三角形內(nèi)角和教學(xué)設(shè)計(精選14篇)
作為一名教職工,時常需要編寫教學(xué)設(shè)計,教學(xué)設(shè)計是把教學(xué)原理轉(zhuǎn)化為教學(xué)材料和教學(xué)活動的計劃。我們該怎么去寫教學(xué)設(shè)計呢?下面是小編收集整理的三角形內(nèi)角和教學(xué)設(shè)計,僅供參考,歡迎大家閱讀。
三角形內(nèi)角和教學(xué)設(shè)計 篇1
【教材內(nèi)容】:
北師大版四年級數(shù)學(xué)下冊
【教學(xué)目標】:
1、探索與發(fā)現(xiàn)三角形的內(nèi)角和是180°,已知三角形的兩個角度,會求出第三個角度。
2、培養(yǎng)學(xué)生動手操作和合作交流的能力,促進掌握學(xué)習(xí)數(shù)學(xué)的方法。
3、培養(yǎng)學(xué)生自主學(xué)習(xí)、積極探索的好習(xí)慣,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)應(yīng)用數(shù)學(xué)的興趣。
【教學(xué)重點和難點】:
重點掌握三角形的內(nèi)角和是180°,會應(yīng)用三角形的內(nèi)角和解決實際問題;難點是探索性質(zhì)的過程。
【教材分析】
《三角形內(nèi)角和》屬于空間與圖形的范疇,是在學(xué)生已經(jīng)接觸了三角形的穩(wěn)定性和三角形的分類相關(guān)知識后對三角形的進一步研究,探索三個內(nèi)角的和。教材中安排了學(xué)生對不同形狀的、大小的三角形進行進行度量,運用折疊、拼湊等方法發(fā)現(xiàn)三角形的內(nèi)角和是180°。擴充了學(xué)生認識圖形的一般規(guī)律從直觀感性的認識到具體的性質(zhì)探索,更加深入的培養(yǎng)了學(xué)生的空間觀念。
【教學(xué)過程】
一、創(chuàng)設(shè)情境,激發(fā)興趣。
出示課件,提出兩個兩個疑問:
1、兩個大小不一樣的兩個三角形的對話我比你大,所以我的內(nèi)角和比你大,是這樣的嗎?
2、三個形狀不一樣的三角形的爭論。我們的形狀不一樣,所以我們的內(nèi)角和各不相同,是這樣的嗎?老師發(fā)現(xiàn)它們爭論的焦點是三角形的內(nèi)角和的問題,那什么是三角形的內(nèi)角?什么又是三角形的內(nèi)角和呢?
二、初建模型,實際驗證自己的猜想
在第一步的基礎(chǔ)上學(xué)生自然想到要量出三角形每個角的度數(shù)就能夠求出三角形的內(nèi)角和,從而證明三角形的內(nèi)角和與三角形的大小和形狀沒有關(guān)系都接近180度。這時教師要組織學(xué)生進行小組合作,每人用量角器量出一種三角形(銳角三角形、鈍角三角形、直角三角形、等腰三角形、等邊三角形)的三個內(nèi)角,并計算出它們的總和是多少?把小組的測量結(jié)果和討論結(jié)果記錄下來以便全班進行交流。
三角形的形狀
三角形每個內(nèi)角的度數(shù)
內(nèi)角和
銳角三角形
鈍角三角形
直角三角形
等腰三角形
等邊三角形
三、再建模型,徹底的得出正確的結(jié)論
因為在上一環(huán)節(jié)學(xué)生已經(jīng)得出三角形的內(nèi)角和大約都是或接近180度。因為我們在測量時由于測量人不同、測量工具不同可能產(chǎn)生一些誤差。有的同學(xué)難免可能猜想三角形的內(nèi)角和就是180度呢?我們繼續(xù)研究和探索。除了測量外我們是否可以利用我們手中的三角形通過拼一拼、折一折、畫一畫的方法來證明三角形的內(nèi)角和都是180度呢?教師放手讓學(xué)生去思考、去動手操作,對有困難和有疑問的同學(xué)進行提示和指導(dǎo)。然后讓學(xué)生到前面演示驗證的方法,教師借助多媒體進行演示。
四、應(yīng)用新知,鞏固練習(xí)
1、算一算,對于不同形狀的三角形給出其中的兩個角求第三個角的度數(shù)。(1小題屬于基本練習(xí))
2、試一試,在直角三角形中已知其中的一個角求另一個角的度數(shù)
3、想一想,已知等腰三角形的頂角如何算出它的兩個底角;已知等腰三角形的一個底角的度數(shù)求三角形的頂角。
4、說一說,判斷三角形的兩個銳角的和大于90度;直角三角形的兩個兩個銳角的和等90度;等腰三角形沿著高對折,每個三角形的內(nèi)角和是90度。這些說法是否正確?由兩個三角形拼成一個大的三角形,大三角形的內(nèi)角和是360度,對嗎?
五、拓展與延伸
通過三角形的內(nèi)角和是180度的事實來探討四邊形、五邊行的內(nèi)角和。
三角形內(nèi)角和教學(xué)設(shè)計 篇2
【設(shè)計理念】
新課標重視讓學(xué)生經(jīng)歷數(shù)學(xué)知識的形成過程,要求教師創(chuàng)設(shè)有效的問題情境激發(fā)學(xué)生的參與欲望,提供足夠的時間和空間讓學(xué)生經(jīng)歷觀察、猜測、驗證、交流反思等過程,使學(xué)生在動手操作、合作交流等活動中親身經(jīng)歷知識的形成過程。這樣,學(xué)生不僅可以掌握知識,而且可以積累探究數(shù)學(xué)問題的活動經(jīng)驗,發(fā)展空間觀念和推理能力。
【教材內(nèi)容】新人教版義務(wù)教育課程標準實驗教科書四年級下冊數(shù)學(xué)第67頁例6、“做一做”及練習(xí)十六的第1、2、3題。
【教材分析】
三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在三角形的概念及分類之后教學(xué)的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。教材很重視知識的探索與發(fā)現(xiàn),安排兩次實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進行自主探索和交流的空間和時間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、拼等活動,讓學(xué)生探索、實驗、交流、推理歸納出三角形的內(nèi)角和是180°。
【學(xué)情分析】
。、在學(xué)習(xí)本課時,學(xué)生已經(jīng)有了探索三角形內(nèi)角和的知識基礎(chǔ):知道直角和平角的度數(shù),會用量角器度量角的度數(shù);認識長方形、正方形,知道他們的四個角都是直角;認識了三角形,知道了三角形按角分有銳角三角形、直角三角形和鈍角三角形;已經(jīng)知道了等腰三角形和正三角形。
。、已經(jīng)有一部分學(xué)生知道了三角形內(nèi)角和是180°,只是知其然而不知所以然。
【教學(xué)目標】
1通過“量、剪、拼”等活動發(fā)現(xiàn)、驗證三角形的內(nèi)角和是180°,并能運用這個知識解決一些簡單的問題。
2.在觀察、猜想、操作、合作、分析交流等具體活動中,提高動手操作能力,積累基本的數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。
3.在參與數(shù)學(xué)學(xué)習(xí)活動的過程中,獲得成功的體驗,感受數(shù)學(xué)探究的嚴謹與樂趣。
【教學(xué)重點】
探索發(fā)現(xiàn)、驗證“三角形內(nèi)角和是180°”,并運用這個知識解決實際問題。
【教學(xué)難點】驗證“三角形的內(nèi)角和是180°”。
【教(學(xué))具準備】
多媒體課件; 銳角三角形、直角三角形、鈍角三角形紙片若干個各類三角形(也包括等邊、等腰)、長方形、正方形若干個;每人一個量角器;一把剪刀;每人一副三角尺。
【教學(xué)步驟】
一、復(fù)習(xí)舊知 引出課題
1、你已經(jīng)知道有關(guān)三角形的哪些知識?
2、出示課題:三角形的內(nèi)角和
設(shè)計意圖:也自然導(dǎo)入新課。
二、提出問題 引發(fā)猜想
1、提出問題:看到這個課題,你有什么問題想問的?
預(yù)設(shè):(1)三角形的內(nèi)角指的是哪些角?
。2)三角形的內(nèi)角和是什么意思?
。3)三角形的內(nèi)角一共是多少度?
2、引發(fā)猜想
猜一猜:三角形的內(nèi)角和是多少度?你是怎么猜的?
設(shè)計意圖:提出一個問題比解決一個問題更重要。課始在復(fù)習(xí)三角形已學(xué)知識后,引導(dǎo)學(xué)生提出有關(guān)三角形的新問題,讓學(xué)生學(xué)習(xí)自己想研究的內(nèi)容,無疑激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的問題意識。由于學(xué)生在平時使用三角板時已經(jīng)若隱若現(xiàn)地有了特殊的直角三角形的內(nèi)角和是180度這一感覺,因此本環(huán)節(jié),要求學(xué)生猜一猜三角形的內(nèi)角和是多少,并說說是怎么猜的,以激發(fā)學(xué)生已有知識經(jīng)驗,并體會到猜想要合理且有根據(jù),同時也為推理驗證的引出作必要的鋪墊。
三、操作驗證 形成結(jié)論
1、交流驗證方法:
。1)用什么方法證明三角形的內(nèi)角和是180度呢?
預(yù)設(shè):
、倭克惴
、诩羝捶
、壅燮捶ǖ
。2)三角形的個數(shù)有無數(shù)個,驗證哪些三角形可以代表所有的三角形?我們的操作過程怎么分工才會做到省時又高效?
2、動手驗證
3、全班匯報交流
4、小結(jié):剛才通過大家的動手操作驗證了三角形的內(nèi)角和是180 °度。但動手操作會存在一定的誤差,我們的結(jié)論也可能存在偏差。
5、方法拓展
推理驗證:用直角三角形的內(nèi)角和來證明其他三角形內(nèi)角和是180 °的方法。
6、形成結(jié)論:任意三角形的內(nèi)角和是180 °。
設(shè)計意圖:《標準》指出:“教師應(yīng)激發(fā)學(xué)生的積極性,向?qū)W生提供充分從事數(shù)學(xué)活動的機會,幫助他們在自主探索和合作交流的過程中真正理解和掌握基本的數(shù)學(xué)知識與技能、數(shù)學(xué)思想和方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗!辈聹y后先獨立思考驗證的方法,再進行全班交流,給學(xué)生充分的活動時間和空間,讓學(xué)生動手操作,使學(xué)生在量、剪、拼、折等一系列操作活動中發(fā)現(xiàn)了三角形內(nèi)角和是180°這個結(jié)論。在探索活動前,交流如何使研究樣本具有代表性和全面性與如何分工做到操作省時高效這兩個問題,培養(yǎng)學(xué)生嚴謹、科學(xué)正確的研究態(tài)度,讓學(xué)生在活動中積累基本的數(shù)學(xué)活動經(jīng)驗,為后續(xù)的學(xué)習(xí)提供了經(jīng)驗支撐。
四、應(yīng)用結(jié)論 解決問題
1、鞏固新知:想一想,算一算。
2、解決問題:等腰三角形風(fēng)箏的頂角是多少度?
