- 相關推薦
高三數(shù)學《基本不等式》教學設計
作為一名教師,通常會被要求編寫教學設計,教學設計是連接基礎理論與實踐的橋梁,對于教學理論與實踐的緊密結合具有溝通作用。那么大家知道規(guī)范的教學設計是怎么寫的嗎?下面是小編為大家收集的高三數(shù)學《基本不等式》教學設計,希望對大家有所幫助。
高三數(shù)學《基本不等式》教學設計 1
教學目標
1、知識與能力目標:理解掌握基本不等式,并能運用基本不等式解決一些簡單的求最值問題;理解算數(shù)平均數(shù)與幾何平均數(shù)的概念,學會構造條件使用基本不等式;培養(yǎng)學生探究能力以及分析問題解決問題的能力。
2、過程與方法目標:按照創(chuàng)設情景,提出問題→剖析歸納證明→幾何解釋→應用(最值的求法、實際問題的解決)的過程呈現(xiàn)。啟動觀察、分析、歸納、總結、抽象概括等思維活動,培養(yǎng)學生的思維能力,體會數(shù)學概念的學習方法,通過運用多媒體的教學手段,引領學生主動探索基本不等式性質(zhì),體會學習數(shù)學規(guī)律的方法,體驗成功的樂趣。
3、情感與態(tài)度目標:通過問題情境的設置,使學生認識到數(shù)學是從實際中來,培養(yǎng)學生用數(shù)學的眼光看世界,通過數(shù)學思維認知世界,從而培養(yǎng)學生善于思考、勤于動手的良好品質(zhì)。
教學重難點
1、基本不等式成立時的三個限制條件(簡稱一正、二定、三相等);
2、利用基本不等式求解實際問題中的最大值和最小值。
教學過程
一、創(chuàng)設情景,提出問題;
設計意圖:數(shù)學教育必須基于學生的“數(shù)學現(xiàn)實”,現(xiàn)實情境問題是數(shù)學教學的平臺,數(shù)學教師的任務之一就是幫助學生構造數(shù)學現(xiàn)實,并在此基礎上發(fā)展他們的數(shù)學現(xiàn)實.基于此,設置如下情境:
上圖是在北京召開的第24屆國際數(shù)學家大會的會標,會標是根據(jù)中國古代數(shù)學家趙爽的弦圖設計的,顏色的明暗使它看上去像一個風車,代表中國人民熱情好客。
[問]你能在這個圖中找出一些相等關系或不等關系嗎?
本背景意圖在于利用圖中相關面積間存在的數(shù)量關系,抽象出不等式
在此基礎上,引導學生認識基本不等式。
三、理解升華:
1、文字語言敘述:
兩個正數(shù)的算術平均數(shù)不小于它們的幾何平均數(shù)。
2、聯(lián)想數(shù)列的知識理解基本不等式
已知a,b是正數(shù),A是a,b的等差中項,G是a,b的正的等比中項,A與G有無確定的大小關系?
兩個正數(shù)的等差中項不小于它們正的等比中項。
3、符號語言敘述:
4、探究基本不等式證明方法:
[問]如何證明基本不等式?
(意圖在于引領學生從感性認識基本不等式到理性證明,實現(xiàn)從感性認識到理性認識的升華,前面是從幾何圖形中的面積關系獲得不等式的,下面用代數(shù)的思想,利用不等式的性質(zhì)直接推導這個不等式。)
方法一:作差比較或由
展開證明。
方法二:分析法(完成課本填空)
設計依據(jù):課本是學生了解世界的窗口和工具,所以,課本必須成為學生賴以學會學習的文本.在教學中要讓學生學會認真看書、用心思考,養(yǎng)成講講議議、
動手動筆、仔細觀察、用心體會的好習慣,真正學會讀“數(shù)學書”。
點評:證明方法叫做分析法,實際上是尋找結論的充分條件,執(zhí)果索因的一種思維方法.
5、探究基本不等式的幾何意義:
借助初中階段學生熟知的.幾何圖形,引導學生
幾何解釋實質(zhì)可認為是:在同一半圓中,半徑不小于半弦(直徑是最長的弦);或者認為是,直角三角形斜邊的一半不小于斜邊上的高。
四、探究歸納
下列命題中正確的是
結論:
若兩正數(shù)的乘積為定值,則當且僅當兩數(shù)相等時,它們的和有最小值;
若兩正數(shù)的和為定值,則當且僅當兩數(shù)相等時,它們的乘積有最大值。
簡記為:“一正、二定、三相等”。
五、領悟練習:
公式應用之二:(最優(yōu)化問題)
設計意圖:新穎有趣、簡單易懂、貼近生活的問題,不僅極大地增強學生的興趣,拓寬學生的視野,更重要的是調(diào)動學生探究鉆研的興趣,引導學生加強對生活的關注,讓學生體會:數(shù)學就在我們身邊的生活中
(1)在學農(nóng)期間,生態(tài)園中有一塊面積為100m2的矩形茶地,為了保護茶葉的健康生長,學校決定用籬笆圍起來,問這個矩形的長、寬各為多少時,所用籬笆最短。最短的籬笆是多少?
