毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

高一數(shù)學教學工作計劃

時間:2022-07-28 15:37:39 教學計劃 我要投稿

實用的高一數(shù)學教學工作計劃3篇

  時光飛逝,時間在慢慢推演,我們的工作又將在忙碌中充實著,在喜悅中收獲著,我們要好好計劃今后的學習,制定一份計劃了?墒堑降资裁礃拥挠媱澆攀沁m合自己的呢?以下是小編幫大家整理的高一數(shù)學教學工作計劃3篇,希望對大家有所幫助。

實用的高一數(shù)學教學工作計劃3篇

高一數(shù)學教學工作計劃 篇1

  本學期擔任高一x1、x2兩班的數(shù)學教學工作,兩班學生共有xx人,初中的基礎參差不齊,但兩個班的學生整體水平較高;部分學生學習習慣不好,很多學生不能正確評價自己,這給教學工作帶來了一定的難度,為把本學期教學工作做好,制定如下教學工作計劃。

  一、教學目標.

  (一)情意目標

  (1)通過分析問題的方法的教學,培養(yǎng)學生的學習的興趣。

  (2)提供生活背景,通過數(shù)學建模,讓學生體會數(shù)學就在身邊,培養(yǎng)學數(shù)學用數(shù)學的意識。

  (3)在探究函數(shù)、等差數(shù)列、等比數(shù)列的性質,體驗獲得數(shù)學規(guī)律的艱辛和樂趣,在分組研究合作學習中學會交流、相互評價,提高學生的合作意識

  (4)基于情意目標,調控教學流程,堅定學習信念和學習信心。

  (5)還時空給學生、還課堂給學生、還探索和發(fā)現(xiàn)權給學生,給予學生自主探索與合作交流的機會,在發(fā)展他們思維能力的同時,發(fā)展他們的數(shù)學情感、學好數(shù)學的自信心和追求數(shù)學的科學精神。

  (6)讓學生體驗"發(fā)現(xiàn)--挫折--矛盾--頓悟--新的發(fā)現(xiàn)"這一科學發(fā)現(xiàn)歷程法。

  (二)能力要求

  1、培養(yǎng)學生記憶能力。

  (1)通過定義、命題的總體結構教學,揭示其本質特點和相互關系,培養(yǎng)對數(shù)學本質問題的背景事實及具體數(shù)據(jù)的記憶。

  (3)通過揭示立體集合、函數(shù)、數(shù)列有關概念、公式和圖形的對應關系,培養(yǎng)記憶能力,工作計劃《高一數(shù)學上學期教學工作計劃》。

  2、培養(yǎng)學生的運算能力。

  (1)通過概率的訓練,培養(yǎng)學生的運算能力。

  (2)加強對概念、公式、法則的明確性和靈活性的教學,培養(yǎng)學生的運算能力。

  (3)通過函數(shù)、數(shù)列的教學,提高學生是運算過程具有明晰性、合理性、簡捷性能力。

  (4)通過一題多解、一題多變培養(yǎng)正確、迅速與合理、靈活的運算能力,促使知識間的滲透和遷移。

  (5)利用數(shù)形結合,另辟蹊徑,提高學生運算能力。

  3、培養(yǎng)學生的思維能力。

  (1)通過對簡易邏輯的教學,培養(yǎng)學生思維的周密性及思維的邏輯性。

  (2)通過不等式、函數(shù)的一題多解、多題一解,培養(yǎng)思維的靈活性和敏捷性,發(fā)展發(fā)散思維能力。

  (3)通過不等式、函數(shù)的引伸、推廣,培養(yǎng)學生的創(chuàng)造性思維。

  (4)加強知識的橫向聯(lián)系,培養(yǎng)學生的數(shù)形結合的能力。

  (5)通過典型例題不同思路的分析,培養(yǎng)思維的靈活性,是學生掌握轉化思想方法。

  (三)知識目標

  1.集合、簡易邏輯

  (1)理解集合、子集、補訂、交集、交集的概念.了解空集和全集的意義.了解屬于、包含、相等關系的意義.掌握有關的術語和符號,并會用它們正確表示一些簡單的集合.

  (2)理解邏輯聯(lián)結詞"或"、"且"、"非"的含義.理解四種命題及其相互關系.掌握充分條件、必要條件及充要條件的意義.

  (3)掌握一元二次不等式、絕對值不等式的解法。

  2.函數(shù)

  (1)了解映射的概念,理解函數(shù)的概念.

  (2)了解函數(shù)的單調性、奇偶性的概念,掌握判斷一些簡單函數(shù)的單調性、奇偶性的方法.