3、辨析訓(xùn)練,完善結(jié)論。
五、課堂總結(jié),歸納研究方法
今天這節(jié)課你學(xué)到了哪些知識?你是怎樣得到這些知識的?
六、課后延伸:用今天所學(xué)的方法繼續(xù)研究四邊形的內(nèi)角和。
七、板書設(shè)計:
三角形的內(nèi)角和
猜測: 三角形的內(nèi)角和是180°?
驗證: 量 拼
結(jié)論: 任意三角形的內(nèi)角和是180°
三角形內(nèi)角和教學(xué)設(shè)計 篇3
教學(xué)內(nèi)容:
教材第67頁例6、“做一做”及教材第69頁練習(xí)十六第1~3題。
教學(xué)目標:
1.通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
2.能運用三角形的內(nèi)角和是180°這一結(jié)論,求三角形中未知角的度數(shù)。
3.培養(yǎng)學(xué)生動手動腦及分析推理能力。
重點難點:
掌握三角形的內(nèi)角和是180°。
教學(xué)準備:
三角形卡片、量角器、直尺。
導(dǎo)學(xué)過程
一、復(fù)習(xí)
1、什么是平角?平角是多少度?
2、計算角的度數(shù)。
3、回憶三角形的相關(guān)知識。(出示直角三角形、銳角三角形、鈍角三角形)
二、新知
。ㄔO(shè)計意圖:讓學(xué)生經(jīng)歷質(zhì)疑驗證結(jié)論這樣的思維過程,真正整體感知三角形內(nèi)角和的知識,真正驗證了“實踐出真知” 的道理,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。同時,培養(yǎng)學(xué)生的綜合素養(yǎng))
1、讀學(xué)卡的學(xué)習(xí)目標、任務(wù)目標,做到心里有數(shù)。
2、揭題:課件演示什么是三角形的內(nèi)角和。
3、猜想:三角形的內(nèi)角和是多少度。
4、驗證:
。1)初證:用一副三角板說明直角三角形的內(nèi)角和是180°。
。2)質(zhì)疑:三角板是特殊的直角三角形,不具有普遍性,不能代表所有三角形。
(3)再證:請按學(xué)卡提示,拿出學(xué)具,選擇自己喜歡的方式驗證三角形的內(nèi)角和 是180°(師巡視)
。4)匯報結(jié)論(清楚明白的給小組加優(yōu)秀10分)
5、結(jié)論:修改板書,把“?”去掉,寫“是”。
6、追問:把兩塊三角板拼在一起,拼成的大三角形的內(nèi)角和是多少?說明三角形無論大小它的內(nèi)角和都是180°(課件演示)
7、看微課感知“偉大的發(fā)現(xiàn)”(設(shè)計意圖:讓學(xué)生感受自己所做的和帕斯卡發(fā)現(xiàn)三角形內(nèi)角和是180°的過程是一樣的,從而培養(yǎng)孩子的自信心和創(chuàng)造力。)
三、知識運用(課件出示練習(xí)題,生解答)
1、填空
。1)一個三角形,它的兩個內(nèi)角度數(shù)之和是110 ,第三個內(nèi)角是( ).
。2)一個直角三角形的一個銳角是50,則另一個銳角是( )。
。3)等邊三角形的3個內(nèi)角都是( )。
。4)一個等腰三角形,它的一個底角是50,那么它的頂角是( )。
(5)一個等腰三角形的頂角是60,這個三角形也是( )三角形。
2、判斷
(1)一個三角形中最多有兩個直角。 ( )
。2)銳角三角形任意兩個內(nèi)角的和大于90。 ( )
。3)有一個角是60的等腰三角形不一定是等邊三角形。 ( )
。4)三角形任意兩個內(nèi)角的和都大于第三個內(nèi)角。 ( )
。5)直角三角形中的兩個銳角的和等于90。 ( )
四、拓展探究
根據(jù)所學(xué)的知識,你能想辦法求出四邊形、五邊形的內(nèi)角和嗎?
1、小組討論。
2、匯報結(jié)果。
3、課件提示幫助理解。
五、自我評價根據(jù)學(xué)卡要求給自己評出“優(yōu)”“良好”“合格”。
六、談?wù)勛约罕竟?jié)課的收獲。
教學(xué)反思
今天我講了《三角形內(nèi)角和》這部分內(nèi)容,學(xué)生其實通過不同途徑已經(jīng)知道三角形內(nèi)角和是180°,是不是說這節(jié)課的重難點就已經(jīng)突破了,只要學(xué)生能應(yīng)用知識解決問題就算是達到這節(jié)課的教學(xué)目標了呢?我想應(yīng)該好好思考教材背后要傳遞的東西。
任何規(guī)律的發(fā)現(xiàn)都要經(jīng)過一個猜測、驗證的過程,不經(jīng)歷這個探究的過程,學(xué)生對于這一內(nèi)容的認識就不深刻,聰明的孩子還會懷疑三角形內(nèi)角和是180°嗎?。因此這個結(jié)論必須由實踐操作得出結(jié)論。所以最終我把本課定為一個實踐探究課。
如何開篇點題,是我這次要解決的第一個問題。怎樣才能讓學(xué)生由已知順利轉(zhuǎn)向?qū)ξ粗奶角,怎樣直接轉(zhuǎn)向研究三個角的“和”的問題呢?因此我只設(shè)計了三個簡單的問題然學(xué)生快速進入主題。
如何驗證內(nèi)角和是180°,是我一直比較糾結(jié)的環(huán)節(jié)。由于小學(xué)生的知識背景有限,無法利用證明給予嚴格的驗證。只能通過動手操作、空間想象來讓孩子體會,這些都有“實驗”的特點,那么就都會有誤差,其實都無法嚴格的證明。但是這節(jié)課我們除了要尊重知識的嚴謹還應(yīng)該尊重孩子的認知。如果通過剪拼、折疊、想象后,還有的孩子認為三角形內(nèi)角和是180°值得懷疑的話,這無非也是件好事,說明孩子體會到了這些方法的不嚴謹,同時對知識有一種尊重,對自己的操作結(jié)果充滿自信,否則拼個差不多也可以簡單的認同了內(nèi)角和是180°。
本節(jié)課的練習(xí)的設(shè)置也是努力做到有梯度、有趣味、有拓展。從開始的搶答內(nèi)角和體會三角形內(nèi)角和跟大小無關(guān)、跟形狀無關(guān),到已知兩個角的度數(shù)求第三個角,這些都是鞏固。之后的,求拼接兩個完全一樣的直角三角形后,得到的圖形的內(nèi)角和是多少度,求被剪開的三角形,形成的新圖形的內(nèi)角和是多少度,這些都是對三角形內(nèi)角和的一次拓展。讓學(xué)生的認知發(fā)生沖突,提出挑戰(zhàn)。
給學(xué)生一個平臺,她會給你一片精彩。通過動手操作來驗證內(nèi)角和是否是180°,學(xué)生最容易出現(xiàn)的就是把3個角剪下來拼一拼,個別人可能會想到折的方法。而這節(jié)課上有個小姑娘研究的是直角三角形,她的折法很巧妙,將兩個銳角折過來,剛好拼成一個直角,這個直角和原來三角形已有的直角就重疊在了一起,兩個直角就180°。雖然我知道這樣的方法,但是通過試講,孩子們沒有這樣的表現(xiàn),我就沒有奢求什么。但是今天的課堂太豐富多元了。這樣的方法都出現(xiàn)了讓我覺得特別值得肯定。為什么會這樣呢?我想還是因為我給了他們足夠的時間去思考。當有了空間,孩子才會施展他們的才華。這是我的一大收獲。
前邊驗證時間過多,到練習(xí)時間就有些少,特別是求四邊形和六邊形內(nèi)角和時,給的時間過短,學(xué)生沒有充分思維。
總而言之,這次的公開課,給了我一次學(xué)習(xí)和鍛煉的機會。在教案設(shè)計時,該怎么樣把每一個環(huán)節(jié)落實到位,怎么樣說好每一句話,預(yù)設(shè)好每一個環(huán)節(jié),在教研中聽取各位教師的點評,讓我有了茅塞頓開的感覺。在此,我衷心感謝數(shù)學(xué)團隊教師對我中肯的評價,感謝他們對我的直言不諱,無私奉獻自己的想法,讓我在教學(xué)中,能夠在一個輕松和諧的教學(xué)氛圍中與學(xué)生共同去探討,去發(fā)現(xiàn),去學(xué)習(xí)。
三角形內(nèi)角和教學(xué)設(shè)計 篇4
【教材分析】
《三角形內(nèi)角和》是北師大版《數(shù)學(xué)》四年級下冊的內(nèi)容。是在學(xué)生學(xué)習(xí)了三角形的概念及特征之后進行的,它是掌握多邊形內(nèi)角和及其他實際問題的基礎(chǔ),因此,掌握“三角形的內(nèi)角和是180度”這一規(guī)律具有重要意義。教材首先出示了兩個三角形比內(nèi)角和這一情境,讓學(xué)生通過測量、折疊、拼湊等方法,發(fā)現(xiàn)三角形的內(nèi)角和是180度。教材還安排了“試一試”,“練一練”的內(nèi)容。已知三角形兩個內(nèi)角的度數(shù),求出第三個角的度數(shù)。
【學(xué)生分析】
經(jīng)過近四年的課改實驗,孩子們已經(jīng)有了一定的自主探究,合作交流的能力。他們喜歡在實踐中感悟,在實踐中發(fā)表自己的見解,對數(shù)學(xué)產(chǎn)生了濃厚的興趣。
知識方面:學(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、直角、銳角、平角這些角的知識。
2.能力方面:已具備了初步的動手操作能力和探究能力,并且能夠進行簡單的微機操作。
【學(xué)習(xí)目標】
知識目標:掌握三角形內(nèi)角和是180度這一規(guī)律,并能實際應(yīng)用。
能力目標: 培養(yǎng)學(xué)生主動探索、動手操作的能力。培養(yǎng)學(xué)生收集、整理、歸納信息的能力。使學(xué)生養(yǎng)成良好的合作習(xí)慣。
情感目標: 讓學(xué)生體會幾何圖形內(nèi)在的結(jié)構(gòu)美。
【教學(xué)過程】
一、 情景激趣,質(zhì)疑猜想。
播放動畫片:在圖形王國中,有一天三角形大家庭里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。
鈍角三角形大聲叫著:“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大!变J角三角形也不示弱:“我的銳角雖然比鈍角小,但我的內(nèi)角和并不比你小!敝苯侨切握f:“別爭了,三角形的內(nèi)角和都是180°。我們的內(nèi)角和是一樣大的!
師:想一想,什么是三角形的三個內(nèi)角的和。
生:三角形的三個內(nèi)角的度數(shù)和。
師:同學(xué)們剛才看了動畫片你們知道誰說對了嗎?不知道的話想一想,猜一猜誰說的對?
