初中平行線的性質(zhì)教學(xué)設(shè)計
作為一位杰出的老師,通常需要準(zhǔn)備好一份教學(xué)設(shè)計,借助教學(xué)設(shè)計可使學(xué)生在單位時間內(nèi)能夠?qū)W到更多的知識。寫教學(xué)設(shè)計需要注意哪些格式呢?下面是小編整理的初中平行線的性質(zhì)教學(xué)設(shè)計,希望能夠幫助到大家。
一、教學(xué)目標(biāo)
1、知識與技能目標(biāo):經(jīng)歷觀察、操作、推理、交流等活動,進(jìn)一步發(fā)展空間觀念、推理能力和有條理表達(dá)的能力。
2、能力目標(biāo):經(jīng)歷探索平行線性質(zhì)的過程,掌握平行線的性質(zhì),并能解決一些實(shí)際問題。
3、情感態(tài)度目標(biāo):在自己獨(dú)立思考的基礎(chǔ)上,積極參與小組活動對平行線的性質(zhì)的討論,敢于發(fā)表自己的看法,并從中獲益。
4、品質(zhì)素養(yǎng)目標(biāo):培養(yǎng)學(xué)生勤于思考、勇于探索、鉆研的品質(zhì)。
為實(shí)現(xiàn)以上教學(xué)目標(biāo),突出重點(diǎn),解決難點(diǎn),充分發(fā)揮現(xiàn)代教育技術(shù)的作用,我制作了多媒體課件,運(yùn)用多媒體輔助教學(xué),變靜為動,融聲、形、色為一體為學(xué)生提供生動、形象、直觀的觀察材料,激發(fā)學(xué)生學(xué)習(xí)的積極性和主動性。
二、教學(xué)重點(diǎn)和難點(diǎn)
重點(diǎn):平行線的'三個性質(zhì)以及綜合運(yùn)用平行線性質(zhì)、判定等知識解題。
難點(diǎn):區(qū)分性質(zhì)和判定以及怎樣綜合運(yùn)用同位角、內(nèi)錯角、同旁內(nèi)角的關(guān)系解題。
三、教材分析
平行線是最簡單、最基本的幾何圖形,在生活中隨處可見,它不僅是研究其他圖形的基礎(chǔ),而且在實(shí)際中也有著廣泛的應(yīng)用。因此,探索和掌握好它的有關(guān)知識,對學(xué)生更好的認(rèn)識世界、發(fā)展空間觀念和推理能力都是非常重要的。
教材設(shè)置了一個通過探索平行線性質(zhì)的活動,在活動中,鼓勵學(xué)生充分交流,運(yùn)用多種方法進(jìn)行探索,盡可能地發(fā)現(xiàn)有關(guān)事實(shí),并能應(yīng)用平行線性質(zhì)解決一些問題,運(yùn)用自己的語言說明理由,使學(xué)生的推理能力和語言表達(dá)能力得到提高。為學(xué)生今后的學(xué)習(xí)打下了基礎(chǔ)。
因此,無論在知識技能上,還是在學(xué)生能力的培養(yǎng)及感情教育等方面,這節(jié)課都起著十分重要的作用。
四、學(xué)生情況分析
考慮本校處在城鄉(xiāng)結(jié)合部,大部分學(xué)生的基礎(chǔ)比較差,缺乏自學(xué)能力,動手能力比較差,所以,這個學(xué)期應(yīng)該重視學(xué)生學(xué)習(xí)興趣和態(tài)度的培養(yǎng)、重視學(xué)生的自主探索和合作交流以及新意識的培養(yǎng)。利用七年級學(xué)生都有好勝、好強(qiáng)的特點(diǎn),扭轉(zhuǎn)學(xué)數(shù)學(xué)難、數(shù)學(xué)枯燥的這種局面。形成一種勤動手、勤動腦,勤探索和肯合作交流的良好氣氛
五、課前準(zhǔn)備
課前準(zhǔn)備:多媒體課件、三角尺、直尺。
六、 教學(xué)過程
問題與情境師生互動設(shè)計意圖活動1
你身邊的問題
問題:
如圖,工人在修一條高速公路時在前方遇到一座高山,為了降低施工難度,工程師決定繞過這座山,如果第一個彎是左拐300,那么第二個彎應(yīng)朝什么方向。才能不改變原來的方向。
學(xué)生觀察,小組討論,交流問題并發(fā)表見解,
教師進(jìn)一步引導(dǎo)學(xué)生分析,引導(dǎo)學(xué)生將這個問題如何轉(zhuǎn)化成數(shù)學(xué)問題。
本次活動應(yīng)關(guān)注的問題是:
1、不改變方向,在數(shù)學(xué)中理解應(yīng)是什么,
2、在這個問題中包含了什么問題
3、如何將它轉(zhuǎn)化為數(shù)學(xué)問題。通過實(shí)例,讓學(xué)生從具體的實(shí)例中發(fā)現(xiàn)數(shù)學(xué)問題,進(jìn)而尋求解決問題的方法,使學(xué)生懂得數(shù)學(xué)來源于現(xiàn)實(shí),服務(wù)于現(xiàn)實(shí)生活,同時也調(diào)動了學(xué)生的積極性,提高了學(xué)生的興起,活動2:
探究平行線的性質(zhì)
問題:
1、上節(jié)課學(xué)習(xí)了用一把直尺和一塊三角板可以畫兩條平行線,想一想在這個過程中三角尺取到什么作用,你能不能用兩把直尺畫出兩條平行線,如果不能,為什么?
