《圓柱的體積》教學(xué)設(shè)計
作為一名教職工,常常要根據(jù)教學(xué)需要編寫教學(xué)設(shè)計,編寫教學(xué)設(shè)計有利于我們科學(xué)、合理地支配課堂時間。教學(xué)設(shè)計要怎么寫呢?下面是小編收集整理的《圓柱的體積》教學(xué)設(shè)計,希望對大家有所幫助。
《圓柱的體積》教學(xué)設(shè)計1
教學(xué)內(nèi)容:
教材第25、26頁例4、“試一試”、“練一練”和練習(xí)七的1、2題
教學(xué)目標(biāo):
1、進(jìn)一步深入地引導(dǎo)學(xué)生去了解圓柱,讓學(xué)生掌握圓柱的體積計算公式,并能解決實際問題。
2、培養(yǎng)學(xué)生自學(xué)能力,動手能力,觀察分析和歸納知識的能力,讓學(xué)生理解“轉(zhuǎn)化”的方法。
教學(xué)重點:
理解和掌握圓柱體積的計算公式。
教學(xué)難點:
圓柱體積計算公式的`推導(dǎo)。
教學(xué)準(zhǔn)備:
圓柱體模具。
教學(xué)過程:
預(yù)習(xí)作業(yè)檢測
學(xué)習(xí)計算圓的面積時,是怎樣得出圓面積的計算公式的?
求下面各圓的面積
R=1厘米求Sd=4分米求Sc=6.28米求S
長方體與正方體的體積都可以用什么公式來表示?
圓柱底面積/平方米高/米體積/立方米
0.61.2
0.253
合作探究
你們是怎么知道圓柱的體積=底面積×高的呢?生答預(yù)習(xí)得知。
課本上是怎么把圓柱體和長方體聯(lián)系在一起的呢?
生答,同時師相機(jī)用課件展示圓柱體和長方體相互轉(zhuǎn)化的畫面。
用切拼法把圓柱體切成16等份、32等份、64等份,由此得出結(jié)論:
○1、等份越多,拼成的物體越接近于長方體。
○2、長方體與圓柱體等底等高。
○3、長方體體積=圓柱體體積
○4、圓柱的體積=底面積×高(V=sh)。
根據(jù)剛才的結(jié)論完成下面的題目:
○1、一根圓柱形鋼材,底面積是20平方厘米,高是1.5米,它的體積是多少?生獨立完成后,師有選擇的找?guī)孜粚W(xué)生的作業(yè)進(jìn)行投影展示,全班交流評價。
○2、一個圓柱形狀的零件,底面半徑5厘米,高8厘米,這個圓柱的體積是多少立方厘米?
引導(dǎo)學(xué)生讀題,思考。指名說出自己想的過程。生獨立解答,展示、交流、評價。
當(dāng)堂達(dá)標(biāo)檢測
1、“練一練”第1題。
2、練習(xí)七第2題。
3、“練一練”第2題。
《圓柱的體積》教學(xué)設(shè)計2
教學(xué)目標(biāo)
1、知識與技能:理解教材中形體轉(zhuǎn)化的過程,掌握圓柱體積的計算公式,會用公式計算圓柱的體積,解決有關(guān)簡單的實際問題。拓展教材內(nèi)容,初步了解直柱體的相關(guān)知識。
2、過程與方法:利用教材空間,為學(xué)生搭建思維平臺。讓學(xué)生經(jīng)歷觀察、想象、思考、交流等教學(xué)活動過程,理解圓柱體積計算公式的推導(dǎo)過程,提高學(xué)生思維能力,同時體驗轉(zhuǎn)化和極限的思想。
3、情感與態(tài)度:挖掘教材內(nèi)涵,把圖形的變換過程,轉(zhuǎn)變?yōu)閷W(xué)生思維能力的培養(yǎng)、提高的過程,并進(jìn)一步發(fā)展其空間觀念,領(lǐng)悟?qū)W習(xí)數(shù)學(xué)的方法,激發(fā)學(xué)生學(xué)習(xí)興趣,滲透事物是普遍聯(lián)系的唯物辯證思想。
教學(xué)重點:
理解圓柱體積計算公式的推導(dǎo)過程,運用圓柱體積計算公式準(zhǔn)確解決實際問題。
教學(xué)難點:
正確理解圓柱體積計算公式的推導(dǎo)過程。
教學(xué)過程
一、情境導(dǎo)入:
老師手拿一個圓柱形橡皮泥(大小適宜)。
1、師:通過前面的學(xué)習(xí),關(guān)于圓柱你已經(jīng)知道什么?還想了解它的哪些知識?
生1:(已學(xué)知識)。
生2:圓柱是一種立體圖形,那么它的體積怎么計算?
【學(xué)情分析:在學(xué)習(xí)圓柱的認(rèn)識和表面積的基礎(chǔ)上,學(xué)生能夠順利回憶已學(xué)的知識,而且質(zhì)疑提出即將學(xué)習(xí)的知識,明確學(xué)習(xí)目標(biāo),為本節(jié)課的學(xué)習(xí)找到思維與認(rèn)知源泉!
2、師:聯(lián)系已經(jīng)掌握的有關(guān)立體圖形的知識,你能想辦法求出這個圓柱體的體積嗎?
生1:圓柱體的體積計算沒有學(xué)過,無法計算。
生2:將這個圓柱放入一個盛有水的長方體容器中,量出上升了的水的長、寬、高,就可以求出它的體積。
生3:圓柱體在水中必須完全浸沒,而且水還不能溢出。
【學(xué)情分析:學(xué)生在五年級學(xué)習(xí)長方體、正方體有關(guān)知識的基礎(chǔ)上,很容易想到運用“排水法”來解決問題,所以這一環(huán)節(jié)也充分給予學(xué)生展示自我的機(jī)會,培養(yǎng)思維中的自信心!拷處熢趯W(xué)生中找出小助手,幫助測量有關(guān)數(shù)據(jù),全體同學(xué)計算水的體積,并作記載。
師:運用轉(zhuǎn)化思想,聯(lián)系已學(xué)知識,解決新生問題,同學(xué)們真了不起!
【設(shè)計意圖:學(xué)生的學(xué)習(xí)活動要建立在已有的知識和認(rèn)知基礎(chǔ)上,通過水的變形把圓柱的體積轉(zhuǎn)化為長方體的體積來計算,使學(xué)生初步感知數(shù)學(xué)轉(zhuǎn)化思想在解決問題中的價值,同時提高學(xué)生解決問題能力和思維能力!
4、師:如果要求壓路機(jī)前輪的體積或是求樓房中柱子的體積,還能不能用這種方法計算嗎?(不能)那么求圓柱的體積時是否也有一個簡單、易算的體積計算公式呢?今天我們就一起來研究圓柱體積的計算方法。
【設(shè)計意圖:學(xué)生的學(xué)習(xí)應(yīng)該是出于自身需要的,是主動的、有效的,已有的知識已經(jīng)不能解決新生問題時,學(xué)生產(chǎn)生強(qiáng)烈的求知欲望,為主動參與知識的形成過程,探究圓柱的體積計算公式奠定積極的情感基礎(chǔ)!
二、新舊過度:
教師引導(dǎo)學(xué)生觀察圓柱形實物。
1、
師:發(fā)揮你的想象,哪些平面圖形可以演變?yōu)閳A柱體?生1:以長方形的一條長為軸,把長方形旋轉(zhuǎn)一周,就形成一個圓柱體。
。ń處熝菔荆捍笮〔煌拈L方形旋轉(zhuǎn)形成圓柱體。)
生2:把一個圓形上下平移,移動過的'軌跡就是圓柱體。(課件演示:大小不同的圓形上下垂直平移不同高度形成圓柱體。)
師:通過剛才的演示過程你覺得圓柱的體積大小與什么有關(guān)?(圓柱的底面積和高)
【設(shè)計意圖:其一,讓學(xué)生初步感知幾何圖形點———線———面———體的演變過程;其二,訓(xùn)練學(xué)生的空間思維能力,進(jìn)而提升學(xué)生的數(shù)學(xué)思維含量;其三,為進(jìn)一步探究圓柱的體積計算公式明確探究方向。】
2、師:圓柱的底面大小就是圓柱底面圓形的面積,叫做圓柱的底面積。誰還記得圓面積計算公式的推導(dǎo)過程?
學(xué)生口述,同時課件演示圓形轉(zhuǎn)化為近似長方形的過程。
【設(shè)計意圖:回憶圓轉(zhuǎn)化為近似長方形的過程,使學(xué)生重溫化曲為直、化圓為方的數(shù)學(xué)思想,而且溝通新舊知識間的聯(lián)系,同時為下一步對圓柱的轉(zhuǎn)化(等份切割)順利進(jìn)行提供思維方法的幫助!
3、教師小結(jié):我們能把一個圓采用化曲為直,化圓為方的方法轉(zhuǎn)化成近似的長方形,現(xiàn)在能否采用類似的方法將圓柱切割拼合成一個學(xué)過的立體圖形呢?
三、自主探究
1、學(xué)生手拿圓柱實物,仔細(xì)觀察,獨立思考。
2、組織學(xué)生小組討論,把個人的想法在小組中交流,形成統(tǒng)一意見。
強(qiáng)調(diào):在討論過程中,教師參與其中,傾聽學(xué)生想法,調(diào)整匯報次序,同時提醒學(xué)生觀察手中圓柱實物。
3、匯報交流,統(tǒng)一意見。
生1:把一個圓剪拼成一個近似的長方形,然后把圓形和近似長方形同時向上平移相同的高度,這時他們的軌跡一個是圓柱體,一個是近似長方體,而且它們的體積相等。
。◣煟阂粋圓柱和一個長方體只要底面積和高分別相等,它們的體積就相等嗎?一會兒我們來解決這個問題。)
生2:把圓柱的底面分成許多相等的扇形,再沿這些分割線把圓柱縱切開來,從而剪拼成一個近似的長方體。
。◣煟簽槭裁词墙频拈L方體?———滲透數(shù)學(xué)極限思想)
【設(shè)計意圖:這個轉(zhuǎn)化的過程是本節(jié)課的難點,在前面知識鋪墊的基礎(chǔ)上,發(fā)揮學(xué)生集體智慧的結(jié)晶,為學(xué)生提供廣闊的思維和交流平臺,真正使學(xué)生的思維與學(xué)習(xí)相輔相成,從而達(dá)到提高學(xué)生空間思維能力之目的!
4、課件演示:
師:仔細(xì)觀察下面這組課件,和你想象的是否一樣?