學(xué)生進行猜想,自由發(fā)言。
。ㄔO(shè)計意圖:教師借助多媒體技術(shù)創(chuàng)設(shè)問題情境,架起數(shù)學(xué)學(xué)習(xí)與現(xiàn)實生活,抽象數(shù)學(xué)與具體問題之間的橋梁,激發(fā)了學(xué)生的學(xué)習(xí)興趣。鼓勵學(xué)生主動質(zhì)疑猜想是培養(yǎng)學(xué)生學(xué)會學(xué)習(xí)的重要途徑。)
二、自主探究,驗證猜想
師:剛才大部分同學(xué)都猜直角三角形說的對。三角形的三個內(nèi)角的和都是 180°,你能設(shè)法驗證這個猜想嗎?
生1:能。我量出三角形的三個內(nèi)角和度數(shù),加起來是否接近180°(量的時候可能會有些誤差)。
生2:我把三角形的三個角剪下來拼一拼是否能拼成一個平角。
生3:我把三角形的三個角撕下來,拼一拼是否180°。
生4:我把三角形的三個角往里折,看一看這三個角是否折成一個平角。
……
師:上面你們說了不少的驗證猜想的方法,請大家用準備好的材料用你喜歡的方法,動手驗證自己的猜想吧。▽W(xué)生把三角形的三個內(nèi)角分別標上∠1、∠2、∠3,以免在剪拼時把內(nèi)角搞混了。)
學(xué)生邊實驗邊整理信息,完成實驗報告單后,學(xué)習(xí)小組內(nèi)進行交流討論。
。ㄔO(shè)計意圖:驗證猜想為學(xué)生提供了“做數(shù)學(xué)”的機會,讓每個學(xué)生圍繞自己的猜想、決定自己的探索方向、選擇自己的方法,量一量、剪一剪、撕一撕、拼一拼、折一折,讓學(xué)生在操作中自主探究數(shù)學(xué)知識的產(chǎn)生發(fā)展過程。驗證自己的猜想,鼓勵學(xué)生用不同的方法進行驗證,促進學(xué)生創(chuàng)新能力的發(fā)展。)
三、交流評價,歸納結(jié)論。
學(xué)生操作驗證,完成實驗報告單后,利用投影儀展示學(xué)生填寫的實驗報告單。
實驗報告單
實驗名稱
三角形內(nèi)角和
實驗?zāi)康?/p>
探究三角形內(nèi)角和是多少度。
實驗材料
尺子
剪刀
量角器
銳角三角形紙片
直角三角形紙片
鈍角三角形紙片
我的方法
我的發(fā)現(xiàn)
我的表現(xiàn)
自評
互評
學(xué)生在展示過程中,充分交流和討論實驗中各自使用的方法和發(fā)現(xiàn),教師要對學(xué)生的閃光點及時進行表揚和鼓勵。
師生共同歸納,得出結(jié)論:
三角形內(nèi)角和等于180°
。ㄔO(shè)計意圖:各學(xué)習(xí)小組匯報自己的驗證過程,展示探究的成果。對學(xué)生探索發(fā)現(xiàn)的方法、策略進行總結(jié)歸納,集思廣益,取長補短達到共識。在交流、歸納過程中,及時肯定其中的閃光點給予表揚和鼓勵,使他們體驗到成功的愉悅,促使他們獲得更大的成功。)
四、分層練習(xí),鞏固創(chuàng)新。
①課件出示:
師:這個三角形是什么三角形?知道幾個內(nèi)角的度數(shù)?
生:直角三角形,知道一個角是30°,還有一個角是90°!螦=90°-30°=60°。
師:根據(jù)今天所學(xué)的知識,誰能求出A的度數(shù)?大家自己試一試。
學(xué)生做完后反饋講評時讓學(xué)生說說自己的方法。
生1:用三角形內(nèi)角的和(180°)減去30°再減去90°,算出∠A是60°。
∠A=180°-30°-90°=60°。
生2:先用30°加上90°得120°再用180°減去120°也可得∠A =60°。
、趯W(xué)生完成完成P29的第一題。
引導(dǎo)學(xué)生按照前面的方法獨立完成,教師巡視,集體訂正。
③猜一猜三角形的另外兩個角可能各是多少度。
同桌同學(xué)互相說一說。(答案不唯一)
、苄〗M操作探究活動。
讓學(xué)生剪出幾個不同的四邊形,按表中所給的方法以做一做,并填一填。
方 法
四邊形內(nèi)角和
用量角器量出每個內(nèi)角的度數(shù),并相加。
把四邊形四個角剪下來,拼在一起。
把四邊形分為兩個三角形。
填表后讓學(xué)生想一想、互相說一說,四邊形內(nèi)角和是多少度?
(設(shè)計意圖:引導(dǎo)學(xué)生將探究學(xué)習(xí)活動中所獲得的結(jié)論經(jīng)驗和方法運用于探索解決簡單的實際問題。組織學(xué)生參與具有趣味性、操作性和開放性的練習(xí)活動,讓學(xué)生在鞏固練習(xí)中培養(yǎng)動手能力、實踐能力和創(chuàng)新思維。)
三角形內(nèi)角和教學(xué)設(shè)計 篇5
教學(xué)要求
1、通過動手操作,使學(xué)生理解并掌握三角形的內(nèi)角和是180°的結(jié)論。
2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形中未知角的度數(shù)。
3、培養(yǎng)學(xué)生動手動腦及分析推理能力。
教學(xué)重點
三角形的內(nèi)角和是180°的規(guī)律。
教學(xué)難點
使學(xué)生理解三角形的內(nèi)角和是180°這一規(guī)律。
教學(xué)用具
每個學(xué)生準備銳角三角形、直角三角形、鈍角三角形紙片各一張,量角器。
教學(xué)過程:
一、出示預(yù)習(xí)提綱
1、三角形按角的不同可以分成哪幾類?
2、一個平角是多少度?1個平角等于幾個直角?
3、如圖,已知∠1=35°,∠2=75°,求∠3的度數(shù)。
二、展示匯報交流
1、投影出示一組三角形:(銳角三角形、鈍角三角形、直角三角形)。三角形有幾個角?老師指出:三角形的這三個角,就叫做三角形的三個內(nèi)角。(板書:內(nèi)角)
2、三角形三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。(板書課題:三角形的內(nèi)角和)今天我們一起來研究三角形的內(nèi)角和有什么規(guī)律。
3、以小組為單位先畫4個不同類型的三角形,利用手中的工具分別計算三角形三個內(nèi)角的和各是多少度?
4、指名學(xué)生匯報各組度量和計算的結(jié)果。你有什么發(fā)現(xiàn)?
5、大家算出的三角形的內(nèi)角和都接近180°,那么,三角形的內(nèi)角和與180°究竟是怎樣的關(guān)系呢?就讓我們一起來動手實驗研究,我們一定能弄清這個問題的。
6、剛才我們計算三角形的內(nèi)角和都是先測量每個角的度數(shù)再相加的。在量每個內(nèi)角度數(shù)時只要有一點誤差,內(nèi)角和就有誤差了。我們能不能換一種方法,減少度量的次數(shù)呢?
提示學(xué)生,可以把三個內(nèi)角拼成一個角,就只需測量一次了。
7、請拿出桌上的直角三角形紙片,想一想,怎樣折可以把三個角拼在一起,試一試。
8、三個角拼在一起組成了一個什么角?我們可以得出什么結(jié)論?(直角三角形的內(nèi)角和是180°)
9、拿一個銳角三角形紙片試試看,折的方法一樣。再拿鈍角三角形折折看,你發(fā)現(xiàn)了什么?(直角三角形和鈍角三角形的內(nèi)角和也是180°)
10、那么,我們能不能說所有三角形的內(nèi)角和都是180°呢?為什么?(能,因為這三種三角形就包括了所有三角形)11。老師板書結(jié)論:三角形的內(nèi)角和是180°。
12、一個三角形中如果知道了兩個內(nèi)角的度數(shù),你能求出另一個角是多少度嗎?怎樣求?
13、出示教材85頁做一做。讓學(xué)生試做。
14、指名匯報怎樣列式計算的。兩種方法均可。
∠2=180°—140°—25°=15°
∠2=180°(140°+25°)=15°
課后反思:
對于三角形的內(nèi)角和,學(xué)生并不陌生,在平時的做題中已經(jīng)涉及到了。可是學(xué)生并不知道如何去驗證,所以本節(jié)課,重點讓孩子們經(jīng)歷體驗,感悟圖形。從而收獲了經(jīng)驗。特別是動手操作將三角形拼成一個直角時,有的孩子將角剪得非常小,很不好拼,在此進行了重點的提示。
三角形內(nèi)角和教學(xué)設(shè)計 篇6
教學(xué)內(nèi)容:本節(jié)課的教學(xué)內(nèi)容是義務(wù)教育課程標準實驗教科書數(shù)學(xué)四年級下冊第五單位的第四課時《三角形的內(nèi)角和》,主要內(nèi)容是:驗證三角形的內(nèi)角和是180°等。
教學(xué)內(nèi)容分析:三角形的內(nèi)角和是180是三角形的一個重要性質(zhì),它有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,也是進一步學(xué)習(xí)的基礎(chǔ)。
教學(xué)對象分析:作為四年級的學(xué)生已有一定的生活經(jīng)驗,在平時的生活中已經(jīng)接觸到三角形,在尊重學(xué)生已有的知識的基礎(chǔ)上和利用他們已掌握的學(xué)習(xí)方法,教師把課堂教學(xué)組織生動、活潑,突出知識性、趣味性和生活性,使學(xué)生能在輕松愉快的氣氛中學(xué)習(xí)。
教學(xué)目標:
1、知識目標:學(xué)生通過量、剪、拼、擺等操作學(xué)具活動,找到新舊知識之間的聯(lián)系,主動掌握三角形內(nèi)角和是180°,并運用所學(xué)知識解決簡單的實際問題。
2、能力目標:培養(yǎng)學(xué)生的觀察、歸納、概括能力和初步的空間想象力。
3、情感目標:培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力,在學(xué)生親自動手和歸納中,感受到理性的美。
教學(xué)重點:理解并掌握三角形的內(nèi)角和是180°。
教學(xué)難點:驗證所有三角形的內(nèi)角之和都是180°。
教具準備:多媒體課件、各種三角形等。
學(xué)具準備:三角形、剪刀、量角器等。
教學(xué)過程:
一、出示課題,復(fù)習(xí)舊知
1、認識三角形的內(nèi)角。
(1)復(fù)習(xí)三角形的概念。
。ǎ玻┙榻B三角形的“內(nèi)角”。
2、理解三角形的內(nèi)角“和”。
【設(shè)計理念】通過復(fù)習(xí)三角形的概念的過程,不僅可以鞏固學(xué)生的舊知識而且可以為新知識教學(xué)提供知識鋪墊。
二、動手操作,探究新知
1、通過預(yù)習(xí),認識結(jié)論,提出疑問
2、驗證三角形的內(nèi)角和
(1)用“量一量、算一算”的方法進行驗證
、賲R報測量結(jié)果
②產(chǎn)生疑問:為什么結(jié)果不統(tǒng)一?
