)識。學(xué)生感到非常簡單易懂,因此學(xué)起來并不感到困難。

  新課一開始,我就讓學(xué)生觀察,先猜測圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。教師從展示實(shí)物圖形到空間圖形,采用對比的方法,加深學(xué)生對形體的認(rèn)識。然后讓學(xué)生動手實(shí)驗(yàn),以小組合作學(xué)習(xí)的方式讓每個學(xué)生都能參與到探究中去,學(xué)生在實(shí)驗(yàn)中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實(shí)際的生活問題,起到鞏固深化知識點(diǎn)的作用。

  由于本節(jié)課活動單設(shè)計(jì)合理,問題比較精細(xì),學(xué)生能在小組合作學(xué)習(xí)的過程中,自主設(shè)計(jì)實(shí)驗(yàn)過程,從而選擇合適的學(xué)具來做實(shí)驗(yàn),在比較、分析中得出圓錐的體積公式,取得了較好的效果。具體分析如下:

  一、收獲:

  1、探究圓錐體積計(jì)算方法的學(xué)習(xí)過程,學(xué)生不再是實(shí)驗(yàn)演示的被動的觀看者,而是參與操作的主動探索者,真正成為學(xué)習(xí)的主人。在整個學(xué)習(xí)過程中,學(xué)生獲得的不僅是新活的數(shù)學(xué)知識,同時(shí)也獲得了更多的是探究學(xué)習(xí)的科學(xué)方法,探究成功的喜悅以及探究失敗的深刻反思,在這樣的學(xué)習(xí)中,學(xué)生會逐步變的有思想、會思考、會逐漸發(fā)現(xiàn)自身的價(jià)值。

  2、每個學(xué)生都經(jīng)歷“猜想估計(jì)---設(shè)計(jì)實(shí)驗(yàn)驗(yàn)證---發(fā)現(xiàn)算法”的自主探究學(xué)習(xí)的過程,在教學(xué)案的引導(dǎo)下學(xué)生能在小組合作學(xué)習(xí)的過程中,自主設(shè)計(jì)實(shí)驗(yàn)過程,從而選擇合適的學(xué)具來做實(shí)驗(yàn),在比較、分析中得出只有等底等高的圓柱和圓錐才有這樣的關(guān)系,從而加深了等低等高的印象,進(jìn)而得出圓錐的體積公式,讓每個學(xué)生都經(jīng)歷一次探究學(xué)習(xí)的過程。

  3、學(xué)生在展示中獲得了成功的'喜悅,體驗(yàn)了探究的樂趣。

  自采用“活動單導(dǎo)學(xué)”教學(xué)模式以來,學(xué)生敢說、愿說、樂說,學(xué)生的語言能力及敘述問題的條理性、層次性有了明顯的提高。在本節(jié)課中學(xué)生能夠根據(jù)教學(xué)案中的問題進(jìn)行思考、討論,從而大膽展示,能夠把動手實(shí)踐和語言表達(dá)結(jié)合在一起,從而清楚地展示了圓錐的體積探究的全過程。這點(diǎn)值得充分的肯定。

  二、不足:

  1、。實(shí)驗(yàn)教材具有現(xiàn)成性,學(xué)習(xí)用具具有一定的實(shí)際限制,使學(xué)生探索思考的空間較小,不利于學(xué)生思維的充分發(fā)展。

  2、學(xué)生在實(shí)驗(yàn)時(shí)要求不高,導(dǎo)致存在著誤差。實(shí)驗(yàn)失敗。

  3、學(xué)習(xí)困難的學(xué)生對于一些需要靈活判斷的題目還是不能有較好的把握,從而也可以看出,他們對于該體積公式的理解也只是停留在了較簡單的和較低的層面。在與圓柱的體積的聯(lián)系中,思維的靈活度不夠。后來也感覺他們有出現(xiàn)一點(diǎn)點(diǎn)厭學(xué)的情緒,這是因?yàn)樵谧詈笏麄儼炎约寒?dāng)成了傾聽者。缺少了一種主動思維和思考的愿望。

  三、 措施:

  1、讓學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣,做題時(shí)認(rèn)真仔細(xì)。

  2、鼓勵學(xué)生利用課余時(shí)間間動手做一些學(xué)具,不僅會增強(qiáng)學(xué)生的動手操作能力,而且可以用到學(xué)習(xí)中去。

  3、教師要認(rèn)真的去設(shè)計(jì)教學(xué)案,把每一個問題設(shè)計(jì)精細(xì),小組合作學(xué)習(xí)才能真正發(fā)揮優(yōu)勢。

