毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

初三上冊(cè)數(shù)學(xué)解一元二次方程教學(xué)計(jì)劃

時(shí)間:2021-06-13 18:48:47 教學(xué)計(jì)劃 我要投稿

初三上冊(cè)數(shù)學(xué)解一元二次方程教學(xué)計(jì)劃


初三上冊(cè)數(shù)學(xué)解一元二次方程教學(xué)計(jì)劃

  教學(xué)目標(biāo)

  (1)會(huì)用公式法解一元二次方程;

  (2)經(jīng)歷求根公式的發(fā)現(xiàn)和探究過(guò)程,提高學(xué)生觀察能力、分析能力以及邏輯思維能力;

  (3)滲透化歸思想,領(lǐng)悟配方法,感受數(shù)學(xué)的內(nèi)在美.

  教學(xué)重點(diǎn)

  知識(shí)層面:公式的推導(dǎo)和用公式法解一元二次方程;

  能力層面:以求根公式的發(fā)現(xiàn)和探究為載體,滲透化歸的數(shù)學(xué)思想方法.

  教學(xué)難點(diǎn):求根公式的推導(dǎo).

  總體設(shè)計(jì)思路:

  以舊知識(shí)為起點(diǎn),問(wèn)題為主線,以教師指導(dǎo)下學(xué)生自主探究為基本方式,突出數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系與探究知識(shí)的方法,發(fā)展學(xué)生的理性思維.

  教學(xué)過(guò)程

 。ㄒ唬┮耘f引新,提出問(wèn)題

  解下列一元二次方程:(學(xué)生選兩題做)

  (1)x2+4x+2=0 ; (2)3x2-6x+1=0;

  (3)4x2-16x+17=0 ; (4)3x2+4x+7=0.

  然后讓學(xué)生仔細(xì)觀察四題的解答過(guò)程,由此發(fā)現(xiàn)有什么相同之處,有什么不同之處?

  接著再改變上面每題的其中的一個(gè)系數(shù),得到新的四個(gè)方程:(學(xué)生不做,思考其解題過(guò)程)

  (1)3x2+4x+2=0; (2)3x2-2x+1=0;

  (3)4x2-16x-3=0 ; (4)3x2+x+7=0.

  思考:新的四題與原題的解題過(guò)程會(huì)發(fā)生什么變化?

  設(shè)計(jì)意圖: 1.復(fù)習(xí)鞏固舊知識(shí),為本節(jié)課的學(xué)習(xí)掃除障礙;

  2.讓學(xué)生充分感受到用配方法解題既存在著共性,也存在著不同的現(xiàn)象,由此激發(fā)學(xué)生的求知欲望.

  3、學(xué)生根據(jù)自己的情況選兩題,這樣做能保證運(yùn)算的正確和繼續(xù)學(xué)習(xí)數(shù)學(xué)的信心。

  (二)分析問(wèn)題,探究本質(zhì)

  由學(xué)生的觀察討論得到:用配方法解不同一元二次方程的過(guò)程中,相同之處是配方的過(guò)程----程序化的操作,不同之處是方程的根的情況及其方程的根.

  進(jìn)而提出下面的問(wèn)題:

  既然過(guò)程是相同的,為什么會(huì)出現(xiàn)根的不同?方程的根與什么有關(guān)?有怎樣的關(guān)系?如何進(jìn)一步探究?

  讓學(xué)生討論得出:從一元二次方程的一般形式去探究根與系數(shù)的關(guān)系.

  ax2+bx+c=0(a≠0) 注:根據(jù)學(xué)生學(xué)習(xí)程度的不同,可

  ax2+bx=-c 以采用學(xué)生獨(dú)立嘗試配方, 合

  x2+ x=- 作嘗試配方或教師引導(dǎo)下進(jìn)行

  x2+ x+ =- + 配方等各種教學(xué)形式.

  (x+ )2=

  然后再議開方過(guò)程(讓學(xué)生結(jié)合前面四題方程來(lái)加以討論),使學(xué)生充分認(rèn)識(shí)到“b2 -4ac”的重要性.

  當(dāng)b2-4ac≥0時(shí),

  (x+ )2= 注:這樣變形可以避免對(duì)a正、負(fù)的討論,

  x+ = 便于學(xué)生的理解.

  x=- 即x=

  x1= , x2=

  當(dāng)b2-4ac<0時(shí),

  方程無(wú)實(shí)數(shù)根.

  設(shè)計(jì)意圖:讓學(xué)生通過(guò)經(jīng)歷知識(shí)形成的全過(guò)程,從而提高自身的觀察能力、分析問(wèn)題和解決問(wèn)題的能力,發(fā)展了理性思維.