③解決疑問:因為存在測量誤差。
(2)用“剪一剪、拼一拼”的方法進行驗證
、僦笇(dǎo)剪法。
、俜謩e拼:銳角三角形、直角三角形、鈍角三角形。
、垓炞C得出:三角形的內(nèi)角和是180°。
。3)用“折一折”的方法進行驗證
、僦笇(dǎo)折法。
、俜謩e折:銳角三角形、直角三角形、鈍角三角形。
、墼俅悟炞C得出:三角形的內(nèi)角和是180°。
3、看書質(zhì)疑
【設(shè)計理念】此過程采用直觀教學(xué)手段。通過讓學(xué)生動手量、拼等直觀演示操作直接作用于學(xué)生的感官,激活學(xué)生的思維,有助于學(xué)生的認識由具體到抽象的轉(zhuǎn)化。從而明確三角形的內(nèi)角和是180°。
三、實踐應(yīng)用,解決問題:
1、在一個三角形中,∠1=140°,∠3=25°,求∠2的度數(shù)。
2、求出三角形各個角的度數(shù)。(圖略)
3、爸爸給小紅買了一個等腰三角形的風(fēng)箏。它的一個底角是
70°,它的頂角是多少度?
4、根據(jù)三角形的內(nèi)角和是180°,你能求出下面的四邊形和正六邊形的內(nèi)角和嗎?(圖略)
5、數(shù)學(xué)游戲。
【設(shè)計理念】練習(xí)設(shè)計的優(yōu)化是優(yōu)化教學(xué)過程的一個重要方向,所以在新授后的鞏固練習(xí)中注意設(shè)計層層遞進,既有坡度、又注意變式,更有一練一得之妙,從而使學(xué)生牢固掌握新知。
四、總結(jié)全課、延伸知識:
1、今天你們學(xué)到了哪些知識?是怎樣獲取這些知識的?你感覺學(xué)得怎樣?
2、知識延伸:給學(xué)生介紹一種更科學(xué)的驗證方法——轉(zhuǎn)化。
【設(shè)計理念】課堂總結(jié)不僅要關(guān)注學(xué)生學(xué)會了什么,更要關(guān)注用什么方法學(xué),要有意識的促進學(xué)生反思。
板書設(shè)計: 三角形的內(nèi)角和是180°
方法:①量一量 拼角(略)
、谄匆黄
③折一折
【設(shè)計理念】此板書設(shè)計我力求簡明扼要、布局合理、條理分明,體現(xiàn)了簡潔美和形象美,把知識的重點充分地展現(xiàn)在學(xué)生的眼前,起了畫龍點睛的作用。
三角形內(nèi)角和教學(xué)設(shè)計 篇7
教學(xué)目標:
1.學(xué)生動手操作,通過量、剪、拼、折的方法,探索并發(fā)現(xiàn)“三角形內(nèi)角和等于180度”的規(guī)律。
2.在探究過程中,經(jīng)歷知識產(chǎn)生、發(fā)展和變化的過程,通過交流、比較,培養(yǎng)策略意識和初步的空間思維能力。
3.體驗探究的過程和方法,感受思維提升的過程,激發(fā)求知欲和探索興趣。
教學(xué)重點:探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”這一規(guī)律的過程,并歸納總結(jié)出規(guī)律。
教學(xué)難點:對不同探究方法的指導(dǎo)和學(xué)生對規(guī)律的靈活應(yīng)用。
教具學(xué)具準備:課件、表格、學(xué)生準備不同類型的三角形各一個,量角器。
教學(xué)過程:
一、激趣引入
1、猜謎語
師:同學(xué)們喜歡猜謎語嗎?
生:喜歡。
師:那么,下面老師給大家出個謎語。請聽謎面:
形狀似座山,穩(wěn)定性能堅,三竿首尾連,學(xué)問不簡單。(打一圖形)大家一起說是什么?
生:三角形
2、介紹三角形按角的分類
師:真聰明!板書“三角形”!那么,三角形按角分可以分為鈍角三角形、直角三角形和銳角三角形這幾類
師分別出示卡片貼于黑板。
3、激發(fā)學(xué)生探知心里
師:大家會不會畫三角形啊?
生:會
師:下面請你拿出筆在本子上畫出一個三角形,但是我有個要求:畫出一個有兩個直角的三角形。試一試吧!
生:試著畫
師:畫出來沒有?
生:沒有
師:畫不出來了,是嗎?
生:是
師:有兩個直角的三角形為什么畫不出來呢?這就是三角形中角的奧秘!這節(jié)課我們就來學(xué)習(xí)有關(guān)三角形角的知識“三角形內(nèi)角和”(板書課題)
二、探究新知
1、認識三角形的內(nèi)角
看看這三個字,說說看,什么是三角形的內(nèi)角?
生:就是三角形里面的角。
師:三角形有幾個內(nèi)角。
生:3個。
師:那么為了研究的時候比較方便,我們把這三個內(nèi)角標上角1角2角3,請同學(xué)們也拿出桌子上三角形標出(教師標出)
師:你知道什么是三角形“內(nèi)角和”嗎?
生:三角形里面的角加起來的度數(shù)。
2、研究特殊三角形的內(nèi)角和
師:分別拿出一個直角三角板,請同學(xué)們看看這屬于什么三角形,說出每個角的度數(shù),那這個三角形的內(nèi)角和是多少度?
生:算一算:90°+60°+30°=180°90°+45°+45°=180°
師:180°也是我們學(xué)習(xí)過的什么角?
生:平角
師:從剛才兩個三角形的內(nèi)角和的計算中,你發(fā)現(xiàn)了什么?
3、研究一般三角形的內(nèi)角和
師:猜一猜,其它三角形的內(nèi)角和是多少度呢?
生:
4、操作、驗證
師:同學(xué)們猜的結(jié)果各不相同,那怎么辦呀?你能想個辦法驗證一下嗎?
要求:
。1)每4人為一個小組。
。2)每個小組都有不同類型的三角形,每種類型都需要驗證,先討論一下,怎樣才能較快的完成任務(wù)?
(3)驗證的方法不只一種,同學(xué)們要多動動腦子。
師:好,開始活動!
師:巡視指導(dǎo)
師:好!請一組匯報測量結(jié)果。
生:通過測量我們發(fā)現(xiàn)每個三角形的三個內(nèi)角和都在180度左右。
師:其實三角形的內(nèi)角和就是180度,只是因為我們在測量時存在了一些誤差,所以測量出的結(jié)果不準確。
生:我是用撕的方法,把直角三角形三個內(nèi)角撕下來,拼在一起,拼成一個平角,是180度。
師:好!非常好!
師:有其它同學(xué)操作銳角三角形和鈍角三角形的嗎?誰愿意到前面來展示一下?生:展示銳角三角形(撕拼)
生:展示折一折我是用折的方法把銳角三角形三個角折在一起,組成一個平角,是180°。
師:老師也做了一個實驗看一看是不是和大家得到結(jié)果一樣呢?(多媒體展示)
現(xiàn)在老師問同學(xué)們,三角形的內(nèi)角和是多少?
生:180度。
師:通過驗證:我們知道了無論是銳角三角形,直角三角形還是鈍角三角形,它們的內(nèi)角和都是180°。板書:三角形內(nèi)角和等于180度。現(xiàn)在讓我們用自豪的、肯定的語氣讀出我們的發(fā)現(xiàn):“三角形的內(nèi)角和是180°”。
三、解決疑問
師:好!請同學(xué)們回憶一下,剛才課前老師讓同學(xué)們畫出有兩個直角的三角形畫出來了嗎?
生:沒有
師:那你能用這節(jié)課的知識解釋一下為什么畫不出來嗎?
生:兩個直角是180度,沒有第三個角了。
師:如果想畫出有兩個角是鈍角的三角形你能畫出來嗎?
生:大于180度,也畫不出第三個角。師:所以,生活中不存在這樣的三角形。
師:學(xué)會了知識,我們就要懂得去運用。
四、鞏固提高
1.填空。
。1)三角形的內(nèi)角和是()度。
。2)一個三角形的兩個內(nèi)角分別是80°和75°,它的另一個角是()。
2.求下面各角的度數(shù)。
(1)∠1=27°∠2=53°∠3=()這是一個()三角形。
三角形內(nèi)角和教學(xué)設(shè)計 篇8
設(shè)計思路
遵循由特殊到一般的規(guī)律進行探究活動是這節(jié)課設(shè)計的主要特點之一。學(xué)生對三角尺上每個角的度數(shù)比較熟悉,就從這里入手。先讓學(xué)生算出每塊三角尺三個內(nèi)角的和是180°,引發(fā)學(xué)生的猜想:其它三角形的內(nèi)角和也是180°嗎?接著,引導(dǎo)學(xué)生小組合作,任意畫出不同類型的三角形,用通過量一量、算一算,得出三角形的內(nèi)角和是180°或接近180°(測量誤差),再引導(dǎo)學(xué)生通過剪拼的方法發(fā)現(xiàn):各類三角形的三個內(nèi)角都可以拼成一個平角。再利用課件演示進一步驗證,由此獲得三角形的內(nèi)角和是180°的結(jié)論。這一系列活動潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”數(shù)學(xué)思想,為后繼學(xué)習(xí)奠定了必要的基礎(chǔ)。
最后讓學(xué)生運用結(jié)論解決實際問題,練習(xí)的安排上,注意練習(xí)層次,共安排三個層次,逐步加深。練習(xí)形式具有趣味性,激發(fā)了學(xué)生主動解題的積極性。第一個練習(xí)從知識的直接應(yīng)用到間接應(yīng)用,數(shù)學(xué)信息的出現(xiàn)從比較顯現(xiàn)到較為隱藏。這些題檢測不同層次的學(xué)生是否掌握所學(xué)知識應(yīng)該達到的基本要求,顧及到智力水平發(fā)展較慢和中等的同學(xué),第3個練習(xí)設(shè)計了開放性的練習(xí),在小組內(nèi)完成。由一個同學(xué)出題,其它三個同學(xué)回答。先給出三角形兩個內(nèi)角的度數(shù),說出另外一個內(nèi)角。有唯一的答案。訓(xùn)練多次后,只給出三角形一個內(nèi)角,說出其它兩個內(nèi)角,答案不唯一,可以得出無數(shù)個答案。讓學(xué)生在游戲中消除疲倦激發(fā)興趣,拓展學(xué)生思維。兼顧到智力水平發(fā)展較快的同學(xué)。在整個教學(xué)設(shè)計中,本著“學(xué)貴在思,思源于疑”的思想,不斷創(chuàng)設(shè)問題情境,讓學(xué)生去實驗、去發(fā)現(xiàn)新知識的奧妙,從而讓學(xué)生在動手操作、積極探索的活動中掌握知識,積累數(shù)學(xué)活動經(jīng)驗,發(fā)展空間觀念和推理能力。
教學(xué)目標
1、讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。
2、讓學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實踐能力。并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。
3、使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。
教材分析
三角形的內(nèi)角和是三角形的一個重要特征。本課是安排在學(xué)習(xí)三角形的概念及分類之后進行的,它是學(xué)生以后學(xué)習(xí)多邊形的內(nèi)角和及解決其它實際問題的基礎(chǔ)。學(xué)生在掌握知識方面:已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;能力方面:經(jīng)過三年多的學(xué)習(xí),已具備了初步的動手操作能力和主動探究能力以及合作學(xué)習(xí)的習(xí)慣。
因此,教材很重視知識的探索與發(fā)現(xiàn),安排了一系列的實驗操作活動。教材呈現(xiàn)教學(xué)內(nèi)容時,不但重視體現(xiàn)知識的形成過程,而且注意留給學(xué)生充分進行自主探索和交流的空間,為教師靈活組織教學(xué)提供了清晰的思路。概念的形成沒有直接給出結(jié)論,而是通過量、算、拼等活動,讓學(xué)生探索、實驗、發(fā)現(xiàn)、討論交流、推理歸納出三角形的內(nèi)角和是180°。
教學(xué)重點
讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用的全過程。
教學(xué)準備
多媒體課件、學(xué)具。
教學(xué)過程
一、激趣引入
。ㄒ唬┱J識三角形內(nèi)角
師:我們已經(jīng)認識了什么是三角形,誰能說出三角形有什么特點?