演示兩次,第一次把圓柱平均分成16份,再剪拼成一個近似的長方形;第二次把圓柱平均分成32份,再剪拼成一個近似的長方形。
師:如果再平均分成更多的份數(shù),結(jié)果會怎樣呢?(平均分成的份數(shù)越多,轉(zhuǎn)化成的形體就越接近長方體——極限思想)【問題討論:課件中把圓柱平均分割后,其中的一塊又平均分成兩份,其中的一份移接到另一端,拼成一個更接近的長方體,而教材上的意圖并沒有這樣的過程,我認(rèn)為教材的方法是很可取的,符合極限思想,并且可以給予學(xué)生充分的思考和想象空間,因為只要均分的份數(shù)無限多時,拼成的圖形就是一個長方體。然而實際教學(xué)中只是把圓柱平均分成16份或32份,那么在實際教學(xué)中如何更準(zhǔn)確的詮釋實際與理論之間的這種矛盾,從而更好的服務(wù)于學(xué)生思維、服務(wù)于課堂教學(xué)呢?】
5、直觀演示,尋找聯(lián)系師:為了強(qiáng)化剛才的轉(zhuǎn)化過程,我們再借助實物教具演示一遍(教具一半為紅色,一半為綠色)。仔細(xì)觀察演示過程,你能發(fā)現(xiàn)什么?
生:長方體的體積相當(dāng)于圓柱的體積,長方體的底面積相當(dāng)于圓柱的底面積,而且它們的高相等。
因為:長方體的體積=底面積×高
所以:圓柱的體積=底面積×高
V = S h 【學(xué)情分析:在小組討論、課件演示的基礎(chǔ)上,再有雙色教具(一個紅色教具,一個綠色教具,偶然發(fā)現(xiàn)雙色混合更容易輔助學(xué)生找出聯(lián)系)的實物演示,使得尋找圓柱體與長方體之間的聯(lián)系變得異常容易,并且自然而然得到圓柱體體積計算公式,同時使學(xué)生感受獲取知識的成功之喜悅、艱辛之感慨!
四、實踐應(yīng)用:
1、從公式中可以看出,只要知道哪些條件就能計算圓柱的體積?口算:一個圓柱的底面積是90平方分米,高20分米,它的體積時多少?
強(qiáng)調(diào)單位:90×20=1800(立方分米)
2、再次拿出圓柱體橡皮泥,問:如果要用圓柱體積計算公式計算它的體積,你需要測量哪些數(shù)據(jù)?(底面直徑、高)
找學(xué)生實際測量,保留整厘米數(shù),進(jìn)行計算。將計算結(jié)果與用排水法求出的體積做一對比,可能存在誤差。師:為什么會產(chǎn)生誤差呢?
生1:可能測量有誤差,并且還要保留。
生2:測量水的長、寬時,容器的厚度忽略不計,也能產(chǎn)生誤差。教師說明:每一個科學(xué)結(jié)論都必須經(jīng)過反復(fù)的實驗、計算,才能得到正確的結(jié)論,我們在學(xué)習(xí)上就要有這種不怕吃苦、勇于探索的精神。
3、出示一個圓柱形玻璃杯,出示一袋液態(tài)奶(225ml),問:通過計算你能知道這個杯子能裝下這袋奶嗎?除水杯的厚度忽略不計外,你還需要知道哪些條件?
。ń處熤苯咏o出玻璃杯的底面直徑和高)
【設(shè)計意圖:層次性練習(xí)設(shè)計,第一層:基本練習(xí),使學(xué)生更好的掌握本課重點,夯實基礎(chǔ)知識;第二層,變式練習(xí),進(jìn)一步加深學(xué)生對圓柱體積公式的理解和掌握,學(xué)會靈活運用公式,在提高學(xué)生動手操作能力的同時,培養(yǎng)學(xué)生的邏輯思維能力;第三層,密切聯(lián)系生活,運用公式解決引入環(huán)節(jié)中的問題,使學(xué)生的思維處于積極的狀態(tài),達(dá)到培養(yǎng)學(xué)生思維的靈活性和創(chuàng)造性解決問題能力的目的。】
五、看書質(zhì)疑:看書P19—20,師:哪些知識是我們沒有講到的?(V=∏r2 h)結(jié)合本節(jié)課的探究過程,你有什么疑問嗎?
若學(xué)生有困難就教師提出問題:長方體和圓柱體有什么相同的地方,為什么他們的體積都能用V=Sh來計算?
學(xué)生獨立思考后,教師解釋:我們現(xiàn)在所學(xué)的圓柱體是直圓柱,他與長方體都屬于直柱體,只要是直柱體,體積都可以用V=Sh來計算。如三棱鏡的體積=底面三角形的面積×高
【設(shè)計意圖:課本是最好的教學(xué)輔助工具,是學(xué)生學(xué)習(xí)最好的伙伴,讓學(xué)生再次重溫本節(jié)課的學(xué)習(xí)歷程,養(yǎng)成一種良好的學(xué)習(xí)習(xí)慣和學(xué)習(xí)品質(zhì)!
【問題討論:我個人認(rèn)為,在每一節(jié)課每個知識點的教學(xué)過程中,都盡量站在“數(shù)學(xué)”的高度來教學(xué),于是對教材內(nèi)容進(jìn)行了拓展。長方體與圓柱體的體積公式V=Sh正好說明直柱體體積=底面積×高,但因為長方體(平面圍成)與圓柱體(曲面圍成)之間的聯(lián)系較難找出,無疑增加了學(xué)生的思維負(fù)擔(dān),但從數(shù)學(xué)學(xué)習(xí)的角度來說,它卻為今后“幾何”學(xué)習(xí)奠定基礎(chǔ),這一環(huán)節(jié)處理是否有利于六年級學(xué)生思維發(fā)展?】
六、全課小結(jié):
師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?
【設(shè)計意圖:收獲包括知識、能力、方法、情感等全方位的體會,在這里采用體溫師小結(jié),使學(xué)生暢談收獲,發(fā)現(xiàn)不足,既能訓(xùn)練學(xué)生語言表達(dá)能力,又能培養(yǎng)學(xué)生的歸納概括能力,同時通過對本節(jié)所學(xué)知識的總結(jié)與回顧,還能使學(xué)生學(xué)到的知識系統(tǒng)化、完整化!
啟發(fā)與思考
啟發(fā)
一、充實教材,為提高學(xué)生思維能力搭建平臺
課堂教學(xué)中讓學(xué)生在教師的啟發(fā)指導(dǎo)下,獨立思考、積極主動的去探究知識是怎樣形成的,才能真正使學(xué)生成為學(xué)習(xí)的主體。在教材中已經(jīng)提供了圖形轉(zhuǎn)化的過程,那么在沒有學(xué)具讓學(xué)生進(jìn)行動手操作、親自感悟的情況下,怎樣讓學(xué)生的思維真正參與到知識的形成過程呢?作為教師,必須充實教材。課堂中讓學(xué)生動手測量計算所必需的數(shù)據(jù),自己感悟?qū)W習(xí)圓柱體積計算公式的必要性,合作探究圓柱體的轉(zhuǎn)化方法和過程。所有這些環(huán)節(jié)的設(shè)計,都在潛移默化中引導(dǎo)學(xué)生主動思考,主動參與,在思考與參與中提高了學(xué)生的思維能力。
二、借助教材,為提高學(xué)生思維能力尋找支點
數(shù)學(xué)知識具有一定的結(jié)構(gòu),知識間存在密切的聯(lián)系,教學(xué)時要找出知識間的內(nèi)在聯(lián)系,幫助學(xué)生建立一個較完整的知識系統(tǒng)。教材中設(shè)計了引問“圓可以轉(zhuǎn)化成長方形計算面積,圓柱可以轉(zhuǎn)化成長方形計算體積嗎?”但我認(rèn)為“面體過渡”在幾何領(lǐng)域中本身就是一個難點,而“面面互化”遷移到“體體互化”,就難上加難,所以設(shè)計中用較長時間溝通新舊知識間的聯(lián)系:排水法的應(yīng)用,平面圖形演變?yōu)榱Ⅲw圖形的過程,圓面積的推導(dǎo)過程。在復(fù)習(xí)當(dāng)中,學(xué)生的綜合運用能力得到提高,更重要的是為下一步學(xué)生的思維活動確立支點,進(jìn)而提高學(xué)生的思維能力。
三、理解教材,為提高學(xué)生思維能力提供保證數(shù)學(xué)思想的教學(xué)才是數(shù)學(xué)課堂教學(xué)中最本質(zhì)的教學(xué)。從教材的編排,還有各知識點的呈現(xiàn)中可以看出,有一條不變的主線貫穿始終,那就是轉(zhuǎn)化思想中的化曲為直、化圓為方。那么,只要教師真正理解教材的這一編寫意圖,學(xué)生所收獲到的就不僅是圓柱體積的計算方法,而是真正感悟到數(shù)學(xué)轉(zhuǎn)化思想,學(xué)生必將運用這種思想影響今后的學(xué)習(xí),為其思維能力得以持續(xù)發(fā)展提供保證。思考
思考
一、演示、觀察能否代替操作?
教材中提供了教具演示,但在本節(jié)教學(xué)前,始終沒有找到學(xué)生使用的操作學(xué)具,而自己也嘗試用土豆、橡皮泥等制作學(xué)具,都因為難度太大(粘接處)而告失敗,在無奈之余,設(shè)計了“獨立思考———小組探究———課件演示———教具操作”四個環(huán)節(jié)來突破本節(jié)難點。就學(xué)生理解、接受方面來說效果不錯。但沒有讓學(xué)生親自操作,總感覺影響學(xué)生思維發(fā)展。類似教學(xué)如:圓錐高的認(rèn)識。
二、研究中的失誤會不會造成學(xué)生認(rèn)知的“失誤”?
