- 相關(guān)推薦
平方根教學(xué)設(shè)計(jì)一等獎
作為一名無私奉獻(xiàn)的老師,編寫教學(xué)設(shè)計(jì)是必不可少的,教學(xué)設(shè)計(jì)是對學(xué)業(yè)業(yè)績問題的解決措施進(jìn)行策劃的過程。教學(xué)設(shè)計(jì)應(yīng)該怎么寫呢?以下是小編收集整理的平方根教學(xué)設(shè)計(jì)一等獎,歡迎閱讀,希望大家能夠喜歡。
平方根教學(xué)設(shè)計(jì)一等獎1
學(xué)科:
數(shù)學(xué)年級:七年級審核:
內(nèi)容:
滬科版七下6.1平方根(1)課型:新授時間:
學(xué)習(xí)目標(biāo):
1、了解平方根的概念,會用根號表示一個數(shù)的平方根,并了解被開方數(shù)的非負(fù)性;
2、了解開方與乘方互為逆運(yùn)算,會用平方運(yùn)算求某些非負(fù)數(shù)的平方根,進(jìn)行簡單的開平方運(yùn)算。
學(xué)習(xí)重點(diǎn):
了解平方根的概念,求某些非負(fù)數(shù)的平方根
學(xué)習(xí)難點(diǎn):
了解被開方數(shù)的非負(fù)性;
學(xué)習(xí)過程:
一、學(xué)習(xí)準(zhǔn)備
1、我們已經(jīng)學(xué)習(xí)過哪些運(yùn)算?它們中互為逆運(yùn)算的是?
答:加法、減法、乘法、除法、乘方五種運(yùn)算。加法與減法互逆;乘法與除法互逆。
2、什么叫乘方?什么叫冪?乘方有沒有逆運(yùn)算?完成下面填空。
32 = ( ) ( )2 = 9
(-3)2= ( ) ( )2 =
( )2= ( ) ( )2 = 0
( )2 =( )
02 =( ) ( )2 =-4
3、左邊算式已知底數(shù)、指數(shù)求冪,右邊算式已知冪、指數(shù)求底數(shù)
一般地,如果一個數(shù)的平方等于a,那么這個數(shù)叫做a的平方根,也叫做a的二次方根。
即如果X2=a,那么叫做的平方根。請按照第3頁的舉例你再舉兩個例子說明:
叫做開平方,平方與互為逆運(yùn)算
4、觀察上面兩組算式,歸納一個數(shù)的平方根的性質(zhì)是:
一個正數(shù)有兩個平方根,它們互為相反數(shù);
零有一個平方根,它是零本身;
負(fù)數(shù)沒有平方根。
交流:(1)的平方根是什么?
。2)0.16的平方根是什么?
(3)0的平方根是什么?
。4)-9的平方根是什么?
5、平方根的表示方法
一個正數(shù)a有兩個平方根,它們互為相反數(shù).
正數(shù)a的正的平方根,記作“ ”
正數(shù)a的負(fù)的平方根,記作“ ”
這兩個平方根合在一起記作“ ”
如果X2=a,那么X=,其中符號“ ”讀作根號,a叫做被開方數(shù)
這里的`a表示什么樣的數(shù)?a是非負(fù)數(shù)
二、合作探究
1、判斷下面的說法是否正確:
1).-5是25的平方根;()
2).25的平方根是-5;()
3).0的平方根是0()
4).1的平方根是1()
5).(-3)2的平方根是-3()
6). -32的平方根是-3()
2、閱讀課本第4頁例題1,按例題格式判斷下列各數(shù)有沒有平方根,若有,求其平方根。若沒有,說明為什么。
。1)0.81(2)(3)-100(4)(-4)2
(5)1.69(6)(7)10(8)5
三、學(xué)習(xí)體會:
本節(jié)課你學(xué)到哪些知識?哪些地方是我們要注意的?你還有哪些疑惑?
