毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

分式練習題

時間:2022-07-20 19:59:43 練習題 我要投稿

分式練習題

分式練習題1

  一、選擇題:

  1.下列各式計算正確的是( )

  A.B.C.D.

  2.化簡+1等于( )

  A.B.C.D.

  3.若a-b=2ab,則的值為( )

  A.B.-C.2D.-2

  4.若,則M、N的值分別為( )

  A.M=-1,N=-2B.M=-2,N=-1C.M=1,N=2D.M=2,N=1

  5.若x2+x-2=0,則x2+x-的值為( )

  A.B.C.2D.-

  二、填空題:

  1.計算:=________.

  2.已知x≠0,=________.

  3.化簡:x+=________.

  4.如果m+n=2,mn=-4,那么的值為________.

  5.甲、乙兩地相距S千米,汽車從甲地到乙地按每小時v千米的速度行駛,可按時到達;若每小時多行駛a千米,則可提前________小時到達(保留最簡結果).

  三、解答題:

  1.(4×5=20)計算:(1)a+b+(2)

  (3)(4)(x+1-)÷

  2.(10分)化簡求值:(2+)÷(a-)其中a=2.

  3.(10分)已知,求的值.

  4.(10分)一項工程,甲工程隊單獨完成需要m天,乙工程隊單獨完成比甲隊單獨完成多需要n天時間,那么甲、乙工程隊合做需要多少天能夠完成此項工程?

分式練習題2

  一選擇

  1.下面是分式方程的是( )

  A. B.

  C. D.

  2.若 得值為-1,則x等于( )

  A. B. C. D.

  3.一列客車已晚點6分鐘,如果將速度每小時加快10千米,那么繼續(xù)行駛20千米便可正點運行,如果設客車原來行駛的速度是x千米/小時,可列出分式方程為( )

  A. B.

  C. D.

  4.分式方程 的解為( )

  A.2 B.1 C.-1 D.-2

  5.若分式方程 的解為2,則a的值為( )

  A.4 B.1 C.0 D.2

  6.分式方程 的解是( )

  A.無解 B.x=2 C. x=-2 D. x=2或x=-2

  7.如果關于x的方程 無解,則m等于( )

  A.3 B. 4 C.-3 D.5

  8.解方程 時,去分母得( )

  A.(x-1)(x-3)+2=x+5 B. 1+2(x-3)=(x-5)(x-1)

  C. (x-1)(x-3)+2(x-3)=(x-5)(x-1) D.(x-3)+2(x-3)=x-5

  二、填空

  9.已知關于 的分式方程 的根大于零,那么a的取值范圍是 .

  10.關于 的分式方程 有增根 =-2,那么k= .

  11.若關于 的方程 產(chǎn)生增根,那么m的值是 .

  12.當m= 時,方程 的解與方程 的解互為相反數(shù).

  13.為改善生態(tài)環(huán)境,防止水土流失,某村擬定在荒坡地上種植960棵樹,由于青年團員的支援,每日比原計劃多種20課,結果提前4天完成任務,原計劃每天種植多少棵樹?設原計劃每天種植x棵樹,根據(jù)題意列方程為 .

  14.如果 ,則A= ;B= .

  三、解答題

  15.解分式方程

  16.已知關于 的方程 無解,求a的值?

  17.已知 與 的解相同,求m的值?

  18.近年來,由于受國際石油市場的影響,汽油價格不斷上漲.下面是小明與爸爸的對話:

  小明:“爸爸,聽說今年5月份的汽油價格上漲了不少!”

  爸爸:“是啊,今年5月份每升汽油的價格是去年5月份的 倍,用 元給汽車加的油量比去年少 升.”

  小明:“今年5月份每升汽油的價格是多少呢?”

  聰明的你,根據(jù)上面的對話幫小明計算一下今年5月份每升汽油的價格?

  19.武漢一橋維修工程中,擬由甲、乙兩各工程隊共同完成某項目,從兩個工程隊的資料可以知道,若兩個工程隊合作24天恰好完成,若兩個工程隊合作18天后,甲工程隊再單獨做10天,也恰好完成,請問:

 、偶住⒁覂晒こ剃犕瓿纱隧椖扛餍瓒嗌偬?