  (三)得出結(jié)論,解決問(wèn)題

  由上面的探究過(guò)程可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系數(shù)a,b,c確定. 當(dāng)b2-4ac≥0時(shí),

  x=;

  當(dāng)b2-4ac<0時(shí),方程無(wú)實(shí)數(shù)根.

  這個(gè)式子對(duì)解題有什么幫助?通過(guò)討論加深對(duì)式子的.理解,同時(shí)讓學(xué)生進(jìn)一步感受到數(shù)學(xué)的簡(jiǎn)潔美、和諧美.

  進(jìn)而闡述這個(gè)式子叫做一元二次方程的求根公式,利用它解一元二次方程的方法叫做公式法.

  設(shè)計(jì)意圖: 理解是記憶的基礎(chǔ)。只有理解了公式才能爛熟于心,才能在題目中熟練應(yīng)用,不會(huì)因記不清公式造成運(yùn)算的錯(cuò)誤。

  運(yùn)用公式法解一元二次方程.(前兩道教師示范,后兩道學(xué)生練習(xí))

  (1)2x2-x-1=0; (2)4x2-3x+2=0 ;

  (3)x2+15x=-3x; (4)x2- x+ =0.

  注:( 教師在示范時(shí)多強(qiáng)調(diào)注意點(diǎn)、易錯(cuò)點(diǎn),會(huì)減少學(xué)生做題的錯(cuò)誤,讓學(xué)生在做題中獲得成功感。)

  設(shè)計(jì)意圖:進(jìn)一步闡述求根公式,歸納總結(jié)用公式法解一元二次方程的一般步驟,及時(shí)總結(jié)簡(jiǎn)化運(yùn)算,節(jié)約時(shí)間又提高做題的準(zhǔn)確性。

  用公式法解一元二次方程:(比一比,看誰(shuí)做得又快又對(duì))

  (1)x2+x-6=0; (2)x2- x- =0;

  (3)3x2-6x-2=0;(4)4x2-6x=0;

  設(shè)計(jì)意圖:能夠熟練運(yùn)用公式法解一元二次方程,讓每位學(xué)生都有所收獲,通過(guò)大量練習(xí),熟悉公式法的步驟,訓(xùn)練快速準(zhǔn)確的計(jì)算能力。

  (四)拓展運(yùn)用,升華提高

  [想一想]

  清清和楚楚剛學(xué)了用公式法解一元二次方程,看到一個(gè)關(guān)于x 的一元二次方程x2+(2m-1)x+(m-1)=0, 清清說(shuō):“此方程有兩個(gè)不相等的實(shí)數(shù)根”,

  而楚楚反駁說(shuō):“不一定,根的情況跟m的值有關(guān)”.那你們認(rèn)為呢?并說(shuō)明理由.

  設(shè)計(jì)意圖:基于學(xué)生基礎(chǔ)較好,因此對(duì)求根公式作進(jìn)一步深化,并綜合運(yùn)用了配方法,使不同層次的學(xué)生都有不同提高.比較配方法在不同題型中的用法,

  避免以后出現(xiàn)運(yùn)算錯(cuò)誤。

  歸納小結(jié), 結(jié)合上面想一想,讓學(xué)生嘗試對(duì)本節(jié)課的知識(shí)進(jìn)行梳理,對(duì)方法進(jìn)行提煉,從而使學(xué)生的知識(shí)和方法更具系統(tǒng)化和網(wǎng)絡(luò)化,同時(shí)也是情感的升華過(guò)程.

 。ㄎ澹 布置作業(yè)

  ㈠必做題

 、孢x做題:P46第12題。

  設(shè)計(jì)意圖:結(jié)合學(xué)生的實(shí)際情況,可以分層布置。 適合的練習(xí)既鞏固了所學(xué)提高了計(jì)算的速度又保養(yǎng)了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣和信心。

【初三上冊(cè)數(shù)學(xué)解一元二次方程教學(xué)計(jì)劃】相關(guān)文章:

解一元二次方程課件03-19

《降次-解一元二次方程》教學(xué)計(jì)劃06-01

人教版初三數(shù)學(xué)《一元二次方程》教學(xué)計(jì)劃05-29

《配方法解一元二次方程》的數(shù)學(xué)教學(xué)反思06-29

解一元二次方程數(shù)學(xué)知識(shí)點(diǎn)總結(jié)02-08

九年級(jí)數(shù)學(xué)上冊(cè)《公式法解一元二次方程》教學(xué)反思01-24

新人教版九年級(jí)數(shù)學(xué)上冊(cè)《解一元二次方程》教學(xué)反思06-20

關(guān)于人教版初三數(shù)學(xué)上冊(cè)《一元二次方程的解法》教學(xué)反思11-23

降次《解一元二次方程》的教學(xué)設(shè)計(jì)10-16