生1:三角形是由三條線段圍成的圖形。
生2:三角形有三個角,……
師:請看屏幕(課件演示三條線段圍成三角形的過程)。
師:三條線段圍成三角形后,在三角形內(nèi)形成了三個角,(課件分別閃爍三個角及的弧線),我們把三角形里面的這三個角分別叫做三角形的內(nèi)角。(這里,有必要向?qū)W生直觀介紹“內(nèi)角”。)
。ǘ┰O(shè)疑,激發(fā)學(xué)生探究新知的心理
師:請同學(xué)們幫老師畫一個三角形,能做到嗎?(激發(fā)學(xué)生主動學(xué)習(xí)的心理)
生:能。
師:請聽要求,畫一個有兩個內(nèi)角是直角的三角形,開始。(設(shè)置矛盾,使學(xué)生在矛盾中去發(fā)現(xiàn)問題、探究問題。)
師:有誰畫出來啦?
生1:不能畫。
生2:只能畫兩個直角。
生3:只能畫長方形。
師(課件演示):是不是畫成這個樣子了?哦,只能畫兩個直角。
師:問題出現(xiàn)在哪兒呢?這一定有什么奧秘?想不想知道?
生:想。
師:那就讓我們一起來研究吧!
。ń沂久埽擅钜胄轮奶骄浚
二、動手操作,探究新知
(一)研究特殊三角形的內(nèi)角和
師:請看屏幕。(播放課件)熟悉這副三角板嗎?請拿出形狀與這塊一樣的三角板,并同桌互相指一指各個角的度數(shù)。(課件閃動其中的一塊三角板)
生:90°、60°、30°。(課件演示:由三角板抽象出三角形)
師:也就是這個三角形各角的度數(shù)。它們的和怎樣?
生:是180°。
師:你是怎樣知道的?
生:90°+60°+30°=180°。
師:對,把三角形三個內(nèi)角的度數(shù)合起來就叫三角形的內(nèi)角和。
師:(課件演示另一塊三角板的各角的度數(shù)。)這個呢?它的內(nèi)角和是多少度呢?
生:90°+45°+45°=180°。
師:從剛才兩個三角形內(nèi)角和的計算中,你發(fā)現(xiàn)什么?
生1:這兩個三角形的內(nèi)角和都是180°。
生2:這兩個三角形都是直角三角形,并且是特殊的三角形。
。ǘ┭芯恳话闳切蝺(nèi)角和
1、猜一猜。
師:猜一猜其它三角形的內(nèi)角和是多少度呢?同桌互相說說自己的看法。
生1:180°。
生2:不一定。
……
2、操作、驗證一般三角形內(nèi)角和是180°。
。1)小組合作、進行探究。
師:所有三角形的內(nèi)角和究竟是不是180°,你能用什么辦法來證明,使別人相信呢?
生:可以先量出每個內(nèi)角的度數(shù),再加起來。
師:哦,也就是測量計算,是嗎?那就請四人小組共同研究吧!
師:每個小組都有不同類型的三角形。每種類型的三角形都需要驗證,先討論一下,怎樣才能很快完成這個任務(wù)。(課前每個小組都發(fā)有銳角三角形、直角三角形、鈍角三角形,指導(dǎo)學(xué)生選擇解決問題的策略,進行合理分工,提高效率。)
。2)小組匯報結(jié)果。
師:請各小組匯報探究結(jié)果。
生1:180°。
生2:175°。
生3:182°。
。ㄈ├^續(xù)探究
師:沒有得到統(tǒng)一的結(jié)果。這個辦法不能使人很信服,怎么辦?還有其它辦法嗎?
生1:有。
生2:用拼合的辦法,就是把三角形的三個內(nèi)角放在一起,可以拼成一個平角。
師:怎樣才能把三個內(nèi)角放在一起呢?
生:把它們剪下來放在一起。
1、用拼合的方法驗證。
師:很好,請用不同的三角形來驗證。
師:小組內(nèi)完成,仍然先分工怎樣才能很快完成任務(wù),開始吧。
2、匯報驗證結(jié)果。
師:先驗證銳角三角形,我們得出什么結(jié)論?
生1:銳角三角形的內(nèi)角拼在一起是一個平角,所以銳角三角形的內(nèi)角和是180°。
生2:直角三角形的內(nèi)角和也是180°。
生3:鈍角三角形的內(nèi)角和還是180°。
3、課件演示驗證結(jié)果。
師:請看屏幕,老師也來驗證一下,是不是跟你們得到的結(jié)果一樣?(播放課件)
師:我們可以得出一個怎樣的結(jié)論?
生:三角形的內(nèi)角和是180°。
。ń處煱鍟喝切蔚膬(nèi)角和是180°學(xué)生齊讀一遍。)
師:為什么用測量計算的方法不能得到統(tǒng)一的結(jié)果呢?
生1:量的不準。
生2:有的量角器有誤差。
師:對,這就是測量的誤差。
三角形內(nèi)角和教學(xué)設(shè)計 篇9
課題
三角形的內(nèi)角和
手 記
教學(xué)目標
1.讓學(xué)生親自動手,通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。
2.在學(xué)生在動手獲取知識的過程中,培養(yǎng)學(xué)生的實踐能力,并通過動手操作把三角形內(nèi)角和轉(zhuǎn)化為平角的探究活動,向?qū)W生滲透“轉(zhuǎn)化”數(shù)學(xué)思想。
3.使學(xué)生體驗成功的喜悅,激發(fā)學(xué)生主動學(xué)習(xí)數(shù)學(xué)的興趣。
重點難點
重點:讓學(xué)生經(jīng)歷“三角形內(nèi)角和是180°”這一知識的形成、發(fā)展和應(yīng)用過程。
難點:探索、驗證三角形內(nèi)角和是180°的過程。
過程
資源
體驗?zāi)繕?/strong>
“學(xué)”與“教”
創(chuàng)設(shè)問題情境
課件出示:兩個三角板
遵循由特殊到一般的規(guī)律進行探究,引發(fā)學(xué)生的猜想后,引導(dǎo)學(xué)生探討所有的三角形的內(nèi)角和是不是也是180°。
這是同學(xué)們熟悉的三角尺,請同學(xué)們說一說這兩個三角尺的三個內(nèi)角分別是多少度?
生: 45°、90°、45°。
生: 30°、90°、60°。
師:仔細觀察,算一算這兩個三角形的內(nèi)角和是多少度?
生:90°+45°+45°=180°。
生:90°+60°+30°=180°。
師:通過剛才的算一算,我們得到這兩個三角形的內(nèi)角和是180°,由此你想到了什么?
生:直角三角形內(nèi)角和是180°,銳角三角形、鈍角三角形內(nèi)角和也是180°。
師:這只是我們的一種猜想,三角形的內(nèi)角和是否真的等于180°,還需要我們?nèi)ヲ炞C。
構(gòu)建
模型
每個組準備六個三角形(銳角三角形2個、直角三角形2個、鈍角三角形2個)
課件
學(xué)生自己剪的一個任意三角形
大膽放手讓學(xué)生通過有層次的自主操作活動,幫助學(xué)生結(jié)合已有的知識經(jīng)驗,探究驗證三角形內(nèi)角和的不同方法。
讓學(xué)生在經(jīng)歷“提出猜想—實驗驗證—得出結(jié)論”中感悟、體驗知識的形成過程,將“三角形內(nèi)角和是180°”一點一滴,浸入學(xué)生大腦,融入已有認知結(jié)構(gòu)。
這一系列活動同時還潛移默化地向?qū)W生滲透了“轉(zhuǎn)化”的數(shù)學(xué)思想,為后繼學(xué)習(xí)奠定了必要的基礎(chǔ)。
師:之前老師為每個同學(xué)準備了①-⑥六個三角形,下面請組長分發(fā)給每個三角形,拿到手后,先別著急,先想一想你準備用什么方法去驗證三角形內(nèi)角和?
學(xué)生動手操作驗證
師:匯報時,請先說一說是幾號三角形?然后說一說這個三角形是什么三角形?
學(xué)生匯報:
生1:③號三角形是直角三角形,內(nèi)角和是180°。
生2:②號三角形是銳角三角形,內(nèi)角和是180°。
生3:⑤號三角形是鈍角三角形,內(nèi)角和是180°。
生4:④號三角形是直角三角形,內(nèi)角和是180°。
生5:①號三角形是鈍角三角形,內(nèi)角和是180°。
生6:⑥號三角形是銳角三角形,內(nèi)角和是180°。
師:除了量的方法外,還有其他方法驗證三角形內(nèi)角和嗎?
生1:分別剪下三角形三個角拼成平角,平角是180°,所以推理得出三角形內(nèi)角和是180°。
生2:分別撕下三角形三個角拼成平角,平角是180°,所以推理得出三角形內(nèi)角和是180°。
生3:把三角形的三個角折成平角,平角是180°,所以推理得出三角形內(nèi)角和是180°。
這些方法都驗證了:三角形的內(nèi)角和是180°。
師:觀察這些三角形的內(nèi)角和是多少度?這些三角形的內(nèi)角和都是180°,這是不是老師故意安排好的呢?
師:有沒有人質(zhì)疑,用什么方法驗證?
生用自己剪的任意三角形再次驗證三角形內(nèi)角和是否180°。
生:得出內(nèi)角和還是180°。
師:不管是老師提供的三角形,還是你們自己準備的三角形,通過我們的算一算、拼一拼、折一折,都得出了三角形的內(nèi)角和是180°。
師:我們已經(jīng)學(xué)習(xí)了三角形的分類,三角形可以分成銳角三角形、直角三角形、鈍角三角形。這些三角形的內(nèi)角和是180°,我們能把它們概括成一句話嗎?
生:三角形的`內(nèi)角和是180°。
師:看來我們的猜想是正確的。
師:早在20xx多年前著名數(shù)學(xué)家歐幾里得就已經(jīng)得到這個結(jié)論,到了初中以后同學(xué)們還會用更加嚴密的方法證明三角形的內(nèi)角和是180°。
解釋
運用拓展
課件
正方形紙
讓學(xué)生更深的對所學(xué)的新知加以鞏固,從而促使學(xué)生綜合運用知識,解決問題的能力。同時在練習(xí)中發(fā)展學(xué)生的觀察、歸納、概括能力和初步的空間想象力。
1.∠1=40°,∠2=48°,求∠3有多少度?