 、朴忠阎坠こ剃犆刻斓氖┕べM用是0.6萬元,乙工程隊每天的施工費用是0.35萬元,要使該項目總的施工費用不超過22萬元,則乙工程隊至少施工多少天?

  參考答案

  一、 選擇

  1.D 2.C 3.B 4.A 5.A 6.B 7.A 8.C

  二、填空

  9.a<2 10.1 11.1 12.m=-3 13. 14.3, 2

  三、解答題

  15.⑴ 解:方程變形為

  兩邊同時乘以(x2-9)得,x-3+2x+6=12,x=3,經(jīng)檢驗x=3是原方程的增根,故原方程無解.

 、 解:兩邊同時乘以(x2-4)得x(x+2)-(x+14)=2x(x-2)-(x2-4);整理得,5x=18, ,經(jīng)檢驗 是原方程的解.

 。3)解:方程兩邊同時乘以想x(x2-1)得,5x-2=3x,x=1,經(jīng)檢驗x=1是原方程的增根,故原方程無解.

 。4).解:兩邊同乘以(2x+3)(2x-3)得2x(2x+3)-(2x-3)=(2x-3)(2x+3)

  整理得4x=-12,x=-3,經(jīng)檢驗x=-3是原方程的根.

  16.解:因為原方程無解,所以最簡公分母x(x-2)=0,x=2或x=0;原方程去分母并整理得a(x-2)-4=0;將x=0代入得a(0-2)-4=0,a=-2;將x=2代入得a0-4 =0,a無解,故綜上所述a=-2.

  17. 解: ,x=2,經(jīng)檢驗x=2是原方程的解,由題意可知兩個方程的解相同,所以把x=2代入第二個方程得 ,故m=10.

  18. 解:設去年5月份汽油的價格為x元/升,則今年5月份的價格為1.6x元/升,依題意可列方程為 ,解得x=3,經(jīng)檢驗x=3是原方程的解也符合題意,所以1.6x=4.8,故今年5月份汽油的價格是4.8元/升.

  19.解:⑴設甲工程隊單獨完成該項目需要 天,乙單獨完成該項目需要 天,依題意可列方程組為

  解得 ,經(jīng)檢驗 是原方程組的解,也符合題意.

 、圃O甲、乙兩工程隊分別施工a天、b天,由于總施工費用不超過22萬元,可得 ,解得 ,b取最小值為40.

  故⑴甲、乙兩工程隊單獨完成此項目分別需40天、60天.⑵乙工程度至少要施工40天.

分式練習題3

  一、選擇題:(每小題5分,共30分)

  1.下列各式計算正確的是( )

  A. ; B.

  C. ; D.

  2.計算 的結果為( )

  A .1 B.x+1 C. D.

  3.下列分式中,最簡分式是( )

  A. B. C. D.

  4.已知x為整數(shù),且分式 的值為整數(shù),則x可取的值有( )

  A.1個 B.2個 C.3個 D.4個

  5.化 簡 的結果是( )

  A.1 B. C. D.-1

  6.當x= 時,代數(shù)式 的值是( )

  A. B. C. D.

  二、填空題 :(每小題6分,共30分)

  7.計算 的結果是____________.

  8.計算a2÷b÷ ÷c× ÷d× 的結果是__________.

  9.若代數(shù)式 有意義,則x的取值范圍是__________.

  10.化簡 的結果是___________.

  11.若 ,則M=___________.

  12.公路全長s千米,騎車t小時可到達,要提前40分鐘到達,每小時應多走____千米.

  三、計算題:(每小題5分,共10分)

  13. ; 14.

  四、解答題:(每小題10分,共20分)

  15.閱讀下列題目的計算過程:

 、

  =x-3-2(x-1) ②

  =x-3-2x+2 ③

  =-x-1 ④

  (1)上述計算過程,從哪一步開始 出現(xiàn)錯誤?請寫出該步的代號:______ .