課堂中為求真實,進(jìn)行了兩次實際測量(第一次測長方體中水的長寬高;第二次測圓柱形橡皮泥的底面直徑和高)。兩次計算結(jié)果的對比,使學(xué)生思維與課堂結(jié)構(gòu)都體現(xiàn)完整性。但由于種種誤差,計算結(jié)果很可能不會相等,這就可能會讓學(xué)生對結(jié)論產(chǎn)生懷疑(盡管教師已經(jīng)說明),那么是否有必要讓學(xué)生經(jīng)歷一個“失誤”的過程呢?類似教學(xué)如:圓周率的計算。
《圓柱的體積》教學(xué)設(shè)計3
教學(xué)圓錐的體積是在掌握了圓錐的認(rèn)識和圓柱的體積的基礎(chǔ)上教學(xué)的。教學(xué)時讓學(xué)生通過實驗來發(fā)現(xiàn)圓錐與等底等高的圓柱之間的關(guān)系,從而得出圓錐的體
積等于和它等底等高的圓柱體積的三分之一,并能運用這個關(guān)系計算圓錐的體積,讓學(xué)生從感性認(rèn)識上升到理性認(rèn)識。
我讓學(xué)生觀察,先猜測圓錐的體積和什么有關(guān),學(xué)生聯(lián)系到了圓柱的體積,在猜想中激發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生明白學(xué)習(xí)目標(biāo)。教師從展示實物圖形到空間圖形,采用對比的方法,不斷加深學(xué)生對形體的認(rèn)識。然后讓學(xué)生動手實驗:有的組用捏橡皮泥的方法,有的組用到沙子的方法;有的組用計算的方法。讓孩子親歷教學(xué)的驗證過程,從實驗中得出結(jié)論:等底等高的圓錐體體積是圓柱體體積的三分之一,從而推出圓錐的體積公式。接著我趁熱打鐵,讓學(xué)生想一想等積等高的時候,圓柱和圓錐有什么樣的關(guān)系?等積等底的時候,圓柱和圓錐又會有什么樣的關(guān)系?這樣,就有一種水到渠成的感覺。對圓錐的體積建立了鮮明的印象之后,就應(yīng)用公式解決實際的生活問題,起到鞏固深化知識點的作用。
圓錐的體積這節(jié)課的教學(xué)具有下面的特點,一是在教學(xué)新課時,沒有像傳統(tǒng)教學(xué)那樣,直接拿出等底等高的圓柱和圓錐容器的教具,讓學(xué)生觀察倒沙實驗,而是通過師生交流、問答、猜想等形式,調(diào)動學(xué)生的積極性,激發(fā)學(xué)生強(qiáng)烈的探究欲望,學(xué)生迫切希望通過實驗來證實自己的猜想,所以做起實驗就興趣盎然;二是在實驗時,讓學(xué)生小組合作親自動手實驗,以實驗要求為主線,即動手操作,又動腦思考,努力探索圓錐體積的計算方法。這樣的學(xué)習(xí),學(xué)生學(xué)的活,記得牢,即發(fā)揮教師的主導(dǎo)作用,又體現(xiàn)了學(xué)生的主體地位。學(xué)生在學(xué)習(xí)的過程中,始終是一個探索者、研究者、發(fā)現(xiàn)者,并獲得了富有成效的學(xué)習(xí)體驗
在教學(xué)之后感覺到遺憾的是,由于教具有限,參與實驗的學(xué)生不多,如果每個小組準(zhǔn)備一套學(xué)具,讓他們以小組合作學(xué)習(xí)的`方式使每個學(xué)生都能真切的參與到探究中去,這樣每個學(xué)生都能懷著喜悅的心情進(jìn)行學(xué)習(xí),最大限度的發(fā)揮每個學(xué)生的自主學(xué)習(xí)的能力,這樣的學(xué)習(xí)不僅使學(xué)生學(xué)會了知識,更重要的是培養(yǎng)了學(xué)生的能力。
教材中圓錐體積的相對練習(xí)較少,但在考試?yán)锩鎸嶋H解決問題中卻常常需要學(xué)生能夠靈活應(yīng)用,所以特別增加了一課時練習(xí)。教學(xué)中的一組填空題,對于幫助學(xué)生深入理解等底等高圓柱與圓錐的聯(lián)系很有價值。通過練習(xí),學(xué)生們明確了圓柱與等底等高的圓錐體積和為4個圓錐的體積(或三分之四個圓柱的體積),而它們的體積相差2個圓錐的體積(或三分之二個圓柱的體積)??。掌握這些知識對于解決實際問題很有幫助,如將圓柱削成最大的圓錐,求削去部分的體積是多少,就可直接用圓柱的體積乘三分之二從而使計算簡便。
教學(xué)的最后我與孩子們一起通過大量的練習(xí),引導(dǎo)總結(jié)出了圓柱和圓錐體積和高(或者是底面積)相等,那么圓錐的底面積(或高)是圓柱的3倍,圓柱的底面積(或高)是圓錐的三分之一。
總而言之,圓柱圓錐的體積計算是教學(xué)的重點和難點,也是考試中學(xué)生容易丟分的危險高發(fā)內(nèi)容,我在后面的教學(xué)中需要精講和精煉,讓學(xué)生熟能生巧、巧能生精,內(nèi)化成自己的數(shù)學(xué)直覺方為最高層次!
《圓柱的體積》教學(xué)設(shè)計4
學(xué)情分析:
根據(jù)六年級的教學(xué)情況來看,班中絕大部分同學(xué)都能跟上現(xiàn)有的進(jìn)度,通過本節(jié)課教學(xué)要使靈活運用圓柱體積的計算方法解決生活中一些簡單的問題,通過想象、操作等活動,理解圓柱體體積公式的推導(dǎo)過程,掌握計算公式;會運用公式計算圓柱的體積。
教學(xué)目標(biāo):
1.通過切割圓柱體,拼成近似的長方體,從而推導(dǎo)出圓柱的體積公式這一教學(xué)過程,向?qū)W生滲透轉(zhuǎn)化思想。
2.通過圓柱體體積公式的推導(dǎo),培養(yǎng)學(xué)生的分析推理能力。
3.理解圓柱體體積公式的推導(dǎo)過程,掌握計算公式;會運用公式計算圓柱的體積。
教學(xué)重點:
圓柱體體積的計算
教學(xué)難點:
圓柱體體積公式的推導(dǎo)
教學(xué)用具:
圓柱體學(xué)具、
教學(xué)過程:
一、復(fù)習(xí)引新
1.求下面各圓的面積(回答)。
(1)r=1厘米; (2)d=4分米; (3)C=6.28米。
要求說出解題思路。
2.提問:什么叫體積?常用的體積單位有哪些?
3.已知長方體的底面積s和高h(yuǎn),怎樣計算長方體的體積?(板書:長方體的體積=底面積×高)
二、探索新知
1、根據(jù)學(xué)過的體積概念,說說什么是圓柱的體積。(板書課題)
2、公式推導(dǎo)。(有條件的可分小組進(jìn)行)
(1)請同學(xué)指出圓柱體的底面積和高。
(2)回顧圓面積公式的推導(dǎo)。(切拼轉(zhuǎn)化)
3、回顧了圓的面積公式推導(dǎo),你有什么啟發(fā)?
生答:把圓柱轉(zhuǎn)化成長方體計算體積。
4、動手操作。
請2位同學(xué)上臺用教具來演示,邊演示邊講解。
把圓柱的'底面平均分成16份,切開后把它拼成一個近似地長方體。
多請幾組同學(xué)上臺講解,完善語言。
提問:為什么用“近似”這個詞?
5、教師演示。
把圓柱拼成了一個近似的長方體。
6、如果把圓柱的底面平均分成32份、64份……切開后拼成的物體會有什么變化?
生答:拼成的物體越來越接近長方體。
追問:為什么?
生答:平均分的份數(shù)越多,每份就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
7、剛才我們通過動手操作,把圓柱切拼成一個近似的長方體。
師:拼成的長方體和原來的圓柱有什么聯(lián)系?請與同學(xué)們進(jìn)行交流?
出示討論題。
。1)、拼成的長方體的底面積與原來圓柱的底面積有什么關(guān)系?為什么是相等的?
(2)、拼成的長方體的高與原來圓柱的高有什么關(guān)系?為什么是相等的?
。3)、拼成的長方體的體積與原來圓柱的體積有什么關(guān)系?為什么?
板書:
長方體體積 底面積 高
圓柱體積 底面積 高
8、根據(jù)上面的實驗和討論,想一想,可以怎樣求圓柱的體積?
生答:把圓柱切拼成一個近似的長方體,拼成的長方體的底面積等于圓柱的底面積,拼成長方體的高等于圓柱的高,因為長方體體積=底面積×高,所以圓柱體積=底面積×高。
9、用字母如何表示。
V=sh
10、小結(jié)。
圓柱的體積是怎樣推導(dǎo)出來的?計算圓柱的體積必須知道哪些條件?