  圓錐的體積教學(xué)反思 18

  讓學(xué)生真正成為活動的主動者,才能讓學(xué)生真正的感受自己是學(xué)習(xí)的主人。在圖形的教學(xué)中,根據(jù)學(xué)習(xí)內(nèi)容的特點(diǎn),注重操作,注重實(shí)踐,可以讓教學(xué)達(dá)到最高效。

  《圓錐》這節(jié)課,其教學(xué)目標(biāo)是:

  1)、認(rèn)識圓錐,了解圓錐的底面、側(cè)面和高;

  2)、掌握圓錐高的測量方法;

  3)、圓錐體積公式的推導(dǎo);

  4)、通過例一例二使學(xué)生會應(yīng)用圓錐公式進(jìn)行簡單的計(jì)算。

  教學(xué)中,學(xué)生通過實(shí)際觸摸,動手測量、探索推導(dǎo)等活動,前三個教學(xué)目標(biāo)在輕松快樂的氛圍中順利完成。在公式應(yīng)用這個環(huán)節(jié),考慮到學(xué)生已經(jīng)預(yù)習(xí)過例題,就把例二教學(xué)做了改動給出一圓錐形麥堆,底面直徑是20分米,高是14分米,每立方米小麥重0.375千克,求這堆小麥重多少千克?讓學(xué)生自主練習(xí),本以為應(yīng)用公式很快就能解決的一個問題,可學(xué)生算了好長時(shí)間還沒有完成。原來我在改動數(shù)字時(shí)沒有考慮到圓錐體積公式的1/3和3.14給出的直徑和高與1/3都不能約分,使本應(yīng)該鞏固公式應(yīng)用的目標(biāo)辯詞了復(fù)雜的小數(shù)計(jì)算,浪費(fèi)了大量的時(shí)間,課后習(xí)題沒有處理完就匆匆結(jié)束了這節(jié)課。課后反思數(shù)學(xué)既活又嚴(yán)謹(jǐn),看似一個簡單數(shù)字的出示也要付出周密的'策劃。一節(jié)簡單流暢的好課,并不是隨手拈來的,只要用心的去思考,統(tǒng)籌安排,關(guān)注到每個細(xì)節(jié)才能得到。

  教學(xué)需要學(xué)習(xí),教學(xué)更需要反思,在反思中進(jìn)步,在反思中提高。

  圓錐的體積教學(xué)反思 19

  《圓錐的體積》是人教版小學(xué)數(shù)學(xué)六年級下冊第三單元的內(nèi)容之一,它是學(xué)生在學(xué)習(xí)了圓柱的認(rèn)識,圓柱的表面積,圓柱的體積,圓錐的認(rèn)識基礎(chǔ)之上,學(xué)習(xí)的。這一堂課,我有幸邀請了三位同伴來聽我的課,給我一定的指導(dǎo),我也從中發(fā)現(xiàn)了自己的一些問題。

  這節(jié)課中,我注重學(xué)生操作的過程,我的設(shè)想就是要學(xué)生經(jīng)歷這個過程。首先要讓學(xué)生觀察,我手中的學(xué)具,圓錐和圓柱有什么共同點(diǎn)?學(xué)生發(fā)現(xiàn),它們是等底等高的。接下來,我提出問題,它們誰的體積大?但是關(guān)于這個問題,學(xué)生的回答,基本上沒有答到點(diǎn)子上,有學(xué)生說,因?yàn)檎l的表面積大,所以體積大。本來我預(yù)設(shè)中,很容易觀察發(fā)現(xiàn)的體積對比,但是,因?yàn)槲业奶釂,它們誰的體積大,為什么,這個為什么,讓學(xué)生絞盡腦汁去想,去套一些內(nèi)容。后來我反思,我應(yīng)該先把圓錐放入圓柱里,讓學(xué)生直接說出,圓錐的體積,比等底等高的圓柱體積小;蛘哂迷囼(yàn)的方法,把圓錐的水,倒入圓柱,讓學(xué)生直接得到體積比大小的結(jié)論。接下來,先讓學(xué)生說說方法如何驗(yàn)證圓錐和等底等高圓柱體積之間的關(guān)系是什么?根據(jù)以前學(xué)的圓柱體積,學(xué)生得出了三個方法,排水法,實(shí)驗(yàn)法,測量體積法。根據(jù)一些情況,排水法無法實(shí)現(xiàn)。學(xué)具是空心的,會漂浮在水面,其次,學(xué)具有縫隙,水會滲進(jìn)去。所以排水法,只是作為學(xué)生了解的方法,但并不實(shí)踐。在試驗(yàn)環(huán)節(jié),我沒有說清楚具體的操作要求,導(dǎo)致個別學(xué)生在操作中,用圓柱的水,倒進(jìn)圓錐里,這樣難以得出正確的結(jié)論。大多數(shù)學(xué)生,聽清了我的要求,幾杯圓錐的水,可以倒入圓柱。學(xué)生很容易就得出了結(jié)論。我讓學(xué)生在黑板上小組演示倒水的過程,同時(shí),也讓其他學(xué)生一起數(shù)杯數(shù),也是加深試驗(yàn)結(jié)果。我多讓幾個學(xué)生說一說,圓錐和等底等高圓柱體積之間的關(guān)系,用了關(guān)聯(lián)詞,因?yàn)?..所以...我也引導(dǎo)學(xué)生,多次強(qiáng)調(diào),這樣的關(guān)系一定有一個前提,圓錐和圓柱是等底等高的。為了驗(yàn)證這樣的體積關(guān)系,我抽學(xué)生上講臺,利用測量法,來驗(yàn)證。當(dāng)然,我在最后也強(qiáng)調(diào),試驗(yàn)只是一種手段,得出的結(jié)論可能是不精確的.,但是數(shù)學(xué)家驗(yàn)證了這一點(diǎn),所以大家可以直接用這條結(jié)論。