  (2)錯誤的原因是____ _____ _.

  (3)本題目的正確結論是__________.

  16.已知x為整數(shù),且 為整數(shù),求所有符合 條件的x值的和.

分式練習題4

  一、選擇題(每題3分,共27分)

  1、在 、 、 、 、 、 中,分式的個數(shù)有( )

  A、2個 B、3個 C、4個 D、5個

  2、下列約分正確的是( )

  A、 ; B、 ; C、 ; D、

  3、如果把分式 中的x和y都擴大2倍,即分式的值( )

  A、擴大4倍; B、擴大2倍; C、不變; D縮小2倍

  4、已知 , 等于( )

  A、 B、 C、 D、

  5、下列式子:(1) ;(2) ;(3) ;

  (4) 中,正確的有( )

  A、1個 B、2 個 C、3 個 D、4 個

  6、若關于x的方程 無解,則m的值是( )

  A、-2 B、2 C、3 D、-3

  7、能使分式 的值為零的所有 的值是( )

  A、 B、 C、 或 D、 或

  8、已知 則a、b、c的大小關系是( )

  A. ac B. bc C. cb D.ba

  9、一份工作,甲單獨做需a天完成,乙單獨做需b天完成,則甲乙兩人合作一天的工作量是( )

  A、a+b; B、 ; C、 ; D、

  二、填空題(每空1.5分,共24分)

  10、當x 時,分式 有意義;當x 時,分式 的值為零。

  11、直接寫出結果:

  (1) =____ (2)(02常州市) (-3)0=____;

  (3)(-ax4y3)( ax2y2)= ____ (4)(-2a3b2)3(-3ab3)2=____;

  (5) ; (6) ___

  12、如果方程 的解是x=5,則a= 。

  13、① ; ② 。

  14、分式方程 去分母時,兩邊都乘以 。

  15、計算: __________。

  16、(02岳陽市)在現(xiàn)代科學技術中,納米是一種長度單位,1納米等于十億分之一米(即1納米= 0.000000001米),用科學計數(shù)法表示:1納米=__________________米.

  17、(02菏澤)計算(3.410-10) (5.9106)______________________(結果用科學計數(shù)法表示,保留兩個有效數(shù)字).

  18、若 __________。

  19、某工廠庫存原材料x噸,原計劃每天用a噸,若現(xiàn)在每天少用b噸,則可以多用______天。

  20、某商場降價銷售一批服裝,打8折后售價為120元,則原銷售價是 元。

  三、計算或化簡:(每題3分,共21分)

  21、0.25 22、

  23、 24、(18x4y3-3x3y2)(-6x2y);

  四、解分式方程(每題4分,共16分)

  28、 28、

  五、列分式方程解應用題(每題6分,共12分)

  31、A、B兩地的距離是80公里,一輛公共汽車從A地駛出3小時后,一輛小汽車也從A地出發(fā),它的速度是公共汽車的3倍,已知小汽車比公共汽車遲20分鐘到達B地,求兩車的速度。

  32、為加快西部大開發(fā),某自治區(qū)決定新修一條公路,甲、乙兩工程隊承包此項工程。如果甲工程隊單獨施工,則剛好如期完成;如果乙工程隊單獨施工就要超過6個月才能完成,現(xiàn)在甲、乙兩隊先共同施工4個月,剩下的由乙隊單獨施工,則剛好如期完成。問原來規(guī)定修好這條公路需多長時間?