四、自我測試
1、檢驗(yàn)下面各題中前面的數(shù)是不是后面的數(shù)的平方根。
。1)±12 , 144()(2)±0.2 , 0.04()
(3)102,104()(4)14,256()
2、選擇題(1)0.01的平方根是()
A、0.1 B、±0.1 C、0.0001 D、±0.0001
(2)因?yàn)椋?.3)2 = 0.09所以()
A、0.09是0.3的平方根. B、0.09是0.3的3倍.
C、0.3是0.09的平方根. D、0.3不是0.09的平方根.
3、判斷下列說法是否正確:
。1)-9的平方根是-3; ( )
。2)49的平方根是7;( )
(3)(-2)2的平方根是±2;()
。4)-1是1的平方根;()
。5)若X2 = 16則X = 4()
(6)7的平方根是±49. ( )
4、求下列各數(shù)的平方根
1)81 2)0.25 3)4)(-6)2
5、求下列各式中的x:
(1) x=16 (2) x= (3) x=15 (4) 4x=81
思維拓展:
1、一個數(shù)的平方等于它本身,這個數(shù)是一個數(shù)的平方根等于它本身,這個數(shù)是
2、若3a+1沒有平方根,那么a一定。 3、若4a+1的平方根是±5,則a= 。
4、一個數(shù)x的平方根等于+1和-3,則= 。x= 。
5、若|a-9|+(b-4)=0,則ab的平方根是。
6、熟背1至20的平方的結(jié)果。
7、分別計(jì)算32,34,46,58,512,10的平方根,你能發(fā)現(xiàn)開平方后冪的指數(shù)有什么變化嗎?
平方根教學(xué)設(shè)計(jì)一等獎2
教材分析:
《算術(shù)平方根》是人教版七年級下第六章第一節(jié),本節(jié)通過對實(shí)際生活中問題的解決,讓學(xué)生體驗(yàn)數(shù)學(xué)與生活實(shí)際是緊密聯(lián)系著的。通過對這一節(jié)課的學(xué)習(xí),既可以讓學(xué)生了解算術(shù)平方根的概念,會用根號表示正數(shù)的算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性,將為學(xué)生學(xué)習(xí)算術(shù)平方根奠定基礎(chǔ)。引入算術(shù)平方根的知識,要借助具體的生活情境,這樣才能加深對引入平方根知識必要性的認(rèn)識。注意引導(dǎo)學(xué)生發(fā)現(xiàn)被開方數(shù)與對應(yīng)的算術(shù)平方根之間的關(guān)系。
本節(jié)課的開始就設(shè)置了一個問題情境,把這個問題情境抽象成數(shù)學(xué)問題就是已知正方形的面積求正方形的邊長,這是典型的求算術(shù)平方根的問題。由于所選數(shù)字簡單,可見其設(shè)計(jì)目的,并不著眼于計(jì)算,而在于鞏固概念。因此本節(jié)課的關(guān)鍵是抓住算術(shù)平方根概念的本質(zhì)特征,逐層深入,多個角度展示。
課標(biāo)要求:
在實(shí)際情境中理解算術(shù)平方根的概念及求法,并能解決簡單的問題,體驗(yàn)數(shù)學(xué)與日常生活密切相關(guān),認(rèn)識到許多實(shí)際問題可以借助數(shù)學(xué)方法來解決,并可以借助數(shù)學(xué)語言來表述和交流。
