《完全平方公式》教學(xué)設(shè)計(jì)
作為一位杰出的教職工,通常需要用到教學(xué)設(shè)計(jì)來(lái)輔助教學(xué),教學(xué)設(shè)計(jì)是一個(gè)系統(tǒng)設(shè)計(jì)并實(shí)現(xiàn)學(xué)習(xí)目標(biāo)的過(guò)程,它遵循學(xué)習(xí)效果最優(yōu)的原則嗎,是課件開(kāi)發(fā)質(zhì)量高低的關(guān)鍵所在。怎樣寫(xiě)教學(xué)設(shè)計(jì)才更能起到其作用呢?下面是小編幫大家整理的《完全平方公式》教學(xué)設(shè)計(jì),供大家參考借鑒,希望可以幫助到有需要的朋友。
《完全平方公式》教學(xué)設(shè)計(jì)1
教學(xué)目標(biāo)
1.了解公式的意義,使學(xué)生能用公式解決簡(jiǎn)單的實(shí)際問(wèn)題;
2.初步培養(yǎng)學(xué)生觀察、分析及概括的能力;
3.通過(guò)本節(jié)課的教學(xué),使學(xué)生初步了解公式來(lái)源于實(shí)踐又反作用于實(shí)踐。
教學(xué)建議
一、教學(xué)重點(diǎn)、難點(diǎn)
重點(diǎn):通過(guò)具體例子了解公式、應(yīng)用公式.
難點(diǎn):從實(shí)際問(wèn)題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來(lái)的歸納的思想方法。
二、重點(diǎn)、難點(diǎn)分析
人們從一些實(shí)際問(wèn)題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫(xiě)成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時(shí),首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計(jì)算時(shí),就是求代數(shù)式的值了。有的公式,可以借助運(yùn)算推導(dǎo)出來(lái);有的公式,則可以通過(guò)實(shí)驗(yàn),從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來(lái)。用這些抽象出的具有一般性的公式解決一些問(wèn)題,會(huì)給我們認(rèn)識(shí)和改造世界帶來(lái)很多方便。
三、知識(shí)結(jié)構(gòu)
本節(jié)一開(kāi)始首先概述了一些常見(jiàn)的公式,接著三道例題循序漸進(jìn)的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過(guò)觀察歸納推導(dǎo)公式解決一些實(shí)際問(wèn)題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1.對(duì)于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認(rèn)識(shí)公式中每一個(gè)字母、數(shù)字的意義,以及這些數(shù)量之間的對(duì)應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊(yùn)涵的思想,明確公式的應(yīng)用具有普遍性,達(dá)到對(duì)公式的靈活應(yīng)用。
2.在教學(xué)過(guò)程中,應(yīng)使學(xué)生認(rèn)識(shí)有時(shí)問(wèn)題的解決并沒(méi)有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過(guò)分析和具體運(yùn)算推導(dǎo)新公式。
3.在解決實(shí)際問(wèn)題時(shí),學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對(duì)應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進(jìn)一步地解決問(wèn)題。這種從特殊到一般、再?gòu)囊话愕教厥庹J(rèn)識(shí)過(guò)程,有助于提高學(xué)生分析問(wèn)題、解決問(wèn)題的能力。
教學(xué)設(shè)計(jì)示例
公式
一、教學(xué)目標(biāo)
。ㄒ唬┲R(shí)教學(xué)點(diǎn)
1.使學(xué)生能利用公式解決簡(jiǎn)單的實(shí)際問(wèn)題.
2.使學(xué)生理解公式與代數(shù)式的關(guān)系.
。ǘ┠芰τ(xùn)練點(diǎn)
1.利用數(shù)學(xué)公式解決實(shí)際問(wèn)題的能力.
2.利用已知的公式推導(dǎo)新公式的能力.
。ㄈ┑掠凉B透點(diǎn)
數(shù)學(xué)來(lái)源于生產(chǎn)實(shí)踐,又反過(guò)來(lái)服務(wù)于生產(chǎn)實(shí)踐.