分式練習題5

  一 認識分式

  知識點一 分式的概念

  1、分式的概念

  從形式上來看,它應滿足兩個條件:

  (1)寫成 的形式(A、B表示兩個整式)

  (2)分母中含有

  這兩個條件缺一不可

  2、分式的意義

  (1)要使一個分式有意義,需具備的條件是

  (2)要使一個分式無意義,需具備的條件是

  (3)要使分式的值為0, 需具備的條件是

  知識點二、分式的基本性質

  分式的分子與分母都乘以(或除以)同一個

  分式的值不變

  用字母表示為 = (其中M是不等于零的整式)

  知識點三、分式的約分

  1、概念:把一個分式的分子和分母中的公因式約去,這種變形稱為分式的約分

  2、依據(jù):分式的基本性質

  注意:(1)約分的關鍵是正確找出分子與分母的公因式

  (2)當分式的分子和分母沒有公因式時,這樣的分式稱為最簡分式,化簡分式時,通常要使結果成為最簡分式或整式。

  (3)要會把互為相反數(shù)的因式進行變形,如:(x--y)2=(y--2)2

  二、分式的乘除法

  【鞏固訓練】

  1、(2013四川成都)要使分式 有意義,則x的取值范圍是( )

  (A)x≠1 (B)x>1 (C)x<1 (D)x≠-1

  2、(2013深圳)分式 的值為0,則 的取值是

  A. B. C. D.

  3、(2013湖南郴州)函數(shù)y= 中自變量x的取值范圍是( )

  A. x>3 B. x<3 C. x≠3 D. x≠﹣3

  4.(2013湖南婁底,7,3分)式子 有意義的x的取值范圍是( )

  A. x≥﹣ 且x≠1 B. x≠1

  C.

  5.(2013貴州省黔西南州,2,4分)分式 的值為零,則x的值為( )

  A. ﹣1 B. 0 C. ±1 D. 1

  6.(2013廣西欽州)當x= 時,分式 無意義.

  7、(2013江蘇南京)使式子1? 1 x?1 有意義的x的取值范圍是 。

  8、(2013黑龍江省哈爾濱市)在函數(shù) 中,自變量x的取值范圍是 .

  9、 (2013江蘇揚州)已知關于 的方程 =2的解是負數(shù),則 的取值范圍為 .

  10、(2013湖南益陽)化簡: = .

  11、(2013山東臨沂,6,3分)化簡 的結果是( )

  A. B.

  C. D.

  12、 (2013湖南益陽)化簡: = .

  13、(2013湖南郴州)化簡 的結果為( )

  A. ﹣1 B. 1 C. D.

  14、(2013湖北省咸寧市)化簡 + 的結果為 x .

  15、(2013?泰安)化簡分式 的結果是( )

  A.2 B. C. D.-2

  考點:分式的混合運算.

  分析:這是個分式除法與減法混合運算題,運算順序是先做括號內的加法,此時要先確定最簡公分母進行通分;做除法時要注意先把除法運算轉化為乘法運算,而做乘法運算時要注意先把分子、分母能因式分解的先分解,然后約分.

  16(2011年四川樂山).若 為正實數(shù),且 , =

  17(2013重慶市(A))分式方程 的根是( )

  A.x=1 B.x=-1 C.x=2 D.x=-2

  18、(2013湖南益陽)分式方程 的解是( )

  A.x = B.x = C.x = D.x =

  19、(2013白銀)分式方程 的解是( )

  A. x=﹣2 B. x=1 C. x=2 D. x=3

  20、(2013江蘇揚州)已知關于 的方程 =2的解是負數(shù),則 的取值范圍為 .

  【答案】 且 .

  21.(2013山東臨沂)分式方程 的解是_________________.

  22. (2013廣東省)從三個代數(shù)式:① ,② ,③ 中任意選擇兩個代數(shù)式構造成分式,然后進行化簡,并求當a=6,b=3時該分式的值.

  23、(2013湖北孝感,19,6分)先化簡,再求值: ,其中 , .

  考點: 分式的化簡求值;二次根式的化簡求值.

  24.(2013江蘇蘇州,21,5分)先化簡,再求值: ,其中x= -2.

  25.(2013貴州安順,20,10分)先化簡,再求值: ,其中a= -1.6.(2013山東德州,18,6分)先化簡,再求值:

  ,其中a= -1.

  26、.(2013湖南永州,19,6分)先化簡,再求值: ,

  【思路分析】先化簡,再求值。

  【解】原式=

  =

  =x-1

  把x=2代入x-1=2-1=1

  【方法指導】分式化簡及求值的一般過程:

  (1)有括號先計算括號內的(加減法關鍵是通分);

  (2)除法變?yōu)槌朔?