11、教學(xué)算一算
審題。提問:你能獨立完成這題嗎?指名一同學(xué)板演,其余學(xué)生做在練習(xí)本上。集體訂正:列式依據(jù)是什么?應(yīng)注意哪些問題?最后結(jié)果用體積單位)
12、教學(xué)“試一試”
小結(jié):求圓柱的體積,必須知道底面積和高。如果不知道底面積,只知道半徑r,通過什么途徑求出圓柱的體積?如果知道d呢?知道C呢?知道r、d、C,都要先求出底面積再求體積。
三、鞏固練習(xí)
課后“練一練”里的練習(xí)題。
四、課堂小結(jié)
這節(jié)課學(xué)習(xí)了什么內(nèi)容?圓柱的體積怎樣計算,這個公式是怎樣得到的?指出:這節(jié)課,我們通過轉(zhuǎn)化,把圓柱體切拼轉(zhuǎn)化成長方體,(在課題下板書:圓柱轉(zhuǎn)化長方體)得出了圓柱體的體積計算公式V=Sh。
《圓柱的體積》教學(xué)設(shè)計5
各位領(lǐng)導(dǎo)、老師、同學(xué)們:大家好,今天我講課的題目是《圓柱的體積》
圓柱的體積是本單元的教學(xué)重點。在此之前,學(xué)生已經(jīng)學(xué)過了圓面積公式的推導(dǎo),對轉(zhuǎn)化的思想方法和“等積變形”已有所了解;長方體、正方體的體積公式是本節(jié)課的舊知停靠點;而這節(jié)課的順利學(xué)習(xí)將為以后圓錐體積的學(xué)習(xí)鋪平道路。從能力培養(yǎng)方面來看,本節(jié)課的內(nèi)容有利于發(fā)展學(xué)生的空間觀念,培養(yǎng)學(xué)生的邏輯推理能力,在公式推導(dǎo)過程中,還可以培養(yǎng)學(xué)生猜想、類推、對應(yīng)的數(shù)學(xué)思想和方法。另外,就情感的角度而言,通過學(xué)生體驗探索數(shù)學(xué)奧秘的過程,可以培養(yǎng)學(xué)生對數(shù)學(xué)學(xué)習(xí)的興趣和探索精神。
由此,預(yù)設(shè)以下教學(xué)目標(biāo):
1、使學(xué)生經(jīng)歷用切割拼合的方法借助長方體的體積公式推導(dǎo)出圓柱的體積公式的過程,使學(xué)生能總結(jié)和理解圓柱的體積公式,能夠運用公式正確的計算圓柱的體積。
2、培養(yǎng)學(xué)生觀察、猜測、分析、比較、綜合的學(xué)習(xí)思考方法。
3、滲透轉(zhuǎn)化、等積變形、極限的數(shù)學(xué)思想。
4、通過學(xué)生體驗圓柱體積公式的推導(dǎo)過程,讓學(xué)生感受探索數(shù)學(xué)奧秘的樂趣,培養(yǎng)學(xué)生學(xué)習(xí)數(shù)學(xué)的積極情感;
圓柱的體積公式推導(dǎo)過程可以培養(yǎng)學(xué)生多方面的能力,這個過程對學(xué)生是否真正理解圓柱體積公式起著至關(guān)重要的作用,因此我把圓柱的體積公式推導(dǎo)過程做為本節(jié)課的教學(xué)重點;而學(xué)生的思維是以具體形象思維為主,逐步向抽象邏輯思維過渡,在圓柱體積公式的推導(dǎo)過程中,要用到等積變形、對應(yīng)、以及邏輯推理的`知識,學(xué)生理解起來可能會有點困難,所以我認(rèn)為圓柱的體積公式推導(dǎo)過程也是本節(jié)課的教學(xué)難點。
本節(jié)課要采用的教學(xué)方法有:演示法、提問法等,在學(xué)習(xí)過程中要用到的方法有:觀察法、思考法等。
教學(xué)用具:圓柱模型,裝水的杯子等
這節(jié)課主要有五大環(huán)節(jié)
一、實驗引入
師:我們來觀察一個現(xiàn)象,把小圓柱放入水里,看看有什么變化
生:變了變了,水面上升了。
師:水面為什么上升
生:小圓柱浸沒在水中,將水?dāng)D壓上升,求小圓柱的體積也就是求上升水面的體積,即圓柱體積。
師:你們想不想知道圓柱體積怎樣計算
生齊答:想。
師:今天我們就一起來研究圓柱體積的計算方法。(板書:圓柱的體積)
二、探究新知
師:出示課件,根據(jù)課件演示逐步推導(dǎo)出圓柱體的體積計算方法
長方體的體積=底面積×高
| |
圓柱體的體積=底面積×高
v = s h
三、,運用新知,解決問題
出示例1:一根圓柱形鋼材,底面積是50平方厘米,高是210厘米,它的體積是多少
師:咱們大家理解自己推導(dǎo)的圓柱體的體積公式了嗎下面我們
50×210=10500(cm3)
答:圓柱形鋼材體積為10500cm3
四、鞏固運用
1,填表:請同學(xué)看屏幕回答下面問題,誰想好了誰就站起來說。
底面積(m2) 15 6.4 0.05
高(m) 3 4 2
圓柱體積(m3)
五、總結(jié)評價
師:今天我們學(xué)習(xí)了圓柱體積的推導(dǎo)方法及計算公式。
板書設(shè)計:
圓柱的體積
v= s h
例4:一根圓柱形鋼材,底面積是50平方厘米,高是210厘米,它的體積是多少
50×210=10500(cm)
答:圓柱形鋼材體積為10500立方厘米。
《圓柱的體積》教學(xué)設(shè)計6
【教學(xué)過程】
一、揭示課題,確定目標(biāo)
談話:前面我們認(rèn)識了圓柱,學(xué)習(xí)了圓柱的底面積、側(cè)面積和表面積,今天學(xué)習(xí)“圓柱的體積”。(教師板書,學(xué)生齊讀)
啟發(fā):看到這個課題,你們會想到什么?這堂課要解決什么問題呀?(可能學(xué)生會提出以下幾個問題)
引導(dǎo):
(1)什么是圓柱的體積?
(2)圓柱的體積和什么有關(guān)?
。3)圓柱的體積公式是怎樣推導(dǎo)出來的?
。4)圓柱的體積是怎樣求出來的?
。5)學(xué)習(xí)圓柱的體積公式有什么用?
談話:對!剛才這幾位同學(xué)跟老師想的一樣。
啟發(fā):圓柱的體積就是圓柱所占空間的大小
談話:這堂課我們主要解決三個問題:(出示探究問題)
1、圓柱的體積和什么有關(guān)?
2、這個公式是怎樣推導(dǎo)出來的?
3、學(xué)習(xí)了圓柱的體積能解決什么實際問題?
【設(shè)計意圖】直接揭示課題,啟發(fā)學(xué)生自己提出教學(xué)的要求,這樣既創(chuàng)設(shè)了問題情境,激發(fā)學(xué)生學(xué)習(xí)的興趣,又使學(xué)生明確這堂課的教學(xué)目標(biāo)。
二、溫故知新,自學(xué)課本
1、提出問題
談話:現(xiàn)在請大家回憶一下,我們以前學(xué)過哪些立體圖形的體積計算。是怎樣計 算的?
引導(dǎo):我們已經(jīng)學(xué)過長方體、正方體的體積計算。(教師隨著學(xué)生的回答,逐一出示出上述圖形)。
談話:長方體的體積=長×寬×高
正方體的體積=棱長×棱長×棱長
統(tǒng)一為:長方體或正方體的體積=底面積×高
談話:長方體和正方體和今天學(xué)習(xí)的圓柱有什么顯著的區(qū)別?
引導(dǎo):長方體的面都是平面圖形,圓柱的側(cè)面是一個曲面。
談話:因為圓柱的側(cè)面是一個曲面,計算圓柱的體積就比較困難了。能不能直接 用體積單位去量呢?
引導(dǎo):它的側(cè)面是一個曲面,用體積單位直接量是有困難的。
2、引發(fā)猜想
談話:圓柱的體積和什么有關(guān)系呢?(準(zhǔn)備三組比較圓柱體杯里飲料的多少:一組是底面積一樣,高不同;另一組高一樣,底面積不同;最后一組底面積、高都不同)
引導(dǎo):圓柱體的體積既和底面積有關(guān),又和高有關(guān)。
3、自學(xué)課本
談話:圓柱體的體積和底面積、高到底有什么關(guān)系呢?如何求圓柱體的體積?
啟發(fā):請大家閱讀課本,在課本中尋找答案。(教師要求學(xué)生利用預(yù)先準(zhǔn)備好的平均分成16份圓柱學(xué)具拼一拼,學(xué)生一邊看書,一邊操作。學(xué)生閱讀課本后,全班交流。)
引導(dǎo):我們用圖形轉(zhuǎn)化的方法,求圓柱的體積。
談話:這個辦法很好。那么把圓柱轉(zhuǎn)化成什么圖形呢?
引導(dǎo):長方體。
談話:以前我們學(xué)習(xí)圓的面積時也是運用轉(zhuǎn)化的策略,把圓轉(zhuǎn)化成近似的長方形,“化曲為直”、“化圓為方”推導(dǎo)出圓的面積計算公式。
(用多媒體演示圓形的轉(zhuǎn)化過程,邊出示、邊交流)
【設(shè)計意圖】在不能用體積單位直接量的情況下,啟發(fā)學(xué)生運用轉(zhuǎn)化的數(shù)學(xué)思想解決問題。通過復(fù)習(xí)了舊知識,又為學(xué)習(xí)新知識作好鋪墊,能夠促進(jìn)學(xué)生充分運用遷移規(guī)律把新舊知識聯(lián)系起來組成一個新的知識結(jié)構(gòu)。
三、合作交流 發(fā)展能力
談話:同學(xué)們觀察一下,拼成的是什么圖形?
引導(dǎo):近似的長方體。
啟發(fā):說得很好,為什么說是近似的長方體,哪里不太像?
引導(dǎo):長都是許多弧線組成,不是直的。
談話:這里我們把圓柱分成16等分,還能分嗎?
談話:究竟能分多少份呢?
引導(dǎo):無數(shù)份,可以永遠(yuǎn)分下去。
談話:對。這就是說,分的份數(shù)是無限的。你們可以閉上眼睛想一想,如果分的份數(shù)越多,長就越接近于直線段,這個圖形就越接近于長方體。
四、師生合作 歸納結(jié)論
談話:從分割、拼接的操作過程中,比較拼成的近似長方體與原來的圓柱,你發(fā)現(xiàn)了什么?
匯報:把圓柱體轉(zhuǎn)化為近似的長方體,形狀變了,體積沒有變。
談話:要求圓柱的體積,我們只要求轉(zhuǎn)化后的長方體的體積就可以了。
匯報:
。1)轉(zhuǎn)化后的近似長方體的底面積與原來的圓柱體的.底面積相等。
。2)轉(zhuǎn)化后的近似長方體的高與原來的圓柱體的高相等。
因為:長方體的體積=底面積×高
所以:圓柱的體積 =底面積×高
(教師要求學(xué)生觀察自己在課堂上拼出的圖形,一邊討論,一邊逐步寫出推導(dǎo)的過程。)
長方體的體積=底面積×高
圓柱的體積 =底面積×高
交流:我們也可以用字母表示圓柱的體積計算公式:v = s h (板書)
引導(dǎo):剛才我們的猜想是正確的,圓柱的體積既和底面積有關(guān),又和高有關(guān)。
現(xiàn)在請同學(xué)們把圓柱體積公式的推導(dǎo)過程再完整地說一遍。
談話:通過猜一猜我們知道了圓柱體積的大小與圓柱的底面積和高有關(guān)。
通過分一分、拼一拼我們把圓柱轉(zhuǎn)化成了近似的長方體。
通過比一比、算一算成功地推導(dǎo)出圓柱的體積計算公式,解決了我們前兩個要探究的問題。
【設(shè)計意圖】要求每個學(xué)生動手操作,打破了過去教師演示教具學(xué)生看的框框,并滲透轉(zhuǎn)化、無限等數(shù)學(xué)思想,讓學(xué)生自己從嘗試中推導(dǎo)圓柱體積的公式。
《圓柱的體積》教學(xué)設(shè)計7
教學(xué)過程
一、情景引入
1、教學(xué)開始首先出示了一個裝了半杯水的燒杯,然后拿出一個圓柱形物體準(zhǔn)備投入水中并讓學(xué)生觀察:會發(fā)生什么情況?由這個發(fā)現(xiàn)你想到了些什么?
2、提問:“能用一句話說說什么是圓柱的體積嗎?”
(學(xué)生互相討論后匯報,教師設(shè)疑)
二、自主探究、
1、比較大小、探究圓柱的體積與哪些要素有關(guān)。
(1)、先出示了兩個大小不等的圓柱體讓學(xué)生判斷哪個體積大?