本節(jié)突出概念形成過程的教學(xué),首先列舉學(xué)生熟悉的例子,從生活問題中抽象出數(shù)學(xué)本質(zhì),引導(dǎo)學(xué)生觀察、分析后歸納,然后提出注意問題,幫助學(xué)生把握概念的本質(zhì)特征,再引導(dǎo)學(xué)生運(yùn)用概念并及時反饋。同時在概念的形成過程中,著意培養(yǎng)學(xué)生觀察、分析、抽象、概括的能力。在本節(jié)課中,我利用學(xué)生的已有經(jīng)驗(yàn),通過思考、討論、探究等活動,使學(xué)生感受到做數(shù)學(xué)、用數(shù)學(xué)的價值。
策略分析:
根據(jù)教材內(nèi)容和編排特點(diǎn),為了更有效地突出重點(diǎn)、突破難點(diǎn)、抓住關(guān)鍵,本節(jié)課按照學(xué)生的認(rèn)知規(guī)律,遵循教師為主導(dǎo),學(xué)生為主體,訓(xùn)練為主線的原則,采用“自主探究法”和“引導(dǎo)發(fā)現(xiàn)法”為主,并根據(jù)學(xué)法指導(dǎo)自主性和差異性要求,讓學(xué)生在探究過程中理解理解算術(shù)平方根的概念。
教學(xué)目標(biāo):
1、經(jīng)歷算術(shù)平方根概念的形成過程,會用根號表示算術(shù)平方根,并了解算術(shù)平方根的非負(fù)性。
2、會用平方運(yùn)算求非負(fù)數(shù)的算術(shù)平方根,包括完全平方數(shù)的算術(shù)平方根和部分非完全平方數(shù)的算術(shù)平方根。
教學(xué)重點(diǎn):
理解算術(shù)平方根的概念。
教學(xué)難點(diǎn):
根據(jù)算術(shù)平方根的概念正確求出非負(fù)數(shù)的算術(shù)平方根。
教學(xué)過程:
一、創(chuàng)設(shè)情境,導(dǎo)入新課
學(xué)校要舉行美術(shù)作品比賽,小鷗想裁出一塊面積為25 dm2的正方形油布,畫上自己的得意之作參加比賽,這塊正方形油布的邊長應(yīng)取多少?
。ㄔO(shè)計(jì)說明:用教材的問題作為導(dǎo)入材料,能夠和學(xué)生的課前預(yù)習(xí)活動對接,可以提高學(xué)生參與教學(xué)活動的廣度,從學(xué)生熟悉的數(shù)學(xué)經(jīng)驗(yàn)入手,提出簡單的問題,激發(fā)學(xué)生自主學(xué)習(xí)的興趣和積極性,也自然引入新課。)
二、自主探究,發(fā)現(xiàn)新知
自學(xué)教材40頁內(nèi)容,思考:
1、什么是算術(shù)平方根?怎樣表示一個數(shù)的算術(shù)平方根?
2、1的算術(shù)平方根是多少?9的算術(shù)平方根是多少?16呢?怎樣求一個正數(shù)的算術(shù)平方根?正數(shù)的算術(shù)平方根的結(jié)果是什么數(shù)?
3、0的算術(shù)平方根是多少?為什么?
4、負(fù)數(shù)有算術(shù)平方根嗎?為什么?
。◣熒顒樱簩W(xué)生自學(xué)教材,結(jié)合探究提綱思考、練習(xí)、舉例、討論,教師做好板書準(zhǔn)備后巡視檢查學(xué)生自學(xué)情況,深入學(xué)生中間交流,掌握學(xué)情,為展示交流做準(zhǔn)備。)
【設(shè)計(jì)意圖】學(xué)生通過自主學(xué)習(xí),經(jīng)歷觀察、比較、抽象、概括的思維過程,理解算術(shù)平方根概念的實(shí)質(zhì),建立初步的數(shù)感和符號感,提高學(xué)生抽象思維水平。
三、學(xué)生交流,展示歸納
1、自主探究展示:
(1)算術(shù)平方根的概念和表示方法。
(2)求1,9,16,0的算術(shù)平方根。
2、合作探究展示:
負(fù)數(shù)沒有算術(shù)平方根,因?yàn)闆]有任何數(shù)的平方的結(jié)果是負(fù)數(shù)。