。ㄋ模┟烙凉B透點(diǎn)
數(shù)學(xué)公式是用簡(jiǎn)潔的數(shù)學(xué)形式來(lái)闡明自然規(guī)定,解決實(shí)際問(wèn)題,形成了色彩斑斕的多種數(shù)學(xué)方法,從而使學(xué)生感受到數(shù)學(xué)公式的簡(jiǎn)潔美.
二、學(xué)法引導(dǎo)
1.?dāng)?shù)學(xué)方法:引導(dǎo)發(fā)現(xiàn)法,以復(fù)習(xí)提問(wèn)小學(xué)里學(xué)過(guò)的公式為基礎(chǔ)、突破難點(diǎn)
2.學(xué)生學(xué)法:觀察→分析→推導(dǎo)→計(jì)算
三、重點(diǎn)、難點(diǎn)、疑點(diǎn)及解決辦法
1.重點(diǎn):利用舊公式推導(dǎo)出新的圖形的計(jì)算公式.
2.難點(diǎn):同重點(diǎn).
3.疑點(diǎn):把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差.
四、課時(shí)安排
1課時(shí)
五、教具學(xué)具準(zhǔn)備
投影儀,自制膠片。
六、師生互動(dòng)活動(dòng)設(shè)計(jì)
教者投影顯示推導(dǎo)梯形面積計(jì)算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式.
七、教學(xué)步驟
。ㄒ唬﹦(chuàng)設(shè)情景,復(fù)習(xí)引入
師:同學(xué)們已經(jīng)知道,代數(shù)的.一個(gè)重要特點(diǎn)就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們?cè)谛W(xué)里學(xué)過(guò)許多公式,請(qǐng)大家回憶一下,我們已經(jīng)學(xué)過(guò)哪些公式,教法說(shuō)明,讓學(xué)生一開(kāi)始就參與課堂教學(xué),使學(xué)生在后面利用公式計(jì)算感到不生疏.
在學(xué)生說(shuō)出幾個(gè)公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運(yùn)用公式解決實(shí)際問(wèn)題.
板書(shū):公式
師:小學(xué)里學(xué)過(guò)哪些面積公式?
板書(shū):S=ah
。ǔ鍪就队1)。解釋三角形,梯形面積公式
【教法說(shuō)明】讓學(xué)生感知用割補(bǔ)法求圖形的面積。
《完全平方公式》教學(xué)設(shè)計(jì)2
教學(xué)目標(biāo)
理解兩個(gè)完全平方公式的結(jié)構(gòu),靈活運(yùn)用完全平方公式進(jìn)行運(yùn)算。
在運(yùn)用完全平方公式的過(guò)程中,進(jìn)一步發(fā)展學(xué)生的符號(hào)演算的能力,提高運(yùn)算能力。
培養(yǎng)學(xué)生在獨(dú)立思考的基礎(chǔ)上,積極參與對(duì)數(shù)學(xué)問(wèn)題的討論,敢于發(fā)表自己的見(jiàn)解。
重點(diǎn)難點(diǎn)
重點(diǎn)
完全平方公式的比較和運(yùn)用
難點(diǎn)
完全平方公式的結(jié)構(gòu)特點(diǎn)和靈活運(yùn)用。
教學(xué)過(guò)程
一、復(fù)習(xí)導(dǎo)入
1.說(shuō)出完全平方公式的內(nèi)容及作用。
2.計(jì)算,除了直接用兩數(shù)差的完全平方公式外,還有別的方法嗎?
