毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

圓柱的體積教學反思

時間:2025-01-04 07:47:43 教學反思 我要投稿

通用版圓柱的體積教學反思

  作為一名人民老師,我們要在課堂教學中快速成長,通過教學反思可以快速積累我們的教學經(jīng)驗,我們該怎么去寫教學反思呢?下面是小編為大家收集的通用版圓柱的體積教學反思,歡迎閱讀,希望大家能夠喜歡。

通用版圓柱的體積教學反思

通用版圓柱的體積教學反思1

  一、導入時,要突破教材,有所創(chuàng)新圓柱的體積的導入,課本是先讓學生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學生們猜一猜。猜想計算方法固然有好處,但要讓學生馬上做實驗理解圓柱體積計算公式的推導過程,我覺得這樣教學引入,學生的思維跳躍得太快,銜接性不強,不利于學生理解和掌握實驗的用意,課堂效果就會明顯不佳。我認為,不妨在回憶了長方體、正方體體積計算方法之后,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學生的思維走向正確的方向,這時教師的引導才是行之有效的。

  二、新課時,要實現(xiàn)人人參與,主動學習學生進行數(shù)學探究時,教師應給予充分的思考空間,創(chuàng)設實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,由于學校教學條件差,沒有更多的學具提供給學生,只是由教師示范演示推導過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉化成一個近似的長方體;接著教師指導學生悟出這個長方體的長相當于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。學生沒有親身參與操作,就缺乏情感空間感覺的體驗,而且這部分又是小學階段立體圖形的教學難點,學生得不到充分的思考空間,也不利于教師營造思考的'環(huán)境,不便于學生思考如何利用已知圖形體積和教學思想去解決這一問題。學生缺乏行為、認知的投入和積極的情感投入,所以,課堂效果差就可想而知了。

  三、練習時,要形式多樣,層層遞進

  例題“練一練”中的題目都比較淺顯,學生還能容易掌握,但遇到多轉幾個彎的題目就束手無策了。所以,為了讓學生能熟練地掌握計算圓柱的體積,教師在設計練習時要多動腦,花心思去考慮怎樣才能讓學生用最短的時間完成不同類型的題目。

通用版圓柱的體積教學反思2

  《圓柱的體積》是在學生已經(jīng)學會計算長方體、正方體的體積,并且掌握圓柱基本特征的基礎上,引導學生探索并掌握圓柱的體積公式。通過教材教學學習后,下面我從教學過程、教學策略、教學技能等方面談談自己的一些反思。

  一、在教學過程的設計方面

  1、導入時,力求突破教材,有所創(chuàng)新

  圓柱的體積的導入,課本是先讓學生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計算”,再接著馬上提問:“圓柱的體積怎樣計算呢?”讓學生們猜一猜。猜想計算方法固然有好處,但要讓學生馬上做實驗理解圓柱體積計算公式的推導過程,我覺得這樣教學引入,學生的思維跳躍得太快,銜接性不強,不利于學生理解和掌握實驗的用意,課堂效果就會明顯不佳。于是我設計時不妨在回憶了長方體、正方體體積計算方法之后,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學生的思維走向正確的方向,這時教師的引導才是行之有效的。不過應該注意時間的控制,不能花費太多的時間。

  2、新課時,要實現(xiàn)人人參與,主動學習

  學生進行數(shù)學探究時,應給予充分的思考空間,創(chuàng)設實踐操作的條件,營造出思考的環(huán)境氛圍。在推導圓柱體積公式過程時,我讓學生經(jīng)歷先想—觀察—動手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉化成一個近似的長方體;接著讓學生小組交流長方體的長和寬與圓柱的各部分有什么關系?圓柱的體積怎樣計算的道理,從而推導出圓柱體積的計算公式。這樣學生親身參與操作,有了空間感覺的體驗,也有了充分的思考空間。這樣設計我覺得能突破難點,課堂效果很好。