。2)、提問:“要比較兩個圓柱體的體積你有什么好辦法?”學(xué)生想到將圓柱體放進(jìn)水中,比較哪個水面升得高。
。3)、讓學(xué)生運用這樣的方法自己比較底等高不等和高等底不等的兩組圓柱的體積,并將實驗結(jié)果填入實驗報告1中。(課件出示)
。4)、學(xué)生通過動手操作匯報結(jié)論:當(dāng)?shù)椎葧r,圓柱越高體積越大;當(dāng)高等時,圓柱底面越大體積越大。即圓柱的體積的大小與它的底面積和高有關(guān)。
2、大膽猜想,感知體積公式,確定探究目標(biāo)。
。1)、再次設(shè)疑:如果要準(zhǔn)確的知道哪個圓柱的體積大,大多少,你有什么好辦法?學(xué)生想如何計算圓柱的體積。
。2)、引導(dǎo)學(xué)生回憶圓的面積公式和長方體的體積公式的推導(dǎo)過程。
。3)、讓學(xué)生思考:怎樣計算圓柱的體積呢,依據(jù)學(xué)過的知識,你可以做出怎樣的假設(shè)?
。4)、學(xué)生小組討論交流并匯報:圓柱平均分成若干小扇形體后應(yīng)該也能夠轉(zhuǎn)化成一個近似長方體;圓柱的體積可能也是用底面積乘高來計算。
(5)、讓學(xué)生依據(jù)假設(shè)結(jié)論分組測量圓柱c和圓柱d的有關(guān)數(shù)據(jù),用計算器計算體積,并填入實驗報告2中。(課件出示)
4、確定方法,探究實驗,驗證體積公式。
(1)、首先要求學(xué)生利用實驗工具,自主商討確定研究方法。
(2)、學(xué)生通過討論交流確定了兩種驗證方案。
方案一:將圓柱c放入水中,驗證圓柱c的體積。
方案二:將學(xué)具中已分成若干分扇形塊的圓柱d拆拼成新的形體,計算新形體的體積,驗證圓柱d的體積。
。3)、學(xué)生按照自己所設(shè)想的方案動手實驗,并記錄有關(guān)數(shù)據(jù),填入實驗報告2中。
。4)、實驗后讓學(xué)生對數(shù)據(jù)進(jìn)行分析:用實驗的方法得出的數(shù)據(jù)與實驗前假想計算的數(shù)據(jù)進(jìn)行比較,你發(fā)現(xiàn)了什么?
。5)、學(xué)生匯報:實驗的'結(jié)果與猜想的結(jié)果基本相同。
。6)、教師用課件演示將圓柱體轉(zhuǎn)化成長方體的過程,向?qū)W生明確圓柱的體積確實可以像計算長方體體積那樣,用底面積乘以高。
。7)、小結(jié):
要想求出一個圓柱的體積,需要知道什么條件?
。8)、學(xué)生自學(xué)第8頁例4上面的一段話:用字母表示公式。
學(xué)生反饋自學(xué)情況:
v=sh
三、鞏固發(fā)展
1、課件出示例4,學(xué)生獨立完成。
指名說說這樣列式的依據(jù)是什么。
2、鞏固反饋
3、完成第9頁的“試一試”和練一練”中的兩道題。
。ā熬氁痪殹敝涣惺,不計算)
集體訂正,說一說圓柱體的體積還可以怎樣算?
4、一個圓柱形水杯的底面直徑是10厘米,高是15厘米,已知水杯中水的體積是整個水杯體積的 2/3, 計算水杯中水的體積?
5、拓展練習(xí)
。1)、 一個長方形的紙片長是6分米,寬4分米。用它分別圍成兩個圓柱體,a是用4分米做底高6分米,b是用6分米做底高是4分米它們的體積大小一樣嗎?請你計算說明理由。(得數(shù)保留兩位小數(shù))
(2)、 一個底面直徑是20厘米的圓柱形容器里,放進(jìn)一個不規(guī)則的鑄鐵零件后,容器里的水面升高4厘米,求這鑄鐵零件的體積是多少?
四、全課小結(jié):
談?wù)勥@節(jié)課你有哪些收獲。
教學(xué)內(nèi)容:人教版《九年義務(wù)教育六年制小學(xué)數(shù)學(xué)》(第十二冊)圓柱體積
教學(xué)目標(biāo):
1、結(jié)合具體情境,讓學(xué)生探索并掌握圓柱體積的計算方法,并能運用計算公式解決簡單的實際問題。
2、讓學(xué)生經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程,發(fā)展合情推理能力和初步的演繹推理能力,滲透數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。
3、通過圓柱體積計算公式的推導(dǎo)、運用的過程,體驗數(shù)學(xué)問題的探索性和挑戰(zhàn)性,感受數(shù)學(xué)思考過程的條理性和數(shù)學(xué)結(jié)論的確定性,獲得成功的喜悅。
教學(xué)重點:掌握和運用圓柱體積計算公式。
教學(xué)難點:圓柱體積計算公式的推導(dǎo)過程
《圓柱的體積》教學(xué)設(shè)計8
一、復(fù)習(xí)。
1、聽算。
1π——10π、16π、25π的值。
2、口答(開火車)112——202
二、新授。
。ㄒ唬﹫A柱體體積的推導(dǎo)。
1、師:我們學(xué)習(xí)過哪些立體圖形?
生:長方體、正方體。
師:長方體體積怎樣求?
生:“長方體體積=長×寬×高”
師隨即板書。
師:正方體體積怎樣求?
生:“正方體體積=棱長3”
師隨即板書。
師:長方體、正方體一個通用的公式是怎樣的?
生:長方體或正方體體積=底面積×高。
師隨即板書。
師:用字母表示為v=sh
2、師:今天我們來學(xué)習(xí)和研究“圓柱體的體積”,板書課題。
師:能不能把圓柱體轉(zhuǎn)化成我們學(xué)過的長方體或正方體來計算呢?
生:能。
師:怎樣轉(zhuǎn)化?
生:
師:大家先想一想,學(xué)習(xí)計算圓面積時是怎樣把圓變成已學(xué)過的圖形再計算面積的?
生:把圓平均分成許多小扇形,再拼成一個近似的長方形,最后計算出長方形的面積,也就得出了圓的面積。
師:怎樣把圓柱體轉(zhuǎn)化成我們學(xué)過的圖形來計算出它的體積呢?大家討論討論。
師:誰能把討論的情況說一說?
生:把圓柱體從上到下平均分成許多小扇形再切開,然后拼成一個長方體或正方體,最后計算出長方體的體積,也就得到圓柱體的體積。
3、師:誰愿意跟老師合作演示這一過程?
4、師生一起演示教具。并由學(xué)生展示。
5、師:同學(xué)們看了演示過程回答4個問題:
a、什么變了?什么沒變?
生:形狀變了,體積沒變。
師:b、長方體的.底面積與圓柱的底面積有何關(guān)系?
生:相等。
師:c、長方體的高與圓柱體的高又有何關(guān)系?
生:相等。
師:d、長方體的體積=底面積×高,那么圓柱體的體積怎樣計算?
生:圓柱體的體積=底面積×高。
師:讀、背各一次。
師:用字母v柱表示圓柱的體積,s表示底面積,h表示高,它的字母公式為:
v柱=sh,大家讀、背、寫各一次。
。ǘ﹫A柱體體積公式的應(yīng)用。
1、師:要求圓柱體的體積需要知道哪些條件?
生:需要知道底面積和高。
2、師:請讀例4,一根圓柱形鋼材,底面積是50cm2,高是21m,它的體積是多少?
師:用手勢表示有幾個條件,要求幾個問題?誰能求出它的體積?
生:2.1m=210cm
50×210=10500(cm)3
師:還可以怎樣表示?
生:50×210÷1000=10.5(dm)3
師:還有別的表示法?
生:50×210÷1000000=0.0105(m)3
師:為什么要分別除以1000和1000000?
生:
師:相鄰體積單位的進(jìn)率為1000,面積單位100,長度單位10,并且是低級單位化成高級單位用除法計算,三個結(jié)果任選一個即可。全體同學(xué)一起說答。
3、師:想一想,如果已知圓柱底面的半徑r高h(yuǎn),怎樣求圓柱的體積?
生:用r2×π×h等于圓柱的體積。
師:隨即板書v柱=πr2h練習(xí)一題
已知r=5cm h=10cm求v柱,第一名演板。
師:誰再出一道類似的題,讓大家練習(xí)?
生:r=10cm, h=5dm,求v柱。
師生一起評點
4、師:如果告訴直徑和高怎樣求體積呢?
生:用直徑÷2得半徑,再用半徑的平方乘以π乘以高。
師隨即板書(d÷2)2πh=v柱
師:請讀例5,一個圓柱形水桶,從里面量底面直徑是20cm,高是25cm,這個水桶的容積是多少立方分米?
師:用手勢表示有幾個條件,要求幾個問題?
師:怎樣求?
生:(20÷2)2×3.14×25
=100×3.14×25
。314×25
。7850(cm)3
。7.85(dm)3
答:它的容積有7.85dm3。
5、師:我們已經(jīng)會求圓柱體的體積了,現(xiàn)在考考你們,請做p37,1、2,前兩名的演板。(學(xué)生演板后師生評點)。
三、鞏固并拓展
1、師:還有可能告訴哪些條件求圓柱體的體積?
生:還有可能告訴底面周長和高求體積?
師:怎樣求?
生:周長÷π=直徑,直徑÷2=半徑,半徑的平方乘π乘高。
師隨即板書:(c÷π÷2)2πh=v柱
師:誰出題讓大家練習(xí)?
生:c=12.56cm h=5cm。
師生一起評點:
。12.56÷3.14÷2)2×3.14×5
。12.56×5
。62.8(cm)3
2、師:還有可能告訴哪些條件,求圓柱體的何種?
生:還有可能告訴,周長和側(cè)面積,求體積。
師:怎樣求?大家討論。
生:側(cè)面積÷周長=高,周長÷π÷2=半徑
用半徑的平方乘π乘h等于體積。
師隨即板書:
s側(cè)÷c×(c÷π÷2)2π=v柱。
師:誰能出題大家練習(xí)?
生:s側(cè)=12.56cm2,c=12.56cm,求體積。
師生一起評點:
12.56÷12.56×[(12.56÷3.14÷2)2×3.14]
=1×[12.56]
。12.56(cm)3
3、師:還有可能告訴哪些條件求圓柱體的體積?
生:告訴s側(cè)和高,求體積。
師:怎樣求?大家討論。
生:s側(cè)÷高=周長,用周長÷π÷2等于半徑,用半徑的平方乘π乘高等于體積。
師隨即板書:
(s側(cè)÷h÷π÷2)2×3.14×h=v柱
師:誰出題大家練習(xí)?