(2)現(xiàn)在學校倉庫有一段長為36m的籬笆,要圍成一個矩形菜園,問這個矩形的長、寬各為多少時,菜園的面積最大。最大面積是多少?
六、反思總結,整合新知:
通過本節(jié)課的學習你有什么收獲?取得了哪些經(jīng)驗教訓?還有哪些問題需要
請教?
設計意圖:通過反思、歸納,培養(yǎng)概括能力;幫助學生總結經(jīng)驗教訓,鞏固知識技能,提高認知水平.
老師根據(jù)情況完善如下:
兩種思想:數(shù)形結合思想、歸納類比思想。
三個注意:基本不等式求函數(shù)的最大(小)值是注意:“一正二定三相等”
高三數(shù)學《基本不等式》教學設計 2
教學目標
1、知識與技能:進一步掌握基本不等式;會應用此不等式求某些函數(shù)的最值;能夠解決一些簡單的實際問題
2、過程與方法:通過兩個例題的研究,進一步掌握基本不等式,并會用此定理求某些函數(shù)的最大、最小值。
3、情態(tài)與價值:引發(fā)學生學習和使用數(shù)學知識的興趣,發(fā)展創(chuàng)新精神,培養(yǎng)實事求是、理論與實際相結合的科學態(tài)度和科學道德。
教學重點
基本不等式的應用
教學難點
利用基本不等式求最大值、最小值。
教學過程
1、課題導入
。1)重要不等式:如果
(2)基本不等式:如果a,b是正數(shù),那么
。3)我們稱的算術平均數(shù),稱的幾何平均數(shù)。成立的條件是不同的:前者只要求a,b都是實數(shù),而后者要求a,b都是正數(shù)。
2、講授新課
例1
。1)已知m>0,求證。[思維切入]因為m>0,所以可把和分別看作基本不等式中的a和b,直接利用基本不等式。
[證明]因為m>0,由基本不等式得當且僅當=,即m=2時,取等號。
規(guī)律技巧總結注意:m>0這一前提條件和=144為定值的前提條件。
(2)求證:思維切入:由于不等式左邊含有字母a,右邊無字母,直接使用基本不等式,無法約掉字母a,而左邊。這樣變形后,在用基本不等式即可得證。[證明]
當且僅當=a—3即a=5時,等號成立。
規(guī)律技巧總結通過加減項的方法配湊成基本不等式的形式。
例2某工廠要建造一個長方體無蓋貯水池,其容積為4800m3,深為3m,如果池底每1m2的造價為150元,池壁每1m2的造價為120元,問怎樣設計水池能使總造價最低,最低總造價是多少元?
分析:此題首先需要由實際問題向數(shù)學問題轉(zhuǎn)化,即建立函數(shù)關系式,然后求函數(shù)的最值,其中用到了均值不等式定理。
解:設水池底面一邊的長度為xm,水池的總造價為l元,根據(jù)題意,得當因此,當水池的底面是邊長為40m的正方形時,水池的總造價最低,最低總造價是297600元
評述:此題既是不等式性質(zhì)在實際中的`應用,應注意數(shù)學語言的應用即函數(shù)解析式的建立,又是不等式性質(zhì)在求最值中的應用,應注意不等式性質(zhì)的適用條件。
歸納:用均值不等式解決此類問題時,應按如下步驟進行:
(1)先理解題意,設變量,設變量時一般把要求最大值或最小值的變量定為函數(shù);
(2)建立相應的函數(shù)關系式,把實際問題抽象為函數(shù)的最大值或最小值問題;
。3)在定義域內(nèi),求出函數(shù)的最大值或最小值;
。4)正確寫出答案。
3、隨堂練習
(1)已知x≠0,當x取什么值時,x2+的值最。孔钚≈凳嵌嗌?
(2)課本第101頁的練習4,習題3。
4、課時小結
本節(jié)課我們用兩個正數(shù)的算術平均數(shù)與幾何平均數(shù)的關系順利解決了函數(shù)的一些最值問題。在用均值不等式求函數(shù)的最值,是值得重視的一種方法,但在具體求解時,應注意考查下列三個條件:
。1)函數(shù)的解析式中,各項均為正數(shù);
(2)函數(shù)的解析式中,含變數(shù)的各項的和或積必須有一個為定值;
(3)函數(shù)的解析式中,含變數(shù)的各項均相等,取得最值即用均值不等式求某些函數(shù)的最值時,應具備三個條件:一正、二定、三相等。
5、作業(yè)設計
課本第101頁習題[A]組的第2、4題
【高三數(shù)學《基本不等式》教學設計】相關文章:
基本不等式教學反思 不等式的基本性質(zhì)的教學反思11-11
不等式和它的基本性質(zhì)教學設計(精選12篇)08-22
基本不等式教學反思10-25
基本不等式教學反思10-25
高三數(shù)學教學設計12-07
不等式性質(zhì)教學設計03-02
基本不等式教學反思12篇03-04
基本不等式教學反思 12篇11-11