  3、練習時,形式多樣,層層遞進

  例題“練一練”中的題目都比較淺顯,學生還能容易掌握,但遇到多轉幾個彎的題目就束手無策了。所以,為了讓學生能熟練地掌握計算圓柱的體積,我在設計練習時動了一番腦,花心思去考慮怎樣才能讓學生用最短的時間完成不同類型的題目。通過反思,我概括出五種類型:

  a、已知圓柱底面積(s)和高(h),計算圓柱體積可以應用這一公式:V=sh。

  b、已知圓柱底面半徑(r)和高(h),計算圓柱體積可以應用這一公式:V=πr2h。

  c、已知圓柱底面直徑(d)和高(h),計算圓柱體積可以應用這一公式:V=π(d/2)2h。

  d、已知圓柱底面周長(c)和高(h),計算圓柱體積可以應用這一公式:V=π(c÷π÷2)2h。

  e、已知圓柱側面積(s側)和高(h),計算圓柱體積可以應用這一公式:V=π(s側÷h÷π÷2)2h。

  因為是第一課時所以在鞏固練習中,只要從前四種類型去考慮,做到面面俱到,逐層深入,由易到難,使學生真正掌握好計算圓柱體積的方法另外,還設計了解決生活中的問題,讓學生能學以致用解決生活中的問題。

  二、在教學策略方面

  我采用多媒體的直觀教具相結合的手段,在圓柱體積公式推導過程中指導學生充分利用手中的學具、教具,學生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流、總結歸納等過程,發(fā)現(xiàn)了教學問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學基本知識,從而促進了學生的思維發(fā)展。而在鞏固練習這一環(huán)節(jié),我用多媒體發(fā)揮它大容量、節(jié)省時間的優(yōu)點。

  三、在教學技能方面

  學生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的'答案也不是老師告訴的,而是學生在自己艱苦的學習過程中發(fā)現(xiàn)并從學生的口里說出來的,這樣的知識具有個人意義,理解更深刻。但是我覺得這個引導的過程需要教師有認真準備,隨時能解決課堂上可能出現(xiàn)的一些問題。傳統(tǒng)的教學只關注教給學生多少知識,把學生當成知識的“容器”。學生的學習只是被動地接受、記憶、模仿,往往學生只知其然而不知其所以然,其思維根本得不到發(fā)展。而我在本課創(chuàng)設了豐富的教學情景。

  四、教學要達到三個目的

  一是認識等底等高的含義,便于判斷圓柱可以轉化成與它等底等高的長方體。

  二是從長方體與正方體等底等高,體積也相等的事實,引發(fā)等底等高的圓柱與長方體的體積也相等的猜想,形成把圓柱轉化成長方體的活動心向。

  三是復習長方體、正方體的體積公式,圓柱的體積最終也要這樣計算。

通用版圓柱的體積教學反思3

  在教學圓柱的體積時,我采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。通過這節(jié)

  課的教學,我覺得有以下幾個方面值得探討:

  一、聯(lián)系舊知,導入新知。

  圓柱的體積的導入,在回憶了長方體、正方體體積計算方法,并強調長方體、正方體的體積都可以用底面積乘高,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想:“圓柱體是否可以轉化成我們學過的圖形呢?”激發(fā)學生好奇心,獨立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導入新知,思維過度自然,易接受新知。

  二、動手操作,探索新知。

  學生在探究新知時,教師要給予充分的思考空間,創(chuàng)設實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,學生親身參與操作,先用小刀把一塊月餅切成一個圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,圓柱體就轉化成一個近似的長方體。找一找:這個長方體的長相當于圓柱的什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導出圓柱體積的計算公式。

  三、課件展示,加深理解。

  為了直觀、形象,讓學生觀看課件:圓轉化成近似長方形的過程,使學生很容易猜想出圓柱體也可以轉化成近似的長方體來得出體積公式。在推導圓柱體積公式的過程中,要求學生想象:“如果把圓柱的'底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學生雖然能說出“拼成的物體越來越接近長方體!钡,到底拼成的圖形怎樣更接近長方體?演示動畫后,學生不僅對這個切拼過程一目了然,同時又加深理解了圓柱體轉化成近似長方體的轉化方法。

  四、分層練習,發(fā)散思維。

  為了培養(yǎng)學生解題的靈活性,進行分層練習,拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。

  但是不成功的地方也有,如學生在操作時有些學生拼的不是長方體,而是其他的形狀,這里由于是上公開課的原因就沒有有針對性的講解,只做到了多數(shù)學生的指導而沒有做到面向全體學生,這點我覺得在課堂上很難做到。

  總之,通過這次的國培學習,使我的思想認識和課堂技能都有了新的認識,感謝國培!