  (3)分子分母能因式分解進行分解;

  (4)約分;

  (5)進行加減運算:①通分:關鍵是尋找公分母,②分子合并同類項;

  (6)代入數(shù)字求代數(shù)的值.(代值過程中要注意使分式有意義,即所代值不能使

  分母為零)

  27.(2013廣東珠海,12,6分)解方程: .

  28、.(2013年陜西)(本題滿分5分)

  解分式方程: .

  29.(2013山東日照,9,4分)甲計劃用若干個工作日完成某項工作,從第三個工作日起,乙加入此項工作,且甲、乙兩人工效相同,結果提前3天完成任務,則甲計劃完成此項工作的天數(shù)是

  A.8 B.7 C.6 D.5

  【答案】A

  【解析】設甲計劃完成此項工作的天數(shù)為x,由題意可得,

  經(jīng)檢驗x=8是原方程的根,且符合題意。

  30、(2013深圳,8,3分)小朱要到距家1500米的學校上學,一天,小朱出發(fā)10分鐘后,小朱的爸爸立即去追小朱,并且在距離學校60米的地方追上了他。已知爸爸比小朱的速度快100米/分,求小朱的速度。若設小朱的速度是 米/分,則根據(jù)題意所列方程正確的是

  A. B.

  C. D.

  31.(2013河北省,7,3分)甲隊修路120 m與乙隊修路100 m所用天數(shù)相同,已知甲隊比乙隊每天多修10 m,設甲隊每天修路xm.依題意,下面所列方程正確的是

  A.120x=100x-10 B.120x=100x+10

  C.120x-10=100x D.120x+10=100x

  32(2013江蘇揚州,24,10分)某校九(1)、九(2)兩班的班長交流了為四川雅安地震災區(qū)捐款的情況:

  (Ⅰ)九(1)班班長說:“我們班捐款總額為1200元,我們班人數(shù)比你們班多8人.”

  (Ⅱ)九(2)班班長說:“我們班捐款總額也為1200元,我們班人均捐款比你們班人均捐款多20%.”

  請根據(jù)兩個班長的對話,求這兩個班級每班的人均捐款數(shù).

  33(2013貴州安順,21,10分)

  某市為進一步緩解交通擁堵現(xiàn)象,決定修建一條從市中心到飛機場的輕軌鐵路。實際施工時,每月的工效比原計劃提高了20%,結果提前5個月完成這一工程。求原計劃完成這一工程的時間是多少個月?

分式練習題6

  【知識要點】

  1、分式的定義:_________________________________。

  2、分式的___________________時有意義;_____________時值為零。(注意分式與分數(shù)的關系)

  3、分式的基本性質:;

  用字母表示為:

  (其中)。(注意分式基本性質的應用,如改變分子、分母、分式本身的符號,化分子、分母的系數(shù)為整數(shù)等等)。

  4、分式的約分:。(思考:公因式的確定方法)。

  5、最簡分式:____________________________________。

  6、分式的通分:。

  7、最簡公分母:。

  8、分式加減法法則:_____。(加減法的結果應化成)

  9、分式乘除法則:。

  10、分式混合運算的順序:。

  11、分式方程的定義:。

  12、解分式方程的基本思想:____;如何實現(xiàn):。

  13、方程的增根:

  。

  14、解分式方程的步驟:

  ________________________________。

  15、用分式方程解決實際問題的步驟:

  【習題鞏固】

  一、填空:

  1、當x時,分式有意義;當x時,分式無意義。

  2、分式:當x______時分式的值為零。

  3、的最簡公分母是_________。

  4、;;

  5、;。

  6、已知,則。

  7、一件工作,甲單獨做小時完成,乙單獨做小時完成,則甲、乙合作小時完成。

  8、若分式方程的一個解是,則。

  9、當,時,計算。

  10、若分式13-x的值為整數(shù),則整數(shù)x=。

  11、不改變分式的值,把下列各式的分子、分母中的各項系數(shù)都化為整數(shù):