生:s側(cè)=28.26cm2,h=1dm,求體積。
師生一起評點。
(28.26÷10÷3.14÷2)2×3.14×10
。0.452×3.14×10
。20.25×3.14×10
。635.85(cm)3
《圓柱的體積》教學(xué)設(shè)計9
學(xué)習(xí)重難點:圓柱體積的推導(dǎo)過程
學(xué)具準(zhǔn)備:圓柱
學(xué)習(xí)過程:
一、自主學(xué)習(xí)
1、自學(xué)課本8頁。完成下列各題。
。ㄋ伎家环昼姡缓髮⒛愕南敕ㄅc大家分享)
怎樣計算圓柱的體積呢?試一試能不能把圓柱轉(zhuǎn)化為我們學(xué)過的立體圖形,來計算它的體積?(溫馨提示:想一想,圓的面積公式是怎么推導(dǎo)出來的?)
2、教師點撥:
圓柱的底面是形,可以分成許多相等的形,然后再把圓柱按照這些扇形,沿切開,拼起來,就近似一個體。平均分的份數(shù)越多(所分的份數(shù)必須是偶數(shù)),拼起來的整個形體就越近似于一個體。長方體的體積=()因此:圓柱體的體積=
如果用v表示圓柱的體積,用s表示圓柱的底面積,用h表示圓柱的高,圓柱的體積公式用字母表示為:
溫馨提示:在計算過程中,有的并不是直接給出圓柱的底面積,而是給出底面半徑或直徑,我們應(yīng)先求出,再求圓柱的體積。計算公式是:v=或。
二、合作探究填一填:
。ㄐ〗M合作完成下列各題,一組展示,其余補(bǔ)充、評價)
1、一個圓柱體,底面積是12平方分米,高6分米,它的'體積是()立方分米。
2、一個圓柱體積是84立方厘米,底面積21平方厘米,高是()。
3、已知圓柱谷桶里底面半徑是3米,高4米,它的底面積是(),容積是()立方米。
4.一個圓柱體底面半徑是4分米,當(dāng)高是()分米時,它的體積是62.8立方分米。
5.一個圓柱的底面周長是18.84分米,高是5分米,它的側(cè)面積是()平方分米,體積是()立方分米。
三、學(xué)以致用判斷:(先獨立完成,再在小組內(nèi)交流)
1.正方體的表面積是6平方厘米,它的體積一定是6立方厘米。()
2.所有圓的直徑都相等。()
3.求一個水桶能裝多少水,是求水桶的體積。()
4.求正方體、長方體、圓柱體的體積都可以用公式∶體積=底面積×高。()
《圓柱的體積》教學(xué)設(shè)計10
【教學(xué)目標(biāo)】
1、探索圓柱體積的計算方法,利用數(shù)學(xué)思想,體驗數(shù)學(xué)研究的方法。
2、讓學(xué)生掌握圓柱體積的計算方法,運用體積公式解決簡單的實際問題。
3、通過把圓柱體轉(zhuǎn)化成近似的長方體,提高學(xué)生解決問題的能力,感受獲得成功的喜悅。
【教學(xué)重點】掌握和運用圓柱體積的計算公式。
【教學(xué)難點】圓柱體積公式的推導(dǎo)過程。
【教學(xué)方法】直觀教學(xué)法,先用教具讓學(xué)生觀察比較,再讓學(xué)生動手操作。在實踐操作過程中理解掌握圓柱體積的計算方法。
【教學(xué)過程】
一、情景導(dǎo)入,復(fù)習(xí)舊知。
1、什么是圓柱的體積?
、俪鍪厩榫硤D。修一面墻,用哪一種磚,所要的塊數(shù)較少?為什么?
、谑裁唇凶鑫矬w的體積?
、坶L方體的正方體的體積計算公式是什么:從公式中可以看出,要計算長方體和正方體的體積必須得到哪些明確的數(shù)據(jù)?
、芡茰y:圓柱的體積可能與它的什么有關(guān)?
2、導(dǎo)入新課。
這節(jié)課我們就一起來探索圓柱體積的計算方法。板書課題:“圓柱的體積”
二、探索新知
1、比較大小,探究圓柱的體積與哪些因素有關(guān)。(讓學(xué)生先試著說說)
(1)圖1:比較等高不等底的三個圓柱的體積。(學(xué)生通過觀察發(fā)現(xiàn)等高時底面積越大圓柱的體積也就越大)
。2)圖2:比較等底不等高的五個圓柱的體積。(學(xué)生通過觀察發(fā)現(xiàn)等底時高越大圓柱的體積也就越大。)
。3)圓柱的體積計算公式可能是什么樣的?V=Sh 2、大膽猜想,求證體積公式。
。1)引導(dǎo)學(xué)生回憶長方體、正方體的體積計算方法。
。2)設(shè)疑:圓柱的體積又該怎么樣計算呢?根據(jù)以前學(xué)過的知識你可以做出怎樣的假設(shè)?
(3)學(xué)生小組討論交流。
。4)各小組參加全班交流匯報。(把圓柱底面分成許多相等的小扇形,把圓柱切開,就可以拼成一個近似的長方體,長方體的體積是底面積乘高,圓柱的體積也可能就是底面積乘高來計算的。)
3、演示轉(zhuǎn)化過程,推導(dǎo)公式。
。1)老師操作轉(zhuǎn)化過程。先分一個四或八等分的再分手上的這個十六等分的。
。2)學(xué)生帶問題操作轉(zhuǎn)化過程。
a:拼成的長方體的底面積等于圓柱的什么?
b:拼成的長方體的高又是圓柱的什么?(長方體的底面積等于圓柱體的底面積,高等于圓柱體的`高。)
師生共同完成推導(dǎo)過程。
長方體的體積=底面積×高 圓柱的體積=底面積×高 v = s h 圓柱的體積計算公式就是:v=sh
。4)如果知道圓柱的底面半徑r和高h(yuǎn),圓柱的體積公式又可以怎樣來寫呢?v=πr2h
。5)教材第25頁“做一做”第1、2題。(第2題先讓學(xué)生說說解題步驟,再齊練)
4、教學(xué)例6。
。1)出示例6。讀題,說說從題中獲得的信息。
。2)引導(dǎo)學(xué)生思考:解決這個問題就是要計算什么?
老師:求杯子的容積就是求這個杯子可容納物體的體積,計算方法跟圓柱體積的計算方法相同。
。3)學(xué)生獨立解決問題。
。4)組織交流反饋。
交流時,引導(dǎo)學(xué)生交流自己的解題步驟,著重說明杯子內(nèi)部的底面積沒有直接給出,因此先要求底面積,再求杯子的容積。
三、 鞏固應(yīng)用
1、完成教材第26頁“做一做”第一題。
。1)要判斷這杯水夠不夠喝,需要知道什么?你打算分哪幾步計算?嘗試完成。
。2)要求這個問題,需要先求什么?再求什么?獨立完成。
2、完成教材第28頁練習(xí)五第2題。
。1)嘗試完成。
。2)說說解題思路。
3、完成教材第28頁練習(xí)五第3題。
。1)嘗試完成。
(2)說說解題思路。
四、課堂小節(jié)
今天這節(jié)課,我們一起探究了圓柱體積的計算方法。在探究的過程中,我們經(jīng)歷了猜測、實驗、證明的思維過程。圓柱體積的計算方法和長方體、正方體相同,都可以用“底面積×高”來求。
五、課堂作業(yè)
教材練習(xí)五第4、5題。
板書設(shè)計:
圓柱的體積 長方體的體積=底面積×高 圓柱的體積 =底面積×高 V= s h 圓柱的體積計算公式是v=sh=πr2h
《圓柱的體積》教學(xué)設(shè)計11
一、創(chuàng)設(shè)情景、感知圓柱體積的概念。
教師拿出一個裝了半杯水的燒杯,拿出一個圓柱形的物體,準(zhǔn)備投入燒杯中。
師:同學(xué)們想一想會發(fā)生什么情況?(教師將圓柱形的物體投入水中。)請仔細(xì)觀察后,說一說你有什么發(fā)現(xiàn)?
生:水面上升一些。圓柱形的物體擠掉了原來水占有的空間。
師:我們通常把這個空間叫體積。
生:我發(fā)現(xiàn)上升的水的體積和圓柱的體積是相等的。
師:同學(xué)們發(fā)現(xiàn)得都很精彩,誰來說一說什么叫圓柱的體積。
生:圓柱所占空間的大小就叫圓柱的體積。
二、比較大小、創(chuàng)設(shè)求圓柱體積的情景。
教師又拿出一個圓柱。(底面略小而高長一些,體積相差不多)
師:這兩個圓柱的體積,哪個比較大一些?
生:第一個比較大,因為它高一些。
生:第二個比較大,因為它粗一些。
生:他們都是猜的。第一個圓柱它雖然高一些,但底面積小一些;第二個圓柱雖然底面大一些,它是的高少了一些。無法準(zhǔn)確地比較它們的大小。
師:有什么辦法能比較它們的大小呢?(小組討論)
生:準(zhǔn)備半杯水,將第一具圓柱浸沒水中,作好標(biāo)志,再把第二個圓柱浸沒水中,作個標(biāo)志,哪個水面上升的高一些,哪個圓柱的體積就比較大。
生:要學(xué)會計算圓柱的體積后就好解決了。
三、大膽猜想,感知圓柱體積公式。
師:你覺得圓柱體積的大小和什么有關(guān)?
生:和圓柱的高有關(guān),一個圓柱它的高增加,它的體積也會變大些。
生:和圓柱的底面大小有關(guān),一個圓柱它的底面增加,它的體積也會變大些。
師:很好!大膽地推想一下圓柱的體積應(yīng)如何計算?(小組討論)
生:我猜想用圓柱的底面積乘以它的高就可以求出體積。
師:你同意他的猜想嗎?說說你的理由。
三、小心求證,論證圓柱體積公式。
師:同學(xué)們都很會大膽猜想,但還要小心地論證猜想的科學(xué)性。
教師拿出一具圓柱體體積教具,把它藏在衣服里,只露出一具底面。
師:你看到了什么?
生:圓形。
師:你還記得圓面積轉(zhuǎn)化什么圖形的面積來求它的公式的嗎?