2、自己閱讀課本的21頁“探究”部分,并把空填好。用電腦展示在畫平行線時三角尺在其中取到的作用。
學(xué)生通過學(xué)習(xí)測量比較得到這些角中上下兩個角的關(guān)系,
關(guān)注的問題是:
1、注意性質(zhì)具有一般性。不能簡單從幾個特殊的例子,就斷定它就具有某種性質(zhì),而需要一個從特殊到一般的推導(dǎo)過程。
2、理清兩條直線平行,同位角相等,內(nèi)錯角也相等,同旁內(nèi)角互補(bǔ)之間的關(guān)系。通過動手測量提高學(xué)生的動手操作能力,并培養(yǎng)學(xué)生從特殊需要到一般的推理能力,使其從感性上升到理性認(rèn)識。活動3:
運(yùn)用與推理
問題:
你能根據(jù)性質(zhì)1,說出性質(zhì)2,性質(zhì)3成立的理由嗎?如圖,
因?yàn)閍∥b.所以∠1=∠2(_______)
又∠3=∠_____,(對頂角相等)
所以∠2=∠3,
類似地,對于性質(zhì)3,你能說出道理嗎?
想一想:這節(jié)課開始的那個問題應(yīng)該如何解決?
學(xué)生回答,再由同學(xué)補(bǔ)充。老師糾正。
教師引導(dǎo)學(xué)生觀察因?yàn)樗灾g的關(guān)系。能過學(xué)生做和說,培養(yǎng)學(xué)生的一定的表達(dá)能力和邏輯推理能力;顒4
鞏固與提高
問題1:如圖直線a,b被直線c所截,
1、如果a∥b,∠1=60°,那么∠2,,∠3,∠4為多少度。為什么?
2、如果∠1=60°,∠3=120°,直線a、b有什么關(guān)系?為什么?
問題2:∠1=100°,∠5=100°,∠2=60°,那么∠4、∠3為多少度?
解:因?yàn)椤?=100°,∠5=100°
所以∠1=∠____()
所以_____∥_______(),
又因?yàn)椤? =60°()
所以∠4=∠______=______()
又因?yàn)椤?與∠3________ ()
所以∠3=180°-_____=______°
問題3:填一填
如圖,已知:∠1=∠ABC=∠ADC,∠3=∠5,∠2=∠4,∠ABC+∠BCD=180°,
(1)因?yàn)椤?=∠ABC,
所以AD∥_____()
(2)因?yàn)椤?=∠5
所以AB∥_____()
。3)因?yàn)椤?=∠4
所以______∥______ ()
。4)因?yàn)椤?=∠ADC
所以______∥______()
。5)因?yàn)椤螦BC+∠BCD=180
所以_______∥______ ()
問題4,學(xué)與用:
某市為建設(shè)社會主義新農(nóng)村,村村通煤氣,市政工作人員已經(jīng)在道路的兩側(cè)鋪設(shè)了兩條平行的燃?xì)夤艿,如果公路一?cè)鋪設(shè)的角度為100°,為了便于連接,那么另一側(cè)應(yīng)以什么角度鋪設(shè)?為什么?
小結(jié):
布置作業(yè)
課本25頁的第1、2、3題由學(xué)生獨(dú)立完成,老師指導(dǎo),引導(dǎo)學(xué)生注意這些之間的關(guān)系。
應(yīng)關(guān)注的問題是:
1、平行線的性質(zhì)和判定的不同。
2、幾何推理證明的要領(lǐng)。
3、正確分清推理中因?yàn)楹退运磉_(dá)的意義通過具體問題,使學(xué)生更進(jìn)一步理解和認(rèn)識平行線的性質(zhì)和判定的區(qū)別和聯(lián)系。進(jìn)一步認(rèn)識角與角之間的關(guān)系,進(jìn)一步鍛煉學(xué)生幾何證明題的邏輯推理。
【初中平行線的性質(zhì)教學(xué)設(shè)計】相關(guān)文章:
小數(shù)的意義和性質(zhì)教學(xué)設(shè)計12-27
小數(shù)的意義和性質(zhì)教學(xué)設(shè)計12-27
蘇教版小數(shù)的意義和性質(zhì)教學(xué)設(shè)計12-27
小數(shù)的意義和性質(zhì)教學(xué)設(shè)計9篇12-27
《小數(shù)的性質(zhì)》教學(xué)反思01-15
初中地理教學(xué)設(shè)計12-30
政治初中教學(xué)設(shè)計12-29
初中地理教學(xué)設(shè)計12-30
初中《觀潮》教學(xué)設(shè)計12-11