  ①23x-32y56x+y=;②0.3a-2b-a+0.7b=。

  12、已知x=1是方程的一個增根,則k=_______。

  13、若分式的值為負數(shù),則x的取值范圍是__。

  14、約分:①_______,②______。

  15、一項工程,甲單獨做x小時完成,乙單獨做y小時完成,則兩人一起完成這項工程需要______________小時。

  16、若關于x的分式方程無解,則m的值為__________。

  17、若__________。

  18、①;②。

  19、如果=2,則=____________。

  20、在等號成立時,右邊填上適當?shù)姆枺?____________。

  21、已知a+b=5,ab=3,則_______。

  22、某工廠庫存原材料x噸,原計劃每天用a噸,若現(xiàn)在每天少用b噸,則可以多用天。

  23、某商場降價銷售一批服裝,打8折后售價為120元,則原銷售價是元。

  24、已知,則B=_______。

  25、甲、乙兩人從兩地同時出發(fā),若相向而行,則a小時相遇;若同向而行,則b小時甲追上乙,那么甲的速度是乙的速度的________倍.

  二、選擇題

  1、下列各式中,分式有()個

  A、1個B、2個C、3個D、4個

  2、如果把分式中的和都擴大3倍,那么分式的值()

  A、擴大3倍B、縮小3倍C、縮小6倍D、不變

  3、下列約分結果正確的是()

  A、;B、;C、;D、

  4、計算:,結果為()

  A、1B、-1C、D、

  5、某農(nóng)場開挖一條480米的渠道,開工后,每天比原計劃多挖20米,結果提前4天完成任務,若設原計劃每天挖米,那么求時所列方程正確的是()

  A、B、

  C、D、

  6、下列說法正確的是()

  (A)形如AB的.式子叫分式(B)分母不等于零,分式有意義

  (C)分式的值等于零,分式無意義(D)分子等于零,分式的值就等于零

  7、與分式-x+yx+y相等的是()

  (A)x+yx-y(B)x-yx+y(C)-x-yx+y(D)x+y-x-y

  8、下列分式一定有意義的是()

  (A)xx2+1(B)x+2x2(C)-xx2-2(D)x2x+3

  9、下列各分式中,最簡分式是()

  A、B、C、D、

  10、在一段坡路,小明騎自行車上坡的速度為每小時V1千米,下坡時的速度為每小時V2千米,則他在這段路上、下坡的平均速度是每小時()。

  A、千米B、千米C、千米D無法確定

  11、若把分式中的x和y都擴大3倍,那么分式的值()

  A、擴大3倍B、不變C、縮小3倍D、縮小6倍

  12、已知的值為()

  A、B、C、2D、

  13、若已知分式的值為0,則x-2的值為()

  A、或-1B、或1C、-1D、1

  14、已知,等于()

  A、B、C、D、

  三、計算題:

  1、2、

  四、解方程:

  1、2、

  五、先化簡,再請你用喜愛的數(shù)代入求值:(-)÷.

  六、列分式方程解應用題”

  1、甲、乙兩地相距19千米,某人從甲地出發(fā)出乙地,先步行7千米,然后改騎自行車,共用2小時到達乙地。已知這個人騎自行車的速度是步行速度的4倍。求步行速度和騎自行車的速度。

  2、甲、乙兩組學生去距學校4.5千米的敬老院打掃衛(wèi)生,甲組學生步行出發(fā)半小時后,乙組學生騎自行車開始出發(fā),結果兩組學生同時到達敬老院,如果步行的速度是騎自行車的速度的,求步行和騎自行車的速度各是多少?

  3、為加快西部大開發(fā),某自治區(qū)決定新修一條公路,甲、乙兩工程隊承包此項工程。如果甲工程隊單獨施工,則剛好如期完成;如果乙工程隊單獨施工就要超過6個月才能完成,現(xiàn)在甲、乙兩隊先共同施工4個月,剩下的由乙隊單獨施工,則剛好如期完成。問原來規(guī)定修好這條公路需多長時間?