生:把圓的面積轉(zhuǎn)化成長方形的面積。
教師把整個圓柱拿出來,問:怎么求這個圓柱的體積呢?(小組討論)
生:可以把這個圓柱轉(zhuǎn)化成我們已經(jīng)會求的長方體的體積來求體積。
師:說說你們小組是如何轉(zhuǎn)化的。
生上臺操作展示。生:我們把圓柱平均分成16分,可以拼成一個近似的長方體,這個長方體的高就是圓柱的'高,這個長方體的底面積和圓柱的底面積相等。所以,圓柱的體積可以用底面積乘高來求。
師:你同意嗎?照這樣做一遍,然后說一說如何求圓柱的體積。
最后學(xué)生自主得出圓柱的體積公式。
【片段分析】
本節(jié)課的設(shè)計過程是:"創(chuàng)設(shè)情景----發(fā)現(xiàn)問題----提出問題----猜想假設(shè)----實踐操作----解決問題",這一教學(xué)過程,充分體現(xiàn)了以學(xué)生為主體的教學(xué)思想,教師充分地相信尊重學(xué)生,鼓勵其積極主動地探究問題,讓學(xué)生體驗解決問題的過程,體驗解決問題的成功。
1、注重了課程資源的開發(fā)。由于學(xué)生生活背景和思考角度的不同,所使用的方法必然是多樣化的,教師應(yīng)尊重每位學(xué)生個性化的想法,并認(rèn)真傾聽。本節(jié)課中多處合理地開發(fā)了學(xué)生的課程資源:一是在感知體積的概念時,教師通過做圓柱放入水的實驗,實實在在地讓學(xué)生用生活經(jīng)驗感知體積的存在;二是在猜想體積公式時,學(xué)生一般的經(jīng)驗是如果一個圓柱高(底面)不變,底面(高)越大體積越大,學(xué)生自然地就會利用自己的經(jīng)驗想到圓柱的體積的大小與底面和高有密切的聯(lián)系;三是在體積公式猜想時。猜想方法的多樣化就體現(xiàn)了問題解決策略的多樣化。有的學(xué)生聯(lián)系實踐生活聯(lián)想,把圓柱看作是有很多個相等的圓疊加起來的;有的學(xué)生聯(lián)系舊知識來推想,因為長文體和正方體的體積公式都是底面積乘高。學(xué)生是學(xué)生真正的主人,只有調(diào)動學(xué)生的學(xué)習(xí)積極性和平時的各種知識積累,這種知識的積累可以是以前學(xué)過的知識和方法,也可以生活中的經(jīng)驗或經(jīng)歷,這些都是課程資源,教師只有充分利用了這些課程資源,學(xué)生的學(xué)習(xí)活動才有可能真正成為有意義的過程。
2、注重數(shù)學(xué)思想方法和學(xué)習(xí)能力的培養(yǎng)。能力的發(fā)展決不等同于知識與技能的獲得。能力的形成是一個緩慢的過程,有其自身的特點和規(guī)律,它不是學(xué)生“懂”了,也不是學(xué)生“會”了,而是學(xué)生自己“悟”出了道理、規(guī)律和思考方法等。本節(jié)課沿著“猜想-驗證”的學(xué)習(xí)流程進(jìn)行,給學(xué)生提供較充分的探索交流的空間,組織、引導(dǎo)學(xué)生“經(jīng)歷觀察、實驗、猜想、證明等數(shù)學(xué)活動過程”,并把數(shù)學(xué)推理能力有機(jī)地融合在這樣的“過程”之中,有力地促使了學(xué)習(xí)改善學(xué)習(xí)方式。本課中學(xué)生“以舊推新”-大膽地進(jìn)行數(shù)學(xué)的猜想;“以新轉(zhuǎn)舊”-積極把新知識轉(zhuǎn)化為已能解決的舊問題;“新舊交融”-合理地把新知識納入到原有的認(rèn)識結(jié)構(gòu)中,教學(xué)活動成了學(xué)生自己建構(gòu)數(shù)學(xué)知識的活動。
整個教學(xué)過程是在“猜想-驗證”的過程中進(jìn)行的,是讓學(xué)生在和已有知識經(jīng)驗中體驗和理解數(shù)學(xué),學(xué)生學(xué)會了思考、學(xué)會了解決問題的策略,學(xué)出自信。
《圓柱的體積》教學(xué)設(shè)計12
一、教學(xué)內(nèi)容
教材第25頁 例5、例6
二、學(xué)習(xí)目標(biāo)
1、知識目標(biāo):理解、掌握圓柱的體積公式的推導(dǎo)過程,能利用圓柱的體積計算公式解決問題。
2、能力目標(biāo):經(jīng)歷圓柱的體積公式的推導(dǎo)過程,學(xué)會運用轉(zhuǎn)化的思想解決一些具體問題。
3、情感目標(biāo):感受圓柱的體積的計算與生活密不可分,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情。
三、教學(xué)重難點
1、重點:理解、掌握圓柱的體積公式的推導(dǎo)過程。
2、難點:圓柱體積公式的推導(dǎo)過程。
四、教學(xué)準(zhǔn)備
多媒體課件
五、教學(xué)過程
<一>創(chuàng)設(shè)情境、生成問題
師:前面我們學(xué)過長方體和正方體的體積計算方法,你還記得是怎么計算的嗎?(課件出示一個長方體和一個正方體)
生答:長方體的體積用長X寬X高,正方體的體積是用棱長X棱長X棱長,或者用一個公用的底面積X高來計算
師:這位同學(xué)回答的非常好,今天這節(jié)課我們就一起來研究圓柱體的體積計算方法。
板書:圓柱的體積(課件)
<二>探索交流、解決問題
1、猜想
師:長方體和正方體體積的大小取決于三條棱的'長度,或者說取決于底面積和高,那么你認(rèn)為圓柱的體積取決于什么呢?
。ㄉ杂刹孪,并討論交流)師適當(dāng)板書記錄
剛才那幾個同學(xué)都很有想法,覺得圓柱的體積的大小可能和XXXX有關(guān)系,有人這樣說過,偉大的猜想必須要經(jīng)過驗證才能得到證明,否則的話只能是空想,接下來通過兩組圖片大家進(jìn)行驗證一下
。ㄕn件出示兩組圖片,第一組兩個圓柱等底不等高,第二組兩個圓柱等高不等底)
師:第一組圖片中的兩個圓柱有什么特征?
生:底面一樣,但是高度卻不一樣,體積也不一樣
師:第二組圖片中的兩個圓柱有什么特征?
生:這組圖片中的兩個圓柱高度一樣,但是底面卻不一樣,體積也不一樣
師:那么通過剛才兩個同學(xué)的回答,你能得出什么結(jié)論呢?
小結(jié):圓柱的體積的大小取決于圓柱底面的大小和高度的大小
師:那么你能大膽的猜想一下圓柱的體積是如何計算的嗎?
生猜想......
師:我們的猜想對不對,還是要用實驗去證明
2、推導(dǎo)圓柱體積計算公式
師:怎么樣進(jìn)行實驗?zāi)?結(jié)合我們以往學(xué)習(xí)幾何圖形的經(jīng)驗,小組討論交流,說說自己的想法
生:我們是把圓柱的底面分成若干偶數(shù)分,然后用刀割開,在進(jìn)行拼組,變成一個長方體,這樣通過轉(zhuǎn)化,圓柱就變成了一個近似的長方體,分的份數(shù)越多,越接近一個長方體,然后通過求長方體的體積去求圓柱的體積
師:用心思考的同學(xué)總能找到解決問題的辦法,那么接下來同學(xué)們就利用手里的學(xué)習(xí)用具完成這個驗證實驗并完成老師給你們的實踐作業(yè)紙
。ㄕn件出示作業(yè)紙)對應(yīng)和公式推導(dǎo)
選取小組的作業(yè)紙進(jìn)行展示,有其他同學(xué)進(jìn)行評定
課件演示結(jié)果
小結(jié):通過轉(zhuǎn)化的數(shù)學(xué)思想我們將圓柱的體積轉(zhuǎn)化成已經(jīng)學(xué)過的長方體的體積,圓柱的體積計算公式是底面積乘高。
另外,圓柱的底面積、直徑、半徑和周長四個數(shù)據(jù)中的任意一個和圓柱的高兩個數(shù)據(jù)就可以求出圓柱的體積。
<三>鞏固應(yīng)用、內(nèi)化提高
2、
3、下面這個杯子能不能裝下這袋奶?(杯子的數(shù)據(jù)是從里面測量得到的)
8cm
8cm
498ml
498ml
10cm
10cm
<四>回顧整理、反思提升
今天這節(jié)課你有什么新的收獲說出來和大家一起分享吧!
《圓柱的體積》教學(xué)設(shè)計13
【學(xué)習(xí)目標(biāo)】
1、探索并掌握圓柱的體積計算公式。
2、能運用公式計算圓柱的體積,并解決實際問題。
【學(xué)習(xí)過程】
一、板書課題
師:同學(xué)們,今天我們來學(xué)習(xí)“圓柱的體積”(板書課題)。
二、出示目標(biāo)
本節(jié)課我們的目標(biāo)是:(出示)
1、探索并掌握圓柱的體積計算公式。
2、能運用公式計算圓柱的體積,并解決實際問題。
了達(dá)到目標(biāo),下面請大家認(rèn)真地看書。
三、出示自學(xué)指導(dǎo)
認(rèn)真看課本第19頁到第20頁的例5和例6的內(nèi)容,重點看圓柱體積公式的推導(dǎo)過程和例6解題過程,想:
1、圓柱的體積公式是如何推導(dǎo)出來的?
2、圓柱的體積計算公式是什么?用字母如何表示?
5分鐘后,比誰能做對檢測題!
師:認(rèn)真看書自學(xué),比誰自學(xué)的最認(rèn)真,自學(xué)效果最好。下面自學(xué)競賽開始。
四、先學(xué)
(一)看書
學(xué)生認(rèn)真看書,教師巡視,督促人人都在認(rèn)真地看書。
(二)檢測(找兩名學(xué)生板演,其余生寫在練習(xí)本上)
第20頁“做一做”和第21頁第5題。
要求:1、認(rèn)真觀察,正確書寫,每一步都要寫出來。
2、寫完的同學(xué)認(rèn)真檢查。
五、后教
(一)更正
師:寫完的同學(xué)請舉手。下面,請大家一起看黑板上這些題,發(fā)現(xiàn)問題的同學(xué)請舉手。(由差-中-好)
。ǘ┯懻
1、看第1題:認(rèn)為算式列對的請舉手?
【圓柱的體積=底面積×高】
2、看第2題:認(rèn)為算式列對的舉手?你是怎么思考的?
3、看計算過程和結(jié)果,認(rèn)為對的舉手?
4、評正確率、板書,并讓學(xué)生同桌對改。
今天你們表現(xiàn)實在是太好了,老師真為你們感到高興。老師這里有幾道練習(xí)題,敢不敢來試一試?(出示)
六、補(bǔ)充練習(xí):
1、一個圓柱形鋼材,底面積是30立方厘米,高是60厘米,體積是多少立方厘米?