  教材作為教學的憑借與依據(jù),只不過是編者對學科知識、國家要求與學生進行整和思考的結晶。但由于受時間與地域的影響,我們在執(zhí)行教材時不能把它作為一種“枷鎖”,而應作為“跳板”——編者意圖與學生實際的“跳板”。因此,教學時,我們要精心研究教材,揣摩編者意圖、考慮學生實際,創(chuàng)造性地利用教材。

通用版圓柱的體積教學反思4

  今天教學“圓柱體的體積”,接受昨天學生提出的只學不會的學習方式,在黑板上分了兩個區(qū)域,一個復習區(qū)域:長方體的體積怎樣計算?圓的面積計算公式是怎樣推導出來的呢?重點研究區(qū)域:圓柱體的體積怎樣計算?

  面對復習的問題,學生回答的很好,長方體的體積=長×寬×高,當我指著長方體的底面時,學生就說,長方體的體積=底面積×高。學生對于圓的面積計算公式的的推導記憶猶新,這是很值得我高興的。面對本課的重點解決問題,我滿懷信心(兩個復習問題的鋪墊,學生會首先想起來把圓柱體按照圓的面積推導過程一樣,來等分圓柱體),開始引導學生獨立思考,怎樣計算圓柱體的體積?正當大家苦思冥想的時候,一只手舉得高高的:老師,我想出來一種。又是他,每次回答問題總是第一個舉手,把別人的風頭都給搶去了,他是一個愛表現(xiàn)的學生,為了不影響其他學生思考,每次我總是壓一壓他的積極性。給大家留一點思考的時間,等一會再說你的方法,誰知道這個積極分子不容我把話說完,已經(jīng)拿著自己的圓柱體跑到講臺上了,(哎,讓我怎么評價他呢,耐不住性子啊,再穩(wěn)重一些多好。浚何沂沁@樣想的,這是一個圓柱體的生日蛋糕,我想把它橫著切成一個個圓片,分給你們吃。霎時間,下面的同學都笑了,過了一會,一個學生提問:切蛋糕,和圓柱體的體積有什么關系?有啊,這個圓柱體蛋糕的體積就是每一個圓片的面積乘上圓片的個數(shù)。這樣解釋完,下面的學生有的在笑,有的在議論,還有的再思考。我想想了,這是我該出手的時候了:你給大家解釋一下,圓片是什么?圓片的個數(shù)又是什么?圓片就是圓柱的底面積,圓片的'個數(shù)就是圓柱的高。

  這種推導圓柱體體積的計算方法,是出乎我意料之外的,因為,解決問題前,已經(jīng)復習了長方體體積計算方法與圓的面積的推導方法,都是為把圓柱體進行等分轉化成長方體體積來推導做鋪墊的。誰曾向,這種用堆的過程來說明“底面積×高”計算圓柱體體積的道理,實際是積分思想,這是要到中學才學習的,學生不好理解的,竟然跑到預想方法之前了。真是計劃不如變化快啊。課堂上的精彩總是不期而至啊。試想,如果,剛開始他舉手,我就像以往一樣”壓一壓他,讓他和其他學生同步思考,說不定,這個想法在他腦海里轉瞬即逝,那么這個精彩的火花就不會在課堂上呈現(xiàn)。

  由此感悟到,課堂上,要給學生即興發(fā)言的機會,及時的捕捉學生的思維靈感,精彩就會不期而至!秷A柱體的體積》這一課我學到了很多東西。

通用版圓柱的體積教學反思5

  在教學圓柱的體積時,我采用新的教學理念,讓學生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。通過這節(jié)課的教學,我覺得成功之處有以下幾個方面:

  一、聯(lián)系舊知,導入新知。

  圓柱的體積的導入,在回憶了長方體、正方體體積計算方法,并強調長方體、正方體的體積都可以用底面積乘高,接著復習一下圓面積計算公式的推導過程,這樣有助于學生猜想:“圓柱體是否可以轉化成我們學過的圖形呢?”激發(fā)學生好奇心,獨立思考問題,探索問題的愿望。這樣聯(lián)系舊知,導入新知,思維過度自然,易接受新知。