2.算出下面三角形∠3的度數(shù)。
⑴∠1=42°,∠2=38°,∠3=?
、啤1=28°,∠2=62°,∠3=?
、恰1=80°,∠2=56°,∠3=?
師:你是怎樣算的?這三個三角形各是什么三角形?
提問:在一個三角形中最多有幾個鈍角?
在一個三角形中最多有幾個直角?
3.游戲:將準備的正方形紙對折成一個三角形?
師:這個三角形的內(nèi)角和是多少度?再對折一次,現(xiàn)在內(nèi)角和是多少度?如果繼續(xù)折下去,越折越小,三角形的內(nèi)角和會是多少度?
說明:三角形大小變了,內(nèi)角和不變。
4.有兩個完全一樣的三角尺拼成一個三角形,這個三角形的內(nèi)角和是多少度?
說明:三角形形狀變了,內(nèi)角和不變。
5.根據(jù)所學(xué)知識,你能想辦法求出下面圖形的內(nèi)角和嗎?
板書
設(shè)計
三角形內(nèi)角和
、偬 鈍角三角形 內(nèi)角和180°
、谔 銳角三角形 內(nèi)角和180°
三角形內(nèi)角和是180°
、厶 直角三角形 內(nèi)角和180°
、芴 直角三角形 內(nèi)角和180°
、萏 鈍角三角形 內(nèi)角和180°
⑥號 銳角三角形 內(nèi)角和180°
學(xué)具教具準備
課件三角形紙片量角器正方形紙
三角形內(nèi)角和教學(xué)設(shè)計 篇10
一、教學(xué)目標
1.知識與技能目標:通過量、剪、拼等活動發(fā)現(xiàn)、證實三角形內(nèi)角和是180°,并會應(yīng)用這一知識解決生活中簡單的實際問題。
2.過程與方法目標: 經(jīng)歷觀察、猜想、驗證的過程,提升自身動手操作及推理、歸納總結(jié)的能力。
3.情感態(tài)度價值觀目標: 在參與學(xué)習(xí)的過程中,感受數(shù)學(xué)的魅力,體驗成功的喜悅,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣。
二、教學(xué)重難點
重點:掌握三角形內(nèi)角和定理。
難點:理解三角形內(nèi)角和定理推理的過程。
三、教學(xué)過程
尊敬的各位老師大家好,我是小學(xué)數(shù)學(xué)組2號考生,今天我試講的題目是三角形內(nèi)角和,下面我將正式開始我的試講。
上課,同學(xué)們好,請坐。
【導(dǎo)入】
同學(xué)們,上課之前呢我們先來看一下大屏幕,老師給大家準備了幾張照片我們來看一下,在圖形的王國中,有一天,三角形家族里為“三角形內(nèi)角和的大小”爆發(fā)了一場激烈的爭吵。鈍角三角形說“我的鈍角大,我的內(nèi)角和一定比你們的內(nèi)角和大”。銳角三角形也不示弱“你雖然有一個鈍角,可是其它兩個角都很小,而我的三個角都不是很小,所以我的內(nèi)角和比你大”。直角三角形說“別爭了,我們的內(nèi)角和是一樣大的,因為三角形的內(nèi)角和是180°”。
那同學(xué)們,大家同不同意它的說法呀,老師看到同學(xué)們都很疑惑的樣子,沒關(guān)系,今天這位節(jié)課我們就一起來研究一下這個問題,學(xué)習(xí)一下——三角形的內(nèi)角和。
【新授】
活動一:
那同學(xué)們,接下來啊我們拿出尺字,畫出幾個三角形,然后測量并計算一下,三角形3個內(nèi)角的和各是多少度呢?給大家三分鐘時間同桌之間相互交流一下這個問題。
老師看到同學(xué)們都安靜了下來,第三排這位同學(xué),你來說一說你們兩個人的結(jié)論。哦,他說呀他們發(fā)現(xiàn)他們兩人畫出的直角三角形內(nèi)角和都是180度,你們的思路非常清晰,請坐!后邊同學(xué)有不同意見,你來說,他說呀他們兩人畫出的銳角三角形也是180度。也是正確的,請坐!
活動二:
那同學(xué)們,是不是所有的三角形的內(nèi)角和都是180°呢?如何進行驗證呢?
那接下來5分鐘我們前后排4個人一小組進行討論,待會啊老師會找同學(xué)提問。
老師看到同學(xué)們都很迷茫,給大家一點小提示,我們可以用剪拼的形式來驗證一下。
好時間到,哪位同學(xué)來告訴一下老師,你們的討論結(jié)果呢。你們小組討論的最激烈,你來告訴一下老師,他說呀他們小組是將三種不同類型的三角形的三個角剪下來,再拼一拼,發(fā)現(xiàn)都拼成一個了平角,你們的方法非常獨特,請坐!那大家的方法和它們的方法是一樣的嗎?
看來同學(xué)們的思路都非常的清晰,那同學(xué)們,由此我們就驗證得出了,三角形的內(nèi)角和就是180度。
觀察一下黑板上這些內(nèi)容,以上就是本節(jié)課所要學(xué)習(xí)的三角形內(nèi)角和。
【鞏固練習(xí)】
通過本節(jié)課的學(xué)習(xí),相信大家對平行四邊形有了更深的了解。我們看向黑板,接下來給大家兩分鐘時間來做一下這道題鞏固一下,在△ABC中∠1=140°,∠2=25°,求出∠3的度數(shù)。課代表來黑板上板書一下。老師看到同學(xué)們筆都放下了,我們一起來看一下黑板上同學(xué)的答案,∠3=15°,同學(xué)們的答案和他的是一樣的嗎,看來同學(xué)們對本節(jié)課知識的掌握都已經(jīng)非常扎實了。
【課堂小結(jié)】
不知不覺本節(jié)課馬上就接近了尾聲,哪位同學(xué)來說一下本節(jié)課你都有哪些收獲呢?(停頓2秒)第二排手舉得最高這位同學(xué)你來說一下,哦,他說啊,通過本節(jié)課的學(xué)習(xí)他掌握了三角形當中一個新的特點,三角形的內(nèi)角和是180度,總結(jié)的非常全面見,請坐!
【作業(yè)布置】
接下來老師來給大家布置個小任務(wù),回家之后仔細觀察一下家中的物體,看一看那些物品是三角形的,動手測量一下內(nèi)角和,看一看是否滿足180度,下節(jié)課一起來交流討論一下,今天這節(jié)課就上到這里,同學(xué)們再見。
三角形內(nèi)角和教學(xué)設(shè)計 篇11
教學(xué)內(nèi)容
人教版小學(xué)數(shù)學(xué)第八冊第五單元第85頁例5
任務(wù)分析
教材分析: 《三角形的內(nèi)角和》是義務(wù)教育課程標準實驗教科書(數(shù)學(xué))四年級下冊第五單元《三角形》中的一個教學(xué)內(nèi)容。這部分內(nèi)容是在學(xué)生學(xué)習(xí)了角的度量,角的分類,三角形的認識,三角形的分類的基上進行教學(xué)的。它是三角形的一個重要性質(zhì),有助于學(xué)生理解三角形的三個內(nèi)角之間的關(guān)系,也是進一步學(xué)習(xí)的基礎(chǔ)。教材通過實際操作,引導(dǎo)學(xué)生用實驗的方法探索并歸納出這一規(guī)律,即任意一個三角形,它的內(nèi)角和都是180度。教材在編寫上也深刻的體現(xiàn)出了讓學(xué)生探究的特點,通過動手操作探究發(fā)現(xiàn)三角形內(nèi)角和為180度。教學(xué)內(nèi)容的核心思想體現(xiàn)在讓學(xué)生經(jīng)歷猜想—驗證—結(jié)論的過程,來認識和體驗三角形內(nèi)角和的特點。
學(xué)情分析:通過前面的學(xué)習(xí),學(xué)生已經(jīng)掌握了三角形的一些基礎(chǔ)知識,會用工具量角、畫角,具備了探索三角形內(nèi)角和的知識與基礎(chǔ)技能。在四年級上冊《角的度量》的學(xué)習(xí)中,學(xué)生有接觸到兩把三角尺的內(nèi)角和是180°;并在相關(guān)的補充習(xí)題和數(shù)學(xué)練習(xí)冊的練習(xí)中,也有要求測量任意三角形的三個內(nèi)角的度數(shù)并求出它們的和的練習(xí),很多學(xué)生已經(jīng)知道了三角形的內(nèi)角和是180°。但是要真正理解和掌握需要進行驗證,因此,學(xué)生在這節(jié)課上的主要任務(wù)是通過實驗操作驗證三角形的內(nèi)角和是180°。
教學(xué)目標
1、通過實驗、操作、推理歸納出三角形內(nèi)角和是180°。
2、能運用三角形的內(nèi)角和是180°這一規(guī)律,求三角形未知角的度數(shù)并運用解決實際生活問題。
3、通過拼擺,感受數(shù)學(xué)的轉(zhuǎn)化思想。
教學(xué)重點
探究發(fā)現(xiàn)和驗證“三角形的內(nèi)角和180度”。
教學(xué)難點
驗證三角形的內(nèi)角和是180度。
教學(xué)準備
多媒體課件,銳角三角形、直角三角形、鈍角三角形,剪刀,量角器等。
教學(xué)過程
一、復(fù)習(xí)舊知,學(xué)習(xí)鋪墊
1、一個平角是多少度?等于幾個直角?
2、如下圖,已經(jīng)∠ 1=35°,∠2=78°,求∠3是多少度?
二、探究新知,理解規(guī)律
1、說明三角形的三個內(nèi)角和
說出手中三角形的類型(銳角三角形,直角三角形,鈍角三角形)并說出三角形有幾個角?
師(指出):三角形的這三個角叫做三角形的三個內(nèi)角,這三個內(nèi)角的度數(shù)和叫做三角形的內(nèi)角和。
板書課題:“三角形的內(nèi)角和”。
揭示課題:今天我們一起來探究三角形的內(nèi)角和有什么規(guī)律。
2、探究三角形的內(nèi)角和規(guī)律
探究1:量一量,算一算
以小組為單位,用量角器計算出三種三角形的內(nèi)角和各是多少度?
生討論匯報,并引導(dǎo)學(xué)生發(fā)現(xiàn):三角形的內(nèi)角和接近180°。
師:三角形的內(nèi)角和接近180°,那它到底與180° 有怎樣的關(guān)系呢?
學(xué)生預(yù)設(shè):有學(xué)生可能會說出三角形的內(nèi)角和就是180°,這時老師可以提問,為什么就是180°?我們要進行驗證,你有什么辦法呢?
探究2:擺一擺,拼一拼
引導(dǎo):我們剛剛每個三角形都量了三次角,每一次度量都有誤差,所以量出來的內(nèi)角和有誤差。能不能換一種方法減少度量的次數(shù),減少誤差呢?