  美中不足就是習(xí)題沒有時(shí)間去練習(xí)。學(xué)生都有最佳遺忘曲線,如果沒有練習(xí)題,學(xué)生的知識沒有在最佳的時(shí)間去鞏固去檢測,對于真正理解知識,鞏固知識是不利的。我設(shè)計(jì)的習(xí)題,都是書上的,還是缺乏一點(diǎn)趣味性、層次性。

  總之,這節(jié)課,不是很完美,有很多遺憾。以后的幾何課中,我還是會多讓學(xué)生歷經(jīng)操作的過程,學(xué)生在操作中觀察、歸納、驗(yàn)證、總結(jié)。操作前,一定要講清楚操作要求,還要預(yù)設(shè)更多可能會出現(xiàn)的

  情況,時(shí)間的把控要再精確一點(diǎn),自己的教學(xué)語言,還更規(guī)范一些,多用一些激勵語,以后的教學(xué)設(shè)計(jì),盡量多考慮如何體現(xiàn)趣味性這個問題。

  圓錐的體積教學(xué)反思 20

  課前我安排學(xué)生收集、整理生活中應(yīng)用圓錐的實(shí)例和信息資料。教學(xué)時(shí)我首先列舉生活中大量的圓錐實(shí)物,在學(xué)生觀察思考這些物體形狀的共同特點(diǎn),并從實(shí)物中抽象出幾何形體的基礎(chǔ)上引入。再引導(dǎo)學(xué)生對照模型和圖形,互說圓錐的特征,加深對圓錐的`認(rèn)識。感受幾何知識在生活中的應(yīng)用,同時(shí)提高學(xué)生運(yùn)用數(shù)學(xué)為生活服務(wù)的意識和能力。

  在本課中,我無論從問題的引入,圓錐概念的定義,高的尋找及測量方法的探索,我都給予學(xué)生充足的時(shí)間進(jìn)行嘗試、研究和討論,讓學(xué)生以不同的方式進(jìn)行合作、交流,這樣的過程,不僅提供了學(xué)生自主學(xué)習(xí)的機(jī)會,也提高了學(xué)生自主參與學(xué)習(xí)的意識和信心,大家積極發(fā)言,爭先操作,參與率很高。

  我積極地創(chuàng)造機(jī)會讓學(xué)生自己去學(xué)習(xí)或者去探究問題.通過“看一看”,“摸一摸”,“比一比”,“指一指”,“說一說”,“猜一猜”等問題情境,讓學(xué)生親身感受數(shù)學(xué),在“找”中學(xué),在“測”中學(xué),在“思”中學(xué),培養(yǎng)學(xué)生動手操作能力、直觀思維和抽象思維能力,使數(shù)學(xué)課堂教學(xué)“動”起來、 “活”起來,讓學(xué)生在“做”中學(xué),使數(shù)學(xué)課堂煥發(fā)出生命活力。

【圓錐的體積教學(xué)反思】相關(guān)文章:

圓錐的體積教學(xué)反思05-14

《圓錐的體積》教學(xué)反思05-12

《圓錐的體積》教學(xué)反思02-10

圓錐的體積教學(xué)反思05-14

圓錐的體積》教學(xué)反思03-20

《圓錐的體積》的教學(xué)反思07-08

《圓錐的體積》教學(xué)反思優(yōu)秀10-18

圓錐的體積教學(xué)反思通用05-22

數(shù)學(xué)《圓錐的體積》的教學(xué)反思07-08

關(guān)于圓錐的體積的教學(xué)反思07-16