  二、動手操作,探索新知。

  學生在探究新知時,教師要給予充分的思考空間,創(chuàng)設實踐操作的條件,營造出思考的環(huán)境氛圍。教學“圓柱的體積”時,學生親身參與操作,先用小刀把一根火腿腸切成一個圓柱體把圓柱的底面分成若干份(例如,分成12等份),然后把圓柱切開,再拼起來,()圓柱體就轉化成一個近似的長方體。找一找:這個長方體的長相當于圓柱的`什么,寬是圓柱的什么,高是圓柱的什么。圓柱的體積就是長方體的體積,從而推導出圓柱體積的計算公式。

  三、課件展示,加深理解。

  為了直觀、形象,讓學生觀看課件:圓轉化成近似長方形的過程,使學生很容易猜想出圓柱體也可以轉化成近似的長方體來得出體積公式。在推導圓柱體積公式的過程中,要求學生想象:“如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?”學生雖然能說出“拼成的物體越來越接近長方體。”但是,到底拼成的圖形怎樣更接近長方體?演示動畫后,學生不僅對這個切拼過程一目了然,同時又加深理解了圓柱體轉化成近似長方體的轉化方法。

  四、分層練習,發(fā)散思維。

  為了培養(yǎng)學生解題的靈活性,進行分層練習,拓展知識,發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。

通用版圓柱的體積教學反思6

  “圓柱體積計算公式的推導”是在同學已經(jīng)學習了“圓的面積計算”、“長方體的體積”、“圓柱的認識”等相關的形體知識的基礎上教學的。同時又是為同學今后進一步學習其他形體知識做好充沛準備的一堂課。

  課始,教師創(chuàng)設問題情境,不時地引導同學運用已有的生活經(jīng)驗和舊知,探索和解決實際問題,并制造認知抵觸,形成了“任務驅動”的探究氛圍。

  展開局部,教師為同學提供了動手操作、觀察以和交流討論的平臺,讓同學在體驗和探索空間與圖形的過程中不時積累幾何知識,以協(xié)助同學理解實際的三維世界,逐步發(fā)展其空間觀念。

  練習布置注重密切聯(lián)系生活實際,讓同學運用自身剛推導的'圓柱體積計算公式解決引入環(huán)節(jié)中的兩個問題,使其認識數(shù)學的價值,切實體驗到數(shù)學存在于自身的身邊,數(shù)學對于了解周圍世界和解決實際問題是非常有作用的。

  教師無論是導入環(huán)節(jié),還是新課局部都恰當?shù)匾龑瑢W進行知識遷移,充沛地讓同學感受和體驗“轉化”這一解決數(shù)學問題重要的思想方法。同時,還合理地運用了多媒體技術,形象生動地展示了“分成的扇形越多,拼成的立體圖形就越接近于長方體”,有機地滲透了極限的初步思想。

通用版圓柱的體積教學反思7

  今天上了《圓柱的體積》一課,覺得比以前上得輕松,回到辦公室細細品味上課的過程,頗有幾分感受:

  在本課中,當學生面對新的問題情境—“圓柱的體積該怎么求?”時,能從圓的面積公式的推導,根據(jù)已有的知識作出“轉化”的判斷。當然,由于知識經(jīng)驗的不足,表達得不是很清晰。但學生的這些都是有價值的。這些“猜想”閃爍著學生智慧的火花,折射出學生的創(chuàng)造精神。在此基礎上,讓學生以小組合作方式,利用已切開的圓柱體教具進行驗證,在討論聲中,學生獲得了真知?梢姡處熞Wo學生的創(chuàng)造熱情并給以科學探究方法的.引導,以發(fā)展學生的創(chuàng)造性。在這點上,我對學生的探究精神給予了充分的肯定。這節(jié)課再次讓我知道了,相信學生的創(chuàng)造力是我們設計教法的前提。