  (3)了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖像間的關系,會求一些簡單函數(shù)的反函數(shù).

  (4)理解分數(shù)指數(shù)冪的概念,掌握有理指數(shù)冪的運算性質.掌握指數(shù)函數(shù)的概念、圖像和性質.

  (5)理解對數(shù)的概念,掌握對數(shù)的運算性質.掌握對數(shù)函數(shù)的概念、圖像和性質.

  (6)能夠運用函數(shù)的性質、指數(shù)函數(shù)和對數(shù)函數(shù)的性質解決某些簡單的實際問題.

  3.數(shù)列

  (1)理解數(shù)列的概念,了解數(shù)列通項公式的意義,了解遞推公式是給出數(shù)列的一種方法,并能根據(jù)遞推公式寫出數(shù)列的前幾項.

  (2)理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題.

  (3)理解等比數(shù)列的概念,掌握等比數(shù)列的通項公式與前n項和公式,并能解決簡單的實際問題.

  三、教學重點

  1、集合、子集、補集、交集、并集.一元二次不等式的解法

  四種命題.充分條件和必要條件.

  2.映射、函數(shù)、函數(shù)的單調性、反函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、函數(shù)的應用.

  3.等差數(shù)列及其通項公式.等差數(shù)列前n項和公式.

  等比數(shù)列及其通項公式.等比數(shù)列前n項和公式.

  四、教學難點

  1.四種命題.充分條件和必要條件

  2.反函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)

  3.等差、等比數(shù)列的性質

  五、工作措施.

  1、抓好課堂教學,提高教學效益。

  課堂教學是教學的主要環(huán)節(jié),因此,抓好課堂教學是教學之根本,是大面積提高數(shù)學成績的主途徑。

  (1)、扎實落實集體備課,通過集體討論,抓住教學內(nèi)容的實質,形成較好的教學方案,擬好典型例題、練習題、周練題、章考題、月考題。

  (2)、加大課堂教改力度,培養(yǎng)學生的自主學習能力。最有效的學習是自主學習,因此,課堂教學要大力培養(yǎng)學生自主探究的精神,通過"知識的產(chǎn)生,發(fā)展",逐步形成知識體系;通過"知識質疑、展活"遷移知識、應用知識,提高能力。同時要養(yǎng)成學生良好的學習習慣,不斷提高學生的數(shù)學素養(yǎng),從而提高數(shù)學素養(yǎng),并大面積提高數(shù)學成績。

  2、加強課外輔導,提高競爭能力。

  課外輔導是課堂的有力補充,是提高數(shù)學成績的有力手段。

  (1)加強數(shù)學數(shù)學競賽的指導,提高學習興趣。

  (2)加強學習方法的指導,全方面提高他們的數(shù)學能力,特別是自主能力,并通過強化訓練,不斷提高解題能力,使他們的數(shù)學成績更上一城樓。

  (2)、加強對邊緣生的輔導。邊緣生是一個班級教學成敗的關鍵,因此,我將下大力氣輔導邊緣生,通過個別加集體的方法,并定時單獨測試,面批面改,從而使他們的數(shù)學成績有質的飛躍。

  3、搞好單元考試、階段性考試的分析。

  學生只有通過不斷的練習才能提高成績,單元考試、階段性考試是最好的練習,每次都要做好分析,并指導學生糾錯。在分析過程中要遵循自主的思維習慣,使學生真正理解。

  六、目標承諾

  1、及格率不低于98%。

  2、人平比年級平均高15分以上。

高一數(shù)學教學工作計劃 篇2

  教學目標

  1通過對冪函數(shù)概念的學習以及對冪函數(shù)圖象和性質的歸納與概括,讓學生體驗數(shù)學概念的形成過程,培養(yǎng)學生的抽象概括能力。

  2使學生理解并掌握冪函數(shù)的圖象與性質,并能初步運用所學知識解決有關問題,培養(yǎng)學生的靈活思維能力。

  3培養(yǎng)學生觀察、分析、歸納能力。了解類比法在研究問題中的作用。

  教學重點、難點

  重點:冪函數(shù)的性質及運用

  難點:冪函數(shù)圖象和性質的發(fā)現(xiàn)過程

  教學方法:問題探究法 教具:多媒體

  教學過程

  一、創(chuàng)設情景,引入新課

  問題1:如果張紅購買了每千克1元的水果w千克,那么她需要付的錢數(shù)p(元)和購買的水果量w(千克)之間有何關系?