  4、甲、乙兩班學生植樹,原計劃6天完成任務,他們共同勞動了4天后,乙班另有任務調走,甲班又用6天才種完,求若甲、乙兩班單獨完成任務后各需多少天?

  5、一條船往返于甲乙兩港之間,由甲至乙是順水行駛,由乙至甲是逆流水行駛,已知船在靜水中的速度為8km/h,平時逆水航行與順水航行所用的時間比為2:1,某天恰逢暴雨,水流速度是原來的2倍,這條船往返共用了9h.問甲乙兩港相距多遠?

  七、解答題

  1、若,且3x+2y-z=14,求x,y,z的值。

  2、已知.試說明不論x在許可范圍內取何值,y的值都不變.

  3、(1)將甲種漆3g與乙種漆4g倒入一容器內攪勻,則甲種漆占混合漆的;如從這容器內又倒出5g漆,那么這5㎏漆中有甲種漆有g.

  (2)小明到姑姑家吃早點時,表妹小紅很淘氣,她先從一杯豆?jié){中,取出一勺豆?jié){,倒入盛牛奶的杯子中攪勻,再從盛牛奶的杯子中取出一勺混合的牛奶和豆?jié){,倒入盛豆?jié){的杯子中.小明想:現(xiàn)在兩個杯子中都有了牛奶和豆?jié){,究竟是豆?jié){杯子中的牛奶多,還是牛奶杯子中的豆?jié){多呢?(兩個杯子原來的牛奶和豆?jié){一樣多).現(xiàn)在來看小明的分析:

  設混合前兩個杯子中盛的牛奶和豆?jié){的體積相等,均為a,勺的容積為b.為便于理解,將混合前后的體積關系制成下表:

  混合前的體積第一次混合后第二次混合后

  豆?jié){牛奶豆?jié){牛奶豆?jié){牛奶

  豆?jié){杯子a0a-b

  牛奶杯子0ab

 、賹⑸厦姹砀裉钔(表格中只需列出算式,無需化簡).

 、谡埻ㄟ^計算判斷:最后兩個杯子中都有牛奶和豆?jié){,究竟是豆?jié){杯子中的牛奶多,還是牛奶杯子中的豆?jié){多呢?

分式練習題7

  數(shù)學八年級分式的運算練習題同步

  一、選擇題:(每小題5分,共30分)

  1.計算的結果為()

  A.1B.x+1C.D.

  2.下列分式中,最簡分式是()

  A.B.C.D.

  3.已知x為整數(shù),且分式的值為整數(shù),則x可取的值有()

  A.1個B.2個C.3個D.4個

  4.化簡的結果是()

  A.1B.C.D.-1

  5.當x=時,代數(shù)式的值是()

  A.B.C.D.

  二、填空題:(每小題6分,共30分)

  6.計算的結果是____________.

  7.計算a2÷b÷÷c×÷d×的結果是__________.

  8.若代數(shù)式有意義,則x的取值范圍是__________.

  9.化簡的結果是___________.

  10.若,則M=___________.

  11.公路全長s千米,騎車t小時可到達,要提前40分鐘到達,每小時應多走____千米.

  三、解答題:(每小題10分,共20分)

  12.閱讀下列題目的計算過程:

 、

  =x-3-2(x-1)②

  =x-3-2x+2③

  =-x-1④

  (1)上述計算過程,從哪一步開始出現(xiàn)錯誤?請寫出該步的代號:______.

  (2)錯誤的原因是__________.

  (3)本題目的正確結論是__________.

  13.已知x為整數(shù),且為整數(shù),求所有符合條件的x值的和.

【分式練習題】相關文章:

分式方程練習題10-03

解分式方程練習題05-07

分式加減法練習題05-07

分式方程的解法練習題07-09

分式的加減法練習題11-01

分式方程練習題及答案07-12

數(shù)學分式的運算同步練習題08-08

初中分式方程練習題05-07

數(shù)學分式方程鞏固練習題10-15