3、歸納展示:
。1)一般地,如果一個正數(shù)x的平方等于a,即x2=a,那么這個正數(shù)x叫做a的算術(shù)平方根。記讀作“根號a”,a叫做被開方數(shù)。
。2)0的算術(shù)平方根是0。
4、舉例展示:(學(xué)生舉出算術(shù)平方根的例子。)
。◣熒顒樱航處熃Y(jié)合巡視檢查,讓中差生先展示,充分的暴露問題,再由中等生或優(yōu)等生糾錯、說理、補(bǔ)充、評價、修正。)
【設(shè)計(jì)意圖】通過展示交流,培養(yǎng)學(xué)生的“自主、合作、探究”能力,讓學(xué)生體驗(yàn)“互逆”的數(shù)學(xué)思想方法,積累數(shù)學(xué)活動經(jīng)驗(yàn)。
四、類比練習(xí),鞏固提升
(師生活動:學(xué)生結(jié)合例題的格式解答,抽3名學(xué)生上講臺板書,其他學(xué)生自主解答,從解題的'過程、結(jié)果、格式等方面進(jìn)行評價、糾錯、修訂、完善,教師給予適當(dāng)?shù)囊龑?dǎo)、點(diǎn)撥、評價。)
練習(xí)1:課本41頁練習(xí)1題。
。◣熒顒樱撼閷W(xué)生回答,其他同學(xué)評價、補(bǔ)充、修訂。)
練習(xí)2:課本41頁練習(xí)2題。
(師生活動:抽學(xué)生上黑板完成,發(fā)動學(xué)生相互評價補(bǔ)充,教師重點(diǎn)提醒題,強(qiáng)調(diào)乘方的算術(shù)平方根的計(jì)算方法。)
練習(xí)3:下列各數(shù)有算術(shù)平方根嗎?如果有,求出來;如果沒有,請說明理由。
。◣熒顒樱簩W(xué)生獨(dú)立解答,學(xué)生代表板書,學(xué)生相互評價,教師重點(diǎn)提醒題,加深對概念的理解和應(yīng)用。)
。◣熒顒樱撼閷W(xué)生回答,發(fā)動其他同學(xué)評價、補(bǔ)充、修訂。)
【設(shè)計(jì)意圖】學(xué)生通過口答、計(jì)算、選擇,加深對算術(shù)平方根的概念及性質(zhì)的理解和應(yīng)用,提高學(xué)生分析問題和解決問題的能力。
五、回顧反思,強(qiáng)化提升
1、這節(jié)課你學(xué)到了什么?
2、你對大家有哪些建議或提醒?
(師生活動:學(xué)生自主小結(jié),同學(xué)相互補(bǔ)充評價,教師補(bǔ)充完善。)
【設(shè)計(jì)意圖】引導(dǎo)學(xué)生從知識與技能、過程與方法、情感態(tài)度價值觀的三維目標(biāo)中總結(jié)自己的收獲,把握本節(jié)課的核心內(nèi)容,進(jìn)一步體會互逆運(yùn)算的數(shù)學(xué)思想方法。
六、當(dāng)堂檢測、知識過關(guān)
績優(yōu)學(xué)案32頁鞏固訓(xùn)練的1、2、3、4(1)(3)小題。
。◣熒顒樱簩W(xué)生獨(dú)立完成,教師手拿紅筆進(jìn)行選擇性批閱,教師出示答案,學(xué)生自我評價,師生共同評價。)
【設(shè)計(jì)意圖】通過4測試題,再次加深學(xué)生對算術(shù)平方根的概念的理解和運(yùn)用,及時反饋學(xué)生對本節(jié)課知識的掌握程度。
七、布置作業(yè)
1、必做題:習(xí)題6.1復(fù)習(xí)鞏固第1、2題。
2、選做題:績優(yōu)學(xué)案32頁典例探究3和鞏固訓(xùn)練的5題。
【設(shè)計(jì)意圖】體現(xiàn)課標(biāo)理念:“人人都能獲得良好的數(shù)學(xué)教育,不同的人在數(shù)學(xué)上得到不同的發(fā)展!北刈鲱}面向全體,選做題使學(xué)有余力的同學(xué)有發(fā)展的空間。