  (總結:根據(jù)函數(shù)的定義可知,這里p是w的函數(shù))

  問題2:如果正方形的邊長為a,那么正方形的面積 ,這里S是a的函數(shù)。 問題3:如果正方體的邊長為a,那么正方體的體積 ,這里V是a的函數(shù)。 問題4:如果正方形場地面積為S,那么正方形的邊長 ,這里a是S的函數(shù) 問題5:如果某人 s內(nèi)騎車行進了 km,那么他騎車的速度 ,這里v是t的函數(shù)。

  以上是我們生活中經(jīng)常遇到的幾個數(shù)學模型,你能發(fā)現(xiàn)以上幾個函數(shù)解析式有什么共同點嗎?(右邊指數(shù)式,且底數(shù)都是變量) 這只是我們生活中常用到的一類函數(shù)的幾個具體代表,如果讓你給他們起一個名字的話,你將會給他們起個什么名字呢?(變量在底數(shù)位置,解析式右邊都是冪的形式)(適當引導:從自變量所處的位置這個角度)(引入新課,書寫課題)

  二、新課講解

  由學生討論,(教師可提示p=w可看成p=w1)總結,即可得出:p=w, s=a2, a=s , v=t-1都是自變量的若干次冪的形式。

  教師指出:我們把這樣的都是自變量的若干次冪的形式的函數(shù)稱為冪函數(shù)。

  冪函數(shù)的定義:一般地,我們把形如 的函數(shù)稱為冪函數(shù)(power function),其中 是自變量, 是常數(shù)。 1冪函數(shù)與指數(shù)函數(shù)有什么區(qū)別?(組織學生回顧指數(shù)函數(shù)的概念) 結論:冪函數(shù)和指數(shù)函數(shù)都是我們高中數(shù)學中研究的兩類重要的基本初等函數(shù),從它們的解析式看有如下區(qū)別: 對冪函數(shù)來說,底數(shù)是自變量,指數(shù)是常數(shù) 對指數(shù)函數(shù)來說,指數(shù)是自變量,底數(shù)是常數(shù) 例1判別下列函數(shù)中有幾個冪函數(shù)?

  ① y= ②y=2x2 ③y=x ④y=x2+x ⑤y=-x3 ⑥ ⑦ ⑧ ⑨ (由學生獨立思考、回答)

  2冪函數(shù)具有哪些性質?研究函數(shù)應該是哪些方面的內(nèi)容。前面指數(shù)函數(shù)、對數(shù)函數(shù)研究了哪些內(nèi)容?

  (學生討論,教師引導。學生回答。)

  3冪函數(shù)的定義域是否與對數(shù)函數(shù)、指數(shù)函數(shù)一樣,具有相同的定義域?

  (學生小組討論,得到結論。引導學生舉例研究。結論:冪指數(shù) 不同,定義域并不完全相同,應區(qū)別對待。)教師指出:冪函數(shù)y=xn中,當n=0時,其表達式y(tǒng)=x0=1;定義域為(-∞,0)U(0,+∞),特別強調,當x為任何非零實數(shù)時,函數(shù)的值均為1,圖象是從點(0,1)出發(fā),平行于x軸的兩條射線,但點(0,1)要除外。)

  例2寫出下列函數(shù)的定義域,并指出它們的奇偶性:①y=x ②y= ③y=x ④y=x

  (學生解答,并歸納解決辦法。引導學生與指數(shù)函數(shù)、對數(shù)函數(shù)對照比較。引導學生具體問題具體分析,并作簡單歸納:分數(shù)指數(shù)應化成根式,負指數(shù)寫成正數(shù)指數(shù)再寫出定義域。冪函數(shù)的奇偶性也應具體分析。)

  4上述函數(shù)①y=x ②y= ③y=x ④y=x 的單調性如何?如何判斷?

  (學生思考,引導作圖可得。并加上y=x 和y=x-1圖象)接下來, 在同一坐標系中學生作圖,教師巡視。將學生作圖用實物投影儀演示,指出優(yōu)點和錯誤之處。教師利用幾何畫板演示。見后附圖1

  讓學生觀察圖象,看單調性、以及還有哪些共同點?(學生思考,回答。教師注意學生敘述的嚴密性。)

  教師總評:冪函數(shù)的性質

  (1)所有的冪函數(shù)在(0,+∞)上都有定義,并且圖象都過點(1,1),

  (2)如果a>0,則冪函數(shù)的圖象通過原點,并在區(qū)間[0,+∞)上是增函數(shù),

  (3)如果a<0,則冪函數(shù)在(0,+∞)上是減函數(shù),在第一區(qū)間內(nèi),當x從右邊趨向于原點時,圖象在y軸右方無限地趨近y軸;當x趨向于+∞,圖象在x軸上方無限地趨近x軸。

  5通過觀察例1,在冪函數(shù)y=xa中,當a是(1)正偶數(shù)、(2)正奇數(shù)時,這一類函數(shù)有哪種性質?