2、一個圓柱體和一個長方形的體積相等,高也相等,那么它們的底面積()。
3、把一個圓柱的'側(cè)面展開,得到一個正方形,圓柱的底面半徑是5厘米,這個圓柱的高是()厘米,體積是()立方厘米。.
下面,我們就來運用今天所學(xué)的知識來做作業(yè),比誰的課堂作業(yè)能做得又對又快,字體還又端正。
七、當(dāng)堂訓(xùn)練(課本練習(xí)三,第21頁)
作業(yè):第3、4、7、8題寫作業(yè)本上
練習(xí):第1題寫書上,第2、6、9、10題寫練習(xí)本上
八、板書設(shè)計
課題三:圓柱的體積
圓柱的體積=底面積×高
課后反思:
本節(jié)課的教學(xué)內(nèi)容是九年義務(wù)教育六年級下冊的《圓柱的體積》,我教此內(nèi)容時,不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動手實踐、自主探索與合作交流,在實踐中體驗,從而獲得知識。對此,我作如下反思:
一、學(xué)生學(xué)到了有價值的知識。
學(xué)生通過實踐、探索、發(fā)現(xiàn),得到的知識是“活”的,這樣的知識對學(xué)生自身智力和創(chuàng)造力發(fā)展會起到積極的推動作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識具有個人意義,理解更深刻。
二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。
新課程改革明確提出要“強(qiáng)調(diào)讓學(xué)生通過實踐增強(qiáng)探究和創(chuàng)新意識,學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動手實踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。
三、促進(jìn)了學(xué)生的思維發(fā)展。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識,把學(xué)生當(dāng)成知識的“容器”。學(xué)生的學(xué)習(xí)只是被動地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識,從而促進(jìn)了學(xué)生的思維發(fā)展。
本節(jié)課采用新的教學(xué)方法,取得了較好的教學(xué)效果,不足之處是:由于學(xué)生自由討論、實踐和思考的時間較多,練習(xí)的時間較少。
《圓柱的體積》教學(xué)設(shè)計14
教學(xué)目標(biāo)
1、理解圓柱體體積公式的推導(dǎo)過程,掌握計算公式。
2、會運用公式計算圓柱的體積。
教學(xué)重點
圓柱體體積的計算。
教學(xué)難點
理解圓柱體體積公式的推導(dǎo)過程。
教學(xué)過程
一、復(fù)習(xí)準(zhǔn)備
。ㄒ唬┙處熖釂
1、什么叫體積?怎樣求長方體的體積?
2、圓的面積公式是什么?
3、圓的面積公式是怎樣推導(dǎo)的?
(二)談話導(dǎo)入
同學(xué)們,我們在研究圓面積公式的推導(dǎo)時,是把它轉(zhuǎn)化成我們學(xué)過的長方形知識的來解決的。那圓柱的體積怎樣計算呢?能不能也把它轉(zhuǎn)化成我們學(xué)過的立體圖形來計算呢?這節(jié)課我們就來研究這個問題。(板書:圓柱的體積)
二、新授教學(xué)
。ㄒ唬┙虒W(xué)圓柱體的體積公式。(演示動畫“圓柱體的體積1”)
1、教師演示
把圓柱的底面分成了16個相等的扇形,再按照這些扇形沿著圓柱的高把圓柱切開,這樣就得到了16塊體積大小相等,底面是扇形的形體。
2、學(xué)生利用學(xué)具操作。
3、啟發(fā)學(xué)生思考、討論:
。1)圓柱體切開后可以拼成一個什么形體?(近似的長方體)
。2)通過剛才的實驗?zāi)惆l(fā)現(xiàn)了什么?
、倨闯傻慕频拈L方體和圓柱體相比,體積大小沒變,形狀變了。
、谄闯傻慕频拈L方體和圓柱體相比,底面的形狀變了,由圓變成了近似的長方形,而底面的面積大小沒有發(fā)生變化。
、劢崎L方體的高就是圓柱的高,沒有變化。
4、學(xué)生根據(jù)圓的面積公式推導(dǎo)過程,進(jìn)行猜想。
。1)如果把圓柱的底面平均分成32份,拼成的長方體形狀怎樣?
。2)如果把圓柱的底面平均分成64份,拼成的長方體形狀怎樣?
。3)如果把圓柱的底面平均分成128份,拼成的長方體形狀怎樣?
5、啟發(fā)學(xué)生說出通過以上的.觀察,發(fā)現(xiàn)了什么?
。1)平均分的份數(shù)越多,拼起來的形體越近似于長方體。
。2)平均分的份數(shù)越多,每份扇形的底面就越小,弧就越短,拼起來的長方體的長就越近似于一條線段,這樣整個形體就越近似于長方體。
6、推導(dǎo)圓柱的體積公式
。1)學(xué)生分組討論:圓柱體的體積怎樣計算?
。2)學(xué)生匯報討論結(jié)果,并說明理由。
因為長方體的體積等于底面積乘高。(板書:長方體的體積=底面積×高)近似長方體的體積等于圓柱的體積,(板書:圓柱的體積),近似長方體的底面積等于圓柱的底面積,(板書:底面積)近似長方體的高等于圓柱的高,(板書:高)所以圓柱的體積等于底面積乘高。(板書:圓柱的體積=底面積×高)
(3)用字母表示圓柱的體積公式。(板書:V=Sh)
。ǘ┙虒W(xué)例4。
1。出示例4
例4。一根圓柱形鋼材,底面積是50平方厘米,高是2.1米,它的體積是多少?
2.1米=210厘米
50×210=10500(立方厘米)
答:它的體積是10500立方厘米。
2。反饋練習(xí)
。1)一根圓柱形木料,底面積是75平方厘米,長90厘米,它的體積是多少?
。2)一個圓柱形罐頭盒的內(nèi)底面半徑是5厘米,高15厘米,它的容積是多少?
(三)教學(xué)例5。
1、出示例5
例5、一個圓柱形水桶,從里面量底面直徑是20厘米,高是25厘米,這個水桶的容積是多少立方分米?
水桶的底面積:
=3.14×
。3.14×100
=314(平方厘米)
水桶的容積:
314×25
。7850(立方厘米)
。7.8(立方分米)
答:這個水桶的容積大約是7.8立方分米。
三、課堂小結(jié)
通過本節(jié)課的學(xué)習(xí),你有什么收獲?
1、圓柱體體積公式的推導(dǎo)方法。
2、公式的應(yīng)用。
四、課堂練習(xí)
。ㄒ唬┨畋
底面積S(平方米)
高h(yuǎn)(米)
圓柱的體積V(立方米)
15
3
6.4
4
《圓柱的體積》教學(xué)設(shè)計15
課題
圓柱的體積
教學(xué)課時
第5課時
教學(xué)目標(biāo)
知識目標(biāo)
經(jīng)歷圓柱體積計算公式的推導(dǎo)過程,理解并掌握圓柱體積計算的方法,并能正確計算圓柱的體積。
技能目標(biāo)
能運用圓柱體積計算方法,解決有關(guān)的實際問題,發(fā)展學(xué)生的實踐能力。
情感態(tài)度
與價值觀
進(jìn)一步豐富對圓柱的認(rèn)識,提高空間觀念。
教學(xué)重點
圓柱體積計算
教學(xué)難點
1、圓柱體積計算方法的推導(dǎo)。
2、借助教具演示,弄清圓柱與長方體的關(guān)系。
課前準(zhǔn)備
圓柱體積公式推導(dǎo)教具
教學(xué)過程與方法
個性修改
預(yù)習(xí)檢測
出示圖片:
師:同學(xué)們,你們知道什么叫物體的體積嗎?這些圖形中,哪些圖形的體積你會計算呢?
學(xué)生展開交流,明確體積的含義,復(fù)習(xí)有關(guān)長方體和正方體體積的計算公式。
自學(xué)探究
1、探究例5:
。1)猜一猜
①圓柱的體積可能怎樣計算?
、谟嬎銏A柱的體積需要哪幾個條件?
在猜想交流活動中,學(xué)生很可能會借助長方體、正方體體積的計算方法,推斷出圓柱的體積計算方法。
得出:圓柱的體積等于底面積乘高。
。2)演示教具
①取出圓柱體模型
、趯A柱切成兩半
、鄯謩e將兩半均分成多個小塊
④將兩半模型拼成一個近似的長方體(為什么是近似的長方體?怎樣可以更接近長方體?)
。3)歸納公式
、倨闯傻拈L方體的體積與圓柱的體積有什么關(guān)系?
、陂L方體的底面積與高分別與圓柱的底面積、高有什么關(guān)系?
、坶L方體的體積等于什么?圓柱呢?
學(xué)生回答,教師板書:
圓柱的體積=長方體的體積
=底面積×高
圓柱的體積=底面積×高
、苋绻胿表示圓柱的體積,s表示底面積,h表示高,那么圓柱的`體積計算公司應(yīng)該是怎樣表示?
板書:v=sh
師
生
互
動
指導(dǎo)學(xué)生完成“做一做”
1、先讓學(xué)生說說題意,明確求圓柱的體積需要具備什么條件。
2、學(xué)生獨立完成并反饋。
3、拓展延伸:如果知道圓柱底面的半徑r和高h(yuǎn),圓柱的體積公式還可以怎樣表示呢?
①同桌互相交流,然后全班反饋。
②教師根據(jù)學(xué)生的回答,板書:v=πr2h
雙基練習(xí)
指導(dǎo)學(xué)生完成練習(xí)三的第1~2題
1、第1題:先讓學(xué)生獨立將表格填寫完整,然后全班反饋。
2、第2題:先讓學(xué)生獨立完成,然后全班反饋,反饋時要讓學(xué)生明確:要求圓柱的體積必須具備兩個條件,即圓柱的高和圓柱的底面積。
預(yù)習(xí)設(shè)計
解決問題:
1、一個圓柱形石柱、底面積是4.8平方米,高是1.2米,這塊石柱的體積是多少立方米?
2、一個圓柱形水池,占地面積8.4平方米,深3米。這個水池最多能蓄水多少立方米?
3、一個圓柱形鐵罐的容積是1升,高是12厘米。鐵罐的底面積大約是多少平方厘米?
板書設(shè)計
圓柱的體積
圓柱的體積=長方體的體積
=底面積×高
圓柱的體積=底面積×高
=sh
=πr2h
教學(xué)反思
【《圓柱的體積》教學(xué)設(shè)計】相關(guān)文章:
圓柱的體積教學(xué)設(shè)計07-12
圓柱的體積教學(xué)設(shè)計03-08
《圓柱的體積》教學(xué)設(shè)計精選15篇04-26
小學(xué)數(shù)學(xué)《圓柱的體積》教學(xué)設(shè)計03-02
圓柱體積教學(xué)設(shè)計03-21