【課后反思】
本節(jié)課的教學(xué)設(shè)計(jì),力求為學(xué)生創(chuàng)造一種寬松、和諧、適合學(xué)生發(fā)展的學(xué)習(xí)環(huán)境,創(chuàng)設(shè)一種有利于思考、討論、探索的學(xué)習(xí)氛圍。整個教學(xué)環(huán)節(jié)層層推進(jìn)、步步深入,注重調(diào)動學(xué)生思維的積極性,把知識的形成過程轉(zhuǎn)化為學(xué)生為主的過程,重視學(xué)生的自主探索、親身實(shí)踐、合作交流。學(xué)生在活動中理解掌握基本知識、技能和方法,使學(xué)生在獲得知識的同時提高了興趣、增強(qiáng)了信心、提高了能力。
由于這節(jié)課是一節(jié)概念課,關(guān)于數(shù)學(xué)概念課的教學(xué)有它特殊的要求,其中,最重要的一點(diǎn)就是充分展現(xiàn)概念的形成過程,所以,如何引導(dǎo)幫助學(xué)生建立這個概念,并對它的內(nèi)涵和外延有深刻、明確的理解和認(rèn)識,是本節(jié)課的重點(diǎn)。本節(jié)課的內(nèi)容看起來簡單,但對學(xué)生來講,要想真正理解這個概念有很多困難,如果僅僅就概念講概念,如果沒有必要的知識聯(lián)系和遷移,學(xué)生對這個概念只能形式化的模仿運(yùn)用,無法真正掌握。過去對這個問題重視不夠,正是導(dǎo)致學(xué)生在這個簡單的問題上經(jīng)常犯錯誤的主要原因。為此,我在設(shè)計(jì)這節(jié)課教學(xué)時,把重點(diǎn)就放在這里。
。1)創(chuàng)設(shè)情景,自然導(dǎo)入
首先通過一個問題情境,引出面積求邊長的問題,接著又讓學(xué)生通過填表的方式,計(jì)算幾個不同面積的正方形的邊長,使學(xué)生感受到這些問題與以前學(xué)過的已知邊長求面積的問題是一個相反的過程,即學(xué)生較為熟悉的互逆運(yùn)算,并由此指出,這些問題抽象成數(shù)學(xué)問題就是已知一個正數(shù)的平方求這個正數(shù)的問題,并在此基礎(chǔ)上給出算術(shù)平方根的概念,這樣就讓學(xué)生通過具體活動,在對算術(shù)平方根有些感性認(rèn)識的基礎(chǔ)上給出這個概念。培養(yǎng)學(xué)生從數(shù)學(xué)的角度觀察生活,思考問題的能力。
。2)學(xué)生在積極參與教學(xué)活動中自覺的提高了認(rèn)知水平。
算術(shù)平方根的學(xué)習(xí)體現(xiàn)了由特殊到一般的認(rèn)識過程,通過一些具體數(shù)的計(jì)算,然后放到一般情況下理性思考,這樣就為學(xué)生接受新知鋪設(shè)了臺階,符合學(xué)生的認(rèn)知規(guī)律。為了使抽象的概念具體化,通俗易懂,本節(jié)由學(xué)生列舉的例子,培養(yǎng)學(xué)生的發(fā)散思維,也增強(qiáng)學(xué)生運(yùn)用數(shù)學(xué)的意識。
【平方根教學(xué)設(shè)計(jì)一等獎】相關(guān)文章:
算術(shù)平方根教學(xué)設(shè)計(jì)11-04
平方根教案設(shè)計(jì)08-28
《爭吵》教學(xué)設(shè)計(jì)一等獎10-27
《散步》教學(xué)設(shè)計(jì)(散步教學(xué)設(shè)計(jì)一等獎ppt)03-21
平方根教學(xué)反思07-05
平方根教學(xué)反思02-28
平方根教學(xué)隨筆03-30