  學生思考,教師講評:(1)在冪函數(shù)y=xa中,當a是正偶數(shù)時,函數(shù)都是偶函數(shù),在第一象限內(nèi)是增函數(shù)。(2)在冪函數(shù)y=xa中,當a是正奇數(shù)時,函數(shù)都是奇函數(shù),在第一象限內(nèi)是增函數(shù)。

  例3鞏固練習 寫出下列函數(shù)的定義域,并指出它們的奇偶性和單調性:①y=x ②y=x ③y=x 。

  例4簡單應用1:比較下列各組中兩個值的大小,并說明理由:

  ①0.75 ,0.76 ;

 、(-0.95) ,(-0.96) ;

 、0.23 ,0.24 ;

  ④0.31 ,0.31

  例5簡單應用2:冪函數(shù)y=(m -3m-3)x 在區(qū)間 上是減函數(shù),求m的值。

  例6簡單應用2:

  已知(a+1)<(3-2a) ,試求a的取值范圍。

  課堂小結

  今天的學習內(nèi)容和方法有哪些?你有哪些收獲和經(jīng)驗?

  1、 冪函數(shù)的概念及其指數(shù)函數(shù)表達式的區(qū)別 2、 常見冪函數(shù)的圖象和冪函數(shù)的性質。

布置作業(yè):

  課本p.73 2、3、4、思考5

高一數(shù)學教學工作計劃 篇3

  教材分析:

  解不等式是不等式學習的.主要內(nèi)容,是中學數(shù)學的一項重要技能。主要類型有:一元一次不等式或不等式組的解法,一元二次不等式或不等式組的解法。其中,一次不等式的解法是基礎,初中已經(jīng)學習,二次不等式是重點,也是學習的難點。作為數(shù)學重要的工具及方法,經(jīng)常運用于其它數(shù)學知識之中。一元二次不等式的解法主要有二種,課本上介紹的是“數(shù)形結合”方法,這種方法將二次函數(shù),二次方程結合為一體,并且借助“圖形”直觀地得出答案,充分展現(xiàn)了數(shù)學知識之間的內(nèi)在聯(lián)系,另外也展現(xiàn)了“數(shù)形結合”思想方法的巨大魅力。然而,個人認為,還有一種更加自然的方法,將二次不等式轉化為一次不等式組的方法,這種方法思路自然,同時也體現(xiàn)了“轉化”思想,難度也不大,應該更加符合學生的實際思維及思路。

  學情分析:

  初中已經(jīng)學習了一元一次不等式(或組)的解法,積累了一定的解題經(jīng)驗。同時,對于二次方程,二次函數(shù)等相關知識學生均較為熟悉。然而,根據(jù)自己的調查,一少部分學生對于一元一次不等式及不等式組的解法都表現(xiàn)出一定程度的陌生。進而,可以先從復習簡單的一次不等式及不等式組入手加以展開教學。

  學生心理方面,學習積極性較高,對數(shù)學的學習興趣、信心也比較理想,有較強的學習動機——考上大學,盡管是外在的誘因。

  教學目標:

 、僦R與技能

  熟練掌握一元一次不等式及不等式組的解法,初步學會兩種方法求出一元二次不等式的解集

 、谶^程與方法

  經(jīng)歷不等式求解的探索及發(fā)現(xiàn)過程,體驗“數(shù)形結合及轉化”思想的魅力,掌握方法,學會學習

 、矍楦、態(tài)度及價值觀

  在上述過程中,體驗成功,激發(fā)了對數(shù)學學習的興趣及信心,發(fā)展了對數(shù)學學習的積極情感,增強了學習的內(nèi)在動機

  教學重點:

  一元二次不等式的解法

  教學難點:

  解法的探索及發(fā)現(xiàn),關鍵在于“識圖能力”

  反思:

  今天的課堂,這個難點突破欠缺力量,主要緣于自己備課時對難點考慮不到位,進而缺乏必要的設計。在課堂上,就難點特別與個別差生進行了交流,并且給予了幫助及指導。在指導過程中,我找出了他們困難的二個環(huán)節(jié):