  在引導學生解決“粉筆的體積”等這個問題時,課堂上有學生把它當作圓柱體積來求,提出:“誤差這么小,是可行的。”而且那位學生要求的僅是一個大約的數(shù)值,所以用這種方法可以。但這種計算粉筆體積的方法可行嗎?如果我不提出疑義,也不加以說明,就會給學生造成“圓臺的體積可以用這兩種方法來計算”的錯誤認識,對學生的后續(xù)學習會造成一些不利的影響。我就這個問題引導學生進一步探索,使學生發(fā)現(xiàn)平面圖形中的一些規(guī)律照搬到立體圖形中有時會行不通,懂得知識并非一成不變的,有其發(fā)展性,初步理解三維空間物體與二維平面圖形的聯(lián)系與區(qū)別,為進一步學習積累經(jīng)驗。學生在探索過程中,雖不能很快獲得結論性的知識,但卻嘗試了科學探究的方法,形成良好的思維品質,增進了情感體驗。這樣,既保護了學生的創(chuàng)造性,又保證了教學內(nèi)容的科學性,就學生的發(fā)展而言,誰能說讓學生經(jīng)歷這樣探究的過程,不也比獲得現(xiàn)成的結論更富有積極的意義?

通用版圓柱的體積教學反思8

  “圓柱的體積”一課是在學生已經(jīng)學習了“正方體的體積”和“長方體的體積”“圓柱的認識”“圓柱的表面積”等相關知識的基礎上進行教學的。同時又是為學生今后進一步學習其他立體圖形的有關知識做好充分準備的一堂課。結合本課的教學實際情況,反思如下:

  一、創(chuàng)設問題情境。

  上課開始提出“我們認識了哪些立體圖形?它們的體積怎樣求?現(xiàn)在我想知道這塊橡皮泥的體積或這個瓶子的容積,該怎么辦?”學生提出“把橡皮泥捏成長方體的形狀,把瓶子里裝滿水,再倒入一個長方體的盒子里,就可以求出來瓶子的容積了”。這樣不斷地引導學生運用已有的生活經(jīng)驗和舊知,探索和解決實際問題,并制造認知沖突,形成了“任務驅動”的探究氛圍。

  二、知識過程,讓學生在參與中學習。

  首先讓學生大膽猜想,圓柱體的體積可能等于什么?大部分學生猜測圓柱體的體積可能等于底面積×高。然后小組同學想辦法加以驗證。有的組將圓柱體橡皮泥捏成長方體,計算出了橡皮泥的體積。有的組通過圓的面積公式推導,將圓柱體分成若干等分后再拼成長方體。通過計算長方體的體積推導出圓柱體的體積。然后讓學生比較圓柱體的底面積、高與長方體的底面積、高之間的關系,使學生確信自己的`猜想是正確的。

  三、在討論交流中學。

  通過實驗驗證之后,讓學生看書自學,按照書中介紹的方法自己推導出圓柱體的體積公式。小組進行如下討論:

  (1)拼成的近似長方體體積與原來的圓柱體積有什么關系?

 。ǎ玻┢闯傻慕崎L方體的底面積與原來的圓柱底面積有什么關系?

 。ǎ常┢闯傻慕崎L方體的高與原來的圓柱高有什么關系?這樣不僅為學生提供動手操作、觀察以及交流討論的平臺,而且還發(fā)揮了學生的主動性。

  在這一環(huán)節(jié)中我處理的有點倉促,沒有給所有學生充分的思考和探究的時間。如能抓住這一契機讓全體學生都去操作、思考、探究可能會更有利于學生理解和掌握公式。在今后的教學中我要特別關注學生的學習過程,要根據(jù)教學要求,優(yōu)化課堂教學的需要對教材進行適當?shù)募庸ぬ幚怼?/p>

【圓柱的體積教學反思】相關文章:

圓柱的體積教學反思05-16

《圓柱的體積》教學反思07-08

圓柱的體積的教學反思06-07

《圓柱的體積》教學反思09-15

圓柱的體積的教學反思02-27

圓柱的體積教學反思07-12

《圓柱的體積》教學反思(15篇)03-01

《圓柱的體積》教學反思(精選38篇)02-18

《圓柱的體積》教學反思(精選14篇)03-15

《圓柱體積》教學反思09-10