生可能很難想到,可以提示學(xué)生:把三個內(nèi)角拼成一個角就只要量一次角。讓我們一起動手做一做
如圖:
。1)
銳角的三個內(nèi)角拼成了一個平角,引導(dǎo)學(xué)生說出:銳角三角形的內(nèi)角和是180°.
。2)
讓學(xué)生小組合作用同樣的方法,發(fā)現(xiàn):直角三角形的內(nèi)角和也是180°.
。3)
讓學(xué)生獨立用同樣的方法,發(fā)現(xiàn):鈍角三角形的內(nèi)角和也是180°.
引導(dǎo)學(xué)生歸納:三角形的內(nèi)角和是180°。
是不是所有的三角形的內(nèi)角和都是180°呢? (是,因為這三類三角形包括了所有三角形。)
板書:三角形的內(nèi)角和是180°
三、鞏固練習(xí),應(yīng)用規(guī)律
1、在一個三角形中,∠1=140°,∠3=25°,你能求出∠2的度數(shù)嗎?
學(xué)生獨立完成,并說出原因:因為三角形的內(nèi)角和是180°,也就是∠1+∠2+∠3=180°,借助圖像
∠2 =180°-∠1-∠3 或 ∠2 =180°-(∠1+∠3)
= 180°-140°-25° =180°-(140°+25°)
=40°-25° =180°-165°
=15° =15°
2、一個等腰三角形的頂角是80°,它的兩個底角各是多少度?
學(xué)生分析:因為等腰三角形的兩個底角相等,又因為三角形的內(nèi)角和是180°,所以
(180°-80°)÷2
=100°÷2
=50°
四、拓展練習(xí),深化規(guī)律
1、求出下面各角的度數(shù)。
(1) (2)
2、判斷
。1)三角形任意兩個內(nèi)角的和大于第三個角。( )
。2)銳角三角形任意兩個內(nèi)角的和大于直角。( )
(3)有一個角是60°的等腰三角形不一定是等邊三角形。( )
3、下面是兩塊三角形的玻璃打碎后留下的殘片,你知道它們原來各是什么三角形嗎?
( ) ( )
五、課堂小結(jié),分享提升
1、談?wù)勥@節(jié)課你有什么收獲?
2、課后思考題
三角形的內(nèi)角和是180°,那長方形、正方形的內(nèi)角和呢?(根據(jù)三角形的內(nèi)角和是180°求,參考課本88頁第12題,完成89頁16題)
板書設(shè)計
三角形內(nèi)角和教學(xué)設(shè)計 篇12
一、說教材
北師版八年級下冊第六章《證明一》,是在前面對幾何結(jié)論已經(jīng)有了一定的直觀認識的基礎(chǔ)上編排的,而前幾冊對有關(guān)幾何結(jié)論都曾進行過簡單的說理,本章內(nèi)容則嚴格給出這些結(jié)論的證明,并要求學(xué)生掌握證明的一般步驟及書寫表達格式!度切蝺(nèi)角和定理的證明》則是對前幾節(jié)證明的自然延續(xù)。此外,它的證明中引入了輔助線,這些都為后繼學(xué)習(xí)奠定了基礎(chǔ)。
二、說目標
1.知識目標:掌握“三角形內(nèi)角和定理的證明”及其簡單的應(yīng)用。
2.能力目標培養(yǎng)學(xué)生的數(shù)學(xué)語言表達、邏輯推理、問題思考、組內(nèi)及組間交流、動手實踐等能力。
3.情感、態(tài)度、價值觀:
在良好的師生關(guān)系下,建立輕松的學(xué)習(xí)氛圍,使學(xué)生體會獲得知識的成就感及與他人合作的樂趣,以增強其數(shù)學(xué)學(xué)習(xí)的自信心。
4.教學(xué)重點、難點
重點:三角形的內(nèi)角和定理的證明及其簡單應(yīng)用。
難點:三角形的內(nèi)角和定理的證明方法的討論。
三、說學(xué)校及學(xué)生現(xiàn)實情況
我校是藍田縣一所普通初中,四面非山即嶺,距藍田縣城四十里之遙。但由于國家對西部教育的大力支持,學(xué)校有遠程多媒體網(wǎng)絡(luò)教室,為師生提供了良好的學(xué)習(xí)硬件環(huán)境。我校學(xué)生幾乎全部來自本鎮(zhèn)農(nóng)村,而我所教授的八年級四班學(xué)生,大多家庭貧苦,所以學(xué)習(xí)認真踏實,有強烈的求知欲;此外,善于鉆研是他們的特點,并且,有較強的合作交流意識。
四、說教法
根據(jù)本節(jié)課教學(xué)內(nèi)容特點,我采用啟發(fā)、引導(dǎo)、探索相結(jié)合的教學(xué)方法,使學(xué)生充分發(fā)揮學(xué)習(xí)主動性、創(chuàng)造性。
五、說教學(xué)設(shè)計
〈一〉、創(chuàng)設(shè)情景,直入主題
一堂新課的引入是教師與學(xué)生活動的開始,而一個成功的引入,可使學(xué)生破除畏難心理,對知識在短時間內(nèi)產(chǎn)生濃厚的興趣,接下來的教學(xué)活動就變得順理成章。我的具體做法是:簡單回憶舊知識,“證明的一般步驟是什么?”學(xué)生輕松做答,我肯定之后緊接著說:“本節(jié)課就是用證明的方法學(xué)習(xí)一個熟悉的結(jié)論!是什么呢?請看大屏幕!”。盡量使問題簡單化,這樣更利于學(xué)生投入新課。
〈二〉、交流對話,引導(dǎo)探索
1、巧妙提問,合理引導(dǎo)
證明思想的引入時,問:同學(xué)們,七年級時如何得到此結(jié)論?(留一定時間讓他們討論、交流、達成共識)學(xué)生回答后,我及時肯定并鼓勵后拋出問題:他們的共同之處是什么?學(xué)生容易回答:湊成一平角。我說:很好!那你們用這樣的思想能證明這個命題是個真命題嗎?趕快試試吧!這樣,既引導(dǎo)了證明的方向,又激發(fā)了學(xué)生的學(xué)習(xí)興趣。接下來學(xué)生做題,我巡視。同時讓一學(xué)生板演。
2、恰當示范,培養(yǎng)學(xué)生正確的書寫能力
在學(xué)生做完之后,我與他們一道分析板演同學(xué)證明是否合理,并利用多媒體給出正確書寫方法。
3、一題多解,放手讓學(xué)生走進自主學(xué)習(xí)空間
正因為學(xué)生的預(yù)習(xí),所以他們證明的方法有所局限,這時,我拋出問題:再想想,還有其他方法嗎?將課堂時間又交還他們,將其思維推向高潮。學(xué)生思考,繼而熱烈討論,此時,我又走到學(xué)生中去,對有困難的學(xué)生多加關(guān)注和指導(dǎo),不放棄任何一個,同時,借此機會增進教師與學(xué)困生之間的情誼,為繼續(xù)學(xué)習(xí)奠定基礎(chǔ)。最后,請有新方法的同學(xué)敘述其思想方法,我用大屏幕展示不同做法的合情推理過程。
4、展示歸納,合理演繹
利用多媒體展示三角形內(nèi)角和定理的幾種表達形式,以促其學(xué)以致用。
5、反饋練習(xí)
用隨堂練習(xí)來鞏固學(xué)生所學(xué)新知,另一方面進一步提高學(xué)生的書寫能力。同時,在他們作完之后,多媒體展示正確寫法,加強教學(xué)效果。
〈三〉、課堂小結(jié)
1 采用讓學(xué)生感性的談?wù)J識,談收獲。設(shè)計問題:
2(1)、本節(jié)課我們學(xué)了什么知識?
(2)、你有什么收獲?
目的是發(fā)揮學(xué)生主體意識,培養(yǎng)其語言概括能力。
六、說教學(xué)反思
本節(jié)課主要是以嚴謹?shù)倪壿嬜C明方法,驗證三角形內(nèi)角和等于180度。讓學(xué)生充分體會有理有據(jù)的推理才是可靠的。而證明思想、書寫的培養(yǎng),是本節(jié)課的重點。自主學(xué)習(xí)、合作交流是新課程理念,也是我本節(jié)課的設(shè)計意圖。從學(xué)生課堂表現(xiàn)可以看出,教學(xué)效果良好。而學(xué)生的一些出乎意料的做法讓我倍感驚喜!把學(xué)生還給課堂,把課堂還給學(xué)生,也是我一貫的做法。
三角形內(nèi)角和教學(xué)設(shè)計 篇13
教學(xué)目標:
1、通過量、剪、拼、擺等直觀操作的方法,讓學(xué)生探索并發(fā)現(xiàn)三角形內(nèi)角和等于180度。
2、在活動交流中培養(yǎng)學(xué)生合作學(xué)習(xí)的意識和能力,讓學(xué)生經(jīng)歷猜測探索總結(jié)的數(shù)學(xué)學(xué)習(xí)過程,在實驗活動中體驗探索的過程和方法。
3、通過運用三角形內(nèi)角和的性質(zhì)解決一些簡單的問題,使學(xué)生體會數(shù)學(xué)與現(xiàn)實生活的聯(lián)系,體會到數(shù)學(xué)的價值,增加學(xué)生學(xué)數(shù)學(xué)的信心和興趣。
教學(xué)重點:
探索發(fā)現(xiàn)三角形內(nèi)角和等于180并能應(yīng)用。
教學(xué)難點:
三角形內(nèi)角和是180的探索和驗證。
教學(xué)過程:
一、創(chuàng)設(shè)情境,提出問題
師:大家喜歡猜謎語嗎?
生:喜歡。
師:下面請大家猜一個謎語(大屏幕出示形狀似座山,穩(wěn)定性能堅。三竿首尾連,學(xué)問不簡單。
。ù蛞粠缀螆D形))
生:三角形。
師:三角形中都有哪些學(xué)問?
生:三角形有三條邊,三個角,具有穩(wěn)定性。
生:三角形按角分,可以分成銳角三角形、直角三角形、鈍角三角形。
生:三角形按邊分,可以分成等腰三角形,不等邊三角形,其中等腰三角形又包含了兩條邊相等的三角形和等邊三角形。
生:一個三角形中最多只能有一個直角,最多只能有一個鈍角,最少有兩個銳角。
生:三角形的內(nèi)有和是180。
生:(一臉疑惑)
師:(板書:三角形的內(nèi)角和是180),你有什么疑惑? 生:什么是內(nèi)角?
生:每個三角形的內(nèi)角和都是180嗎?
。ǜ鶕(jù)學(xué)生的問題,在三角形的內(nèi)角和是180后面加上一個?)
二、自主探索,實踐驗證
1、理解內(nèi)角 師:什么是內(nèi)角?
生:我認為三角形的內(nèi)角就是指三角形的三個角。
師:三角形的每個角都是三角形的內(nèi)角,每個三角形都有三個內(nèi)角。
2、理解內(nèi)角和。
師:那三角形的內(nèi)角和又是指什么?