  首先,對平面曲線上點的橫坐標與縱座標之間的對應關系表現(xiàn)陌生,進而對它們的取值變化情況感到費解。

  其次,是差生的思維能力尚處于“經(jīng)驗思維”,辯證思維能力薄弱,進而對運動中的點的坐標取值范圍只能是“一籌莫展”。

  在了解情況后,遵循“最近發(fā)展區(qū)”原理,以問題串的形式給差生提供必要的幫助后,差生也順利度過了難關。由此足以說明,從知識的角度而言,“沒有教不好的學生,只有不會教的教師:這句話還是相當有道理的。當然,這一切的前提就是對學生“學情”的掌握。美國著名心理學家、結構主義學派的代表人布魯納也有類似觀點:給我一打健康的兒童,我可以教會他任何任何學科任何年齡段的任何知識。

  教學程序:

  一、復習一元一次不等式及不等式組的解法

  以題組形式設計習題

 、2x+3>7

  ②不等式組

 、踑x>b

  二、創(chuàng)設二次不等式的生活背景實例,引入課題

  采用課本上的實例,有關網(wǎng)絡收費問題

  三、一元二次不等式的解法探索

  (1)

  在教師的啟發(fā)引導下,從特殊到一般,學生經(jīng)歷“轉化”方法的探索及發(fā)現(xiàn)過程。

  由于這種方法課本沒有給出,進而課堂上不作為重點,重在引導學生自行歸納、體驗及總結“轉化”思想,最后以課外思考題的形式設計相應習題。

  (2)

  采取啟發(fā)式教學,師生共同經(jīng)歷“數(shù)形結合”方法的探索及發(fā)現(xiàn)過程,引導學生歸納出主要的解題步驟。今天的課堂上,這些解題步驟全部由學生的語言組織并完成,并撰寫在黑板上,教師沒有作任何干涉。我一直認為,只有學生自己親身體驗的知識才是有意義的知識,盡管這些知識不完整,語言或許不規(guī)范,思維或許不嚴密。

  之后,從特殊到一般,研究一般的二元一次不等式的解法。由于經(jīng)歷了前面的解題過程,這個環(huán)節(jié)全部放手讓學生完成,鼓勵他們通過或獨立或合作的方式解決學習任務,完成課本上的表格。

  反思:根據(jù)課堂反饋,二個班級大約有70%的同學能夠勝任這個任務。于是,在大多數(shù)學生完成的基礎上,我又進行了一次講解,特別加強了對“識圖”環(huán)節(jié)的講解力度,力求突破難點。

  四、練習環(huán)節(jié)

  可以說,即使到了高三,仍然有不少同學對于一元二次不等式解法的困惑。因此,熟練掌握二次不等式的解法,既是重點,也是難點。從學習類型看,這節(jié)課顯然屬于技能課,對于技能的學習及掌握,關鍵是強化練習,“力求熟能生巧”,達到自動化的水平。

  課本上,配置了不少練習題。對于練習,我采取多種方式,或叫學生上黑板板書,借助學生練習規(guī)范解題格式;或者口答,說解題思路及答案;或者下面獨立練習。

  五、課堂小結

  知識,思想、方法及感悟等

  六、課后作業(yè)

 、僮鳂I(yè)設計:分成A、B兩層,難度不一,讓學生自主選擇,均來源于課本上的A組或B組

 、谡n外思考題:

  1比較兩種解題方法即“轉化及數(shù)形結合”方法的優(yōu)劣,以及它們之間的異同

  2已知不等式mx^2-(m-2)x+m>0的解集為R,求m的取值范圍

  變式一:戓將R改為空集,此時結論如何

  變式二:仿上,自己改編條件,并解之。

  反思:課外思考題的設計,可以提升課堂容量,深化課堂知識,提高課堂思維含量,為優(yōu)生服務,發(fā)展學生的思維能力,激發(fā)他們的學習興趣。同時,加強變式教學,可以充分拓展習題的潛在價值,期望實現(xiàn)“舉一反三”的目標。

【高一數(shù)學教學工作計劃】相關文章:

數(shù)學高一教學工作計劃01-26

關于高一數(shù)學教學的工作計劃10-15

數(shù)學高一教學工作計劃06-30

高一數(shù)學教學工作計劃01-11

高一數(shù)學的教學工作計劃04-01

高一數(shù)學教學工作計劃11-12

高一數(shù)學教學個人工作計劃07-29

上學期高一數(shù)學教學的工作計劃10-17

高一數(shù)學教學工作計劃11-11

高一數(shù)學教學工作計劃12-12