學(xué)生思考后回答:由于兩數(shù)差可以轉(zhuǎn)化成兩數(shù)和,所以還可以用兩數(shù)和的完全平方公式計(jì)算,把“”看成加數(shù),按照兩數(shù)和的完全平方公式計(jì)算,結(jié)果是一樣的。
教師歸納:當(dāng)我們對(duì)差與和加以區(qū)分時(shí),兩個(gè)公式是有區(qū)別的,區(qū)別是其結(jié)果的中間項(xiàng)一個(gè)是“減”一個(gè)是“加”,注意到區(qū)別有助于計(jì)算的準(zhǔn)確;另一方面,當(dāng)我們對(duì)差與和不加區(qū)分,全部理解成“加項(xiàng)”時(shí),那么兩個(gè)公式從結(jié)構(gòu)上來(lái)看就是一致的了,其結(jié)構(gòu)都是“兩項(xiàng)和的平方,等于它們的平方和,加上它們的積的兩倍!弊⒁獾剿鼈兊慕y(tǒng)一性,有于我們更深刻地理解公式特點(diǎn),提高運(yùn)算的靈活性。
我們學(xué)習(xí)運(yùn)算,除了要重視結(jié)果,還要重視過(guò)程,平時(shí)注意訓(xùn)練運(yùn)算方法的多樣性,可以加深對(duì)算理的理解和運(yùn)用,提高運(yùn)算過(guò)程的合理性和靈活性,從而真正的提高運(yùn)算能力。
二、新課講解
溫故知新
與,與相等嗎?為什么?
學(xué)生討論交流,鼓勵(lì)學(xué)生從不同的角度進(jìn)行說(shuō)理,共同歸納總結(jié)出兩條判斷的思路:
1.對(duì)原式進(jìn)行運(yùn)算,利用運(yùn)算的結(jié)果來(lái)判斷;
2.不對(duì)原式進(jìn)行運(yùn)算,只做適當(dāng)變形后利用整體的方法來(lái)判斷。
思考:與,與相等嗎?為什么?
利用整體的方法判斷,把看成一個(gè)數(shù),則是它的相反數(shù),相反數(shù)的奇次方是相反的,所以它們不相等。
總結(jié)歸納得到:;
三、典例剖析
例1運(yùn)用完全平方公式計(jì)算:
。1);(2)
鼓勵(lì)學(xué)生用多種方法計(jì)算,只要言之成理,只要是自己動(dòng)腦筋發(fā)現(xiàn)的,都要給予肯定,同時(shí)還要引導(dǎo)學(xué)生評(píng)價(jià)哪種算法最簡(jiǎn)潔。
例2計(jì)算:
。1);(2).
例3計(jì)算:
。1);(2)
訓(xùn)練學(xué)生熟練地、靈活地運(yùn)用完全平方公式進(jìn)行運(yùn)算,進(jìn)一步滲透整體和轉(zhuǎn)化的思想方法。
四、課堂練習(xí)
1.運(yùn)用完全平方公式計(jì)算:
(1);(2);
。3);(4)
2.計(jì)算:
。1);(2).
3.計(jì)算:
。1);(2)
學(xué)生解答,教師巡視,注意學(xué)生的計(jì)算過(guò)程是否合理,組織學(xué)生對(duì)錯(cuò)誤進(jìn)行分析和點(diǎn)評(píng)。
五、小結(jié)
師生共同回顧完全平方公式的結(jié)構(gòu)特點(diǎn),體會(huì)公式的作用,交流計(jì)算的經(jīng)驗(yàn)。教師對(duì)課堂上學(xué)生掌握不夠牢固的知識(shí)進(jìn)行辨析、強(qiáng)調(diào)與補(bǔ)充,學(xué)生也可以談一談個(gè)人的學(xué)習(xí)感受。
六、布置作業(yè)
P50第2(3)、(4),3題
【《完全平方公式》教學(xué)設(shè)計(jì)】相關(guān)文章:
完全平方公式的教案課件05-09
完全平方公式數(shù)學(xué)教案03-01
《公頃、平方千米 》教學(xué)設(shè)計(jì)01-31
《乘法公式》教學(xué)反思01-26
勵(lì)志公式推薦07-29
液體壓強(qiáng)公式10-12
精選《觀潮》教學(xué)設(shè)計(jì) 教案教學(xué)設(shè)計(jì)11-15
關(guān)于勵(lì)志的公式07-30
電場(chǎng)強(qiáng)度公式10-12