黃金分割八年級下冊數(shù)學測試題
一、目標導航
1.黃金分割定義:點C把線段AB分成兩條線段AC和BC,如果AC:AB=BC:AC,那么稱線段AB被點C黃金分割.點C叫做線段AB的黃金分割點,AC與AB的比叫做黃金比.
二、基礎過關
1.若點P是AB的黃金分割點,則線段AP、PB、AB滿足關系式.
2.黃金矩形的寬與長的比大約為________(精確到0.001).
3.電視節(jié)目主持人在主持節(jié)目時,站在舞臺的`黃金分割點處最自然得體,若舞臺AB長為20m,試計算主持人應走到離A點至少m處?,如果他向B點再走m,也處在比較得體的位置.(結(jié)果精確到0.1m)
三、能力提升
4.有以下命題:①如果線段d是線段a,b,c的第四比例項,則有;②如果點C是線段AB的中點,那么AC是AB、BC的比例中項;③如果點C是線段AB的黃金分割點,且AC>BC,那么AC是AB與BC的比例中項;④如果點C是線段AB的黃金分割點,AC>BC,且AB=2,則AC=-1.其中正確的判斷有()
A.1個B.2個C.3個D.4個
5.已知點M將線段AB黃金分割(AM>BM),則下列各式中不正確的是()
A.AM∶BM=AB∶AMB.AM=AB
C.BM=ABD.AM≈0.618AB
6.已知C是線段AB的黃金分割點(AC>BC),則AC∶BC=()
A.(-1)∶2B.(+1)∶2C.(3-)∶2D.(3+)∶2
7.在長度為1的線段上找到兩個黃金分割點P,Q.則PQ=( )
A.B.C.D.
8.已知線段MN=1,在MN上有一點A,如果AN=.求證:點A是MN的黃金分割點.
四、聚沙成塔
9.如圖,以長為2的線段AB為邊作正方形ABCD,取AB的中點P,連結(jié)PD,在BA的延長線上取點F,使PF=PD,以AF為邊作正方形AMEF,點M在AD上.
(1)求AM、DM的長.
(2)求證:AM2=ADDM.
(3)根據(jù)(2)的結(jié)論你能找出圖中的黃金分割點嗎?
10.如果一個矩形ABCD(AB
4.2黃金分割
1.AP=BPAB或PB=APAB;2.0.618;3.7.6,4.8;4.C;5.C;6.B;7.C;8證得AM=ANMN即可;9.⑴AM=-1;DM=3-;⑵略;⑶點M是線段AD的黃金分割點;10.通過計算可得,所以矩形ABFE是黃金矩形.
【黃金分割八年級下冊數(shù)學測試題】相關文章:
有關學黃金分割的測試題03-27
八年級數(shù)學黃金分割說課稿03-25
黃金分割數(shù)學說課稿04-01
數(shù)學黃金分割的應用說課稿03-30
八年級下冊數(shù)學線段測試題06-12
八年級下冊數(shù)學線段的測試題精選06-11
初二數(shù)學下冊測試題02-24