生:我認為三角形的內(nèi)角和就是把三角形的三個內(nèi)角的度數(shù)加起來的和。
師:為了方便,我們將三角形的每個內(nèi)角編上序號1、2、3、我們叫它1、2、3,這三個角的度數(shù)和,就是這個三角形的內(nèi)角和。
3、實踐驗證
師:每個三角形的內(nèi)角和都是180嗎?用什么方法來驗證呢?
生:量一量每個角的度數(shù),然后加起來看看是不是180。
師:請大家拿出課前準備的三角形,親自量一量,算一算。(學(xué)生動手量一量)
師:誰愿意把你的勞動成果和大家分享一下?
生:我量的這個三角形的三個內(nèi)角的度數(shù)分別是60、60、60,加起來一共是180。
師:這位同學(xué)量的是一個銳角三角形,并且是比較特殊的三角形等邊三角形。
生:我量這個三角形的三個內(nèi)角的度數(shù)分別是45、45、90,加起來一共是180。
師:這是我們?nèi)浅咧械囊粋,也比較特殊,是一個等腰直角三角形。
生:我量的是三角尺中的另一個,三個內(nèi)角的度數(shù)分別是60、30、90,加起來一共是180 生:我量的是鈍角三角形,三個內(nèi)角的度數(shù)分別是85、60、38,加起來一共是183。
師:你發(fā)現(xiàn)了什么?
生:有的三角形的內(nèi)角和是180,而有的三角形的內(nèi)角和卻不是180。
師:看來三角形的內(nèi)角和不一定是180。
生:老師,測量會有誤差,量出來的不是很精確,那么求出來的結(jié)果也不夠精確。雖然不都是三個內(nèi)角加起來不都是180,但都接近180。
生:都接近180就能說一定是180嗎?
師:科學(xué)來不得半點虛假,看來這個是不能讓大家信服的。那還可以用什么方法來驗證呢?下面請同學(xué)們小組合作,發(fā)揮小組成員的智慧,充分利用大家的學(xué)具進行驗證,比一比哪些組的方法富有新意,開始!
。▽W(xué)生在小組內(nèi)進行探索驗證。教師巡視,參與到學(xué)生的研究中)
師:請每個小組選擇一個代言人,和大家分享一下你們的智慧。
生:(邊展示邊交流)我們小組運用了折一折的方法,把三角形的三個內(nèi)角都向內(nèi)折,三個內(nèi)角就拼成了一個平角,也就是180,所以我們小組得出三角形的內(nèi)角和是180。
師:你折的只是銳角三角形,只能證明銳角三角形的內(nèi)角和是180,直角三角形,鈍角三角形是不是也是這樣的?
生:我們小組也有折的直角三角形,鈍角三角形。
。ㄆ渌某蓡T展示不同的三角形)
師:看這個小組的同學(xué)想問題多全面呀,不僅想到了用什么方法,還想到了用不同的三角形進行驗證,老師實在是佩服你們組的智慧,讓我們把掌聲送給他們!
師:哪個小組和他們的方法不一樣?
生:我們小組把三角形的三個內(nèi)角都撕了下來,拼在了一起,正好拼成了一個平角,也就是180。我們也實驗了不同的三角形,三個內(nèi)角都可以拼成平角,所以我們小組得出結(jié)論,三角形的內(nèi)角和是180。
師:這個小組的方法簡便,易操作,很好。
生:我們小組成員是這樣想的,一個長方形有4個直角,每個直角90,那么長方形的內(nèi)角和就是360,每個長方形都可以平均分成兩個直角三角形,每個直角三角形的內(nèi)角和就是180。 師:你們小組很聰明,從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180,從不同的角度去思考問題,謝謝你為我們提供了這么好的方法!
4、小結(jié)
師:剛才同學(xué)們用量、折、剪、拼、計算、推理等這么多巧妙的方法得出了無論是什么樣的三角形的內(nèi)角和都是1800,你還有什么疑問嗎?
生:沒有。
師:(去掉問號)那就讓我們大聲地讀出來三角形的內(nèi)角和是1800。
三、鞏固應(yīng)用,加深理解
1、說一說每個三角形的內(nèi)角和是多少度
師:(出示一個大三角形)這個大三角形的內(nèi)角和是多少度?
生: 180
師:(出示一個小三角形)這個小三角形的內(nèi)角和是多少度?
生:180
師:(演示)把這兩個三角形拼在一起,拼成的大三角形的內(nèi)角和是多少度?
生:180
師:為什么每個三角形的內(nèi)角和是1800,而合起來還是180呢?另外那180去哪兒了?
生:把兩個三角形拼成一個大三角形,兩個直角不再是大三角形的內(nèi)角,所以少了180
師:(演示)把一個大三角形分成兩個三角形,每個三角形的內(nèi)角和是多少度?
生:180
2、求下面各角的度數(shù)
師:如果老師告訴你一個三角形的兩個角的度數(shù),你能說出第三個角的度數(shù)嗎?
。ǔ觯
生:三角形內(nèi)角和是180,在第一個三角形中,用180-75-28,A=77
生:用180-90-35,C =55。
生:第二個三角形是直角三角形,B是直角,也可以直接用90-35=55。
生:第三個三角形中,用180-20-45,B=115。
3、一個等腰三角形的風(fēng)箏,它的一個底角是70,它的頂角是多少度?
生:等腰三角形的兩個底角相等,所以用180-70-70 4、
師:三角形的內(nèi)角和在我們的生活中應(yīng)用很廣泛,老師給大家?guī)硪粋在建筑中應(yīng)用的例子。
在設(shè)計這座大橋時,如果設(shè)計師將斜拉的鋼索與橋柱形成的夾角設(shè)計成了56,建筑師在造橋時怎樣才能確定鋼索與橋柱是否形成了這個角度?
生:用量角器量一量
師:量哪個角?量一量斜拉的鋼索與橋柱形成的夾角嗎?
生:橋面與橋柱形成一個直角,是90,斜拉的鋼索與橋柱形成的夾角是56,那么用180-90-56=34,就是斜拉的鋼索與橋面的夾角,所以只要讓斜拉的鋼索與橋面的夾角是34,那么斜拉的鋼索與橋柱形成的夾角就是56
師:你真是個善于觀察、善于思考的孩子,努力學(xué)習(xí),將來一定會成為一名優(yōu)秀的建筑師。
四、回顧總結(jié),拓展延伸
師:40分鐘很快就過去了,你愿意把自己的收獲與大家共同分享嗎?
生:我知道了三角形的內(nèi)角和是180。
生:無論是大三角形,還是小三角形,無論是銳角三角形,還是鈍角三角形,還是銳角三角形,內(nèi)角和都是180。
生:把一個大三角形分成兩個小三角形,每個三角形的內(nèi)角和還是180,把兩個小三角形拼成一個大三角形,大三角形的內(nèi)角和還是180。
生:我可以用撕、拼、折等方法來驗證三角形的內(nèi)角和是180。
師:這個同學(xué)不僅學(xué)會了知識,而且學(xué)會了方法,我們只有學(xué)會了方法,才能更好地去探究更多的知識。
師:那你現(xiàn)在知道為什么一個三角形內(nèi)只能有一個直角或一個鈍角嗎?
生:兩個直角的度數(shù)之和是180,再加上一個角,三個角的度數(shù)之和超過了180,所以一個三角形中最多只能有一個直角。
生:兩個鈍角的度數(shù)之和就超過了180,再加上一個角,就更大了,所以一個三角形中最多只能有一個鈍角。
師:我們學(xué)習(xí)知識,必須知其然并知其所以然。
師:三角形中還有許許多多的學(xué)問,讓我們在以后的學(xué)習(xí)中繼續(xù)去研究。
三角形內(nèi)角和教學(xué)設(shè)計 篇14
教學(xué)目標:
1、通過測量,撕拼,折疊等方法。探索和發(fā)現(xiàn)三角形三個內(nèi)角和的度數(shù)等于180°。
2、引導(dǎo)學(xué)生動手實驗,經(jīng)歷知識的生長過程培養(yǎng)學(xué)生的探索意識和動手能力,初步感受數(shù)學(xué)研究方法。
3、能運用三角形內(nèi)角和知識解決一些簡單的問題。
教學(xué)重點:
探索和發(fā)現(xiàn)“三角形內(nèi)角和是180°”。
教學(xué)難點:
驗證“三角形內(nèi)角和是180°,以及對這一知識的靈活運用!
教具準備:
三角形,多媒體課中。
教學(xué)過程設(shè)計:
一、創(chuàng)設(shè)情境:故事引入,森林王國里住著平面圖形和立體圖形兩大家族,一天平面圖形的三角形家庭傳出一片吵鬧聲,大三角形與小三角形在爭論:聽大三角形說:“我的內(nèi)角和比你大”,小三角形不服氣,可又不知如何反駁,同學(xué)們,你們知道到底誰的內(nèi)角和大嗎?
二、探究新知:
。ㄒ唬、量一量:四人一小組,分別測量本組準備的三角形的內(nèi)角,并求出和。
你們發(fā)現(xiàn)三角形的內(nèi)角和是多少?匯報,提出疑問,三角形的內(nèi)角和是不是剛好等于180°
。ǘ⑵匆黄
引導(dǎo)學(xué)生獨立完成,撕下二個角與第三個角拼在在一起,發(fā)現(xiàn)了什么?
引導(dǎo)學(xué)生得出:三角形內(nèi)角和等于180°
。ㄈ┱垡徽
引導(dǎo)學(xué)生同桌互相幫助完成,發(fā)現(xiàn)三個角形的三個內(nèi)角折在一起是平角。
回答大小三角形的爭論:大三角形與小三角形的內(nèi)角形誰大?并說出理由。
三、鞏固拓展
1、填一填
、僦苯切稳切蔚膬蓚銳角和是()度。
、谥苯侨切蔚囊粋銳角是45°,另一個銳角是()度。
、垅g角三角形的兩上內(nèi)角分別是20°,60°;則第三個角是()
2、火眼金晴
①鈍角三角形的兩個鈍角和大于90°()。
②直角三角形的兩個銳角之和正好等于90°()。
、厶詺猱嬃艘粋三個角分別是50°,70°,50°的三角形()
、軆蓚銳角是60°的三角形是等邊三角形()
、蓍L方形的內(nèi)角和等于360°()。
3、猜一猜:四邊形的內(nèi)角和是多少度?
五邊形的內(nèi)角和是多少度?
四、小結(jié),今天學(xué)習(xí)了什么?你有什么收獲?
【三角形內(nèi)角和教學(xué)設(shè)計】相關(guān)文章:
《三角形內(nèi)角和》的教學(xué)設(shè)計05-10
《三角形內(nèi)角和》教學(xué)設(shè)計07-08
三角形的內(nèi)角和教學(xué)設(shè)計09-11
三角形的內(nèi)角和的教學(xué)設(shè)計01-22
《三角形的內(nèi)角和》教學(xué)設(shè)計08-19
三角形內(nèi)角和教學(xué)設(shè)計11-18
《三角形內(nèi)角和》教學(xué)設(shè)計05-25
三角形內(nèi)角和教學(xué)設(shè)計11-01