毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

高一上冊(cè)數(shù)學(xué)第三章單元測(cè)試題

時(shí)間:2021-06-10 15:26:25 試題 我要投稿

高一上冊(cè)數(shù)學(xué)第三章單元測(cè)試題

  高一上冊(cè)數(shù)學(xué)第三章單元測(cè)試題

高一上冊(cè)數(shù)學(xué)第三章單元測(cè)試題

  一、選擇題(本大題共10小題,每題5分,共50分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)

  1.已知x,y為正實(shí)數(shù),則()

  A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx2lgy

  C.2lgxlgy=2lgx+2lgy D.2lg(xy)=2lgx2lgy

  解析 取特殊值即可.如取x=10,y=1,2lgx+lgy=2,2lg(xy)=2,2lgx+2lgy=3,2lg(x+y)=2lg11,2lgxlgy=1.

  答案 D

  2.若函數(shù)y=f(x)是函數(shù)y=ax(a0,a1)的反函數(shù)且f(2)=1,則f(x)=()

  A.12x B.2x-2

  C.log12 x D.log2x

  解析 由題意知f(x)=logax,∵f(2)=1,loga2=1,

  a=2,f(x)=log2x.

  答案 D

  3.已知f(x)=log3x,則函數(shù)y=f(x+1)在區(qū)間[2,8]上的最大值與最小值分別為()

  A.2與1 B.3與1

  C.9與3 D.8與3

  解析 由f(x)=log3x,知f(x+1)=log3(x+1),

  又28,39.

  故1log3(x+1)2.

  答案 A

  4.下列說(shuō)法正確的是()

  A.log0.56log0.54 B.90.9270.48

  C.2.50122.5 D.0.60.5log0.60.5

  解析 ∵90.9=32.7,270.48=31.44,又y=3x在(-,+)上單調(diào)遞增,32.731.44.

  答案 B

  5.設(shè)函數(shù)f(x)=logax(a0,a1).若f(x1x2x2014)=8,則f(x21)+f(x22)++f(x22014)的值等于()

  A.4 B.8

  C.16 D.2loga8

  解析 f(x21)+f(x22)++f(x22014)

  =logax21+logax22++logax22014

  =loga(x1x2x2014)2

  =2loga(x1x2x2014)=28=16.

  答案 C

  6.(log43+log83)(log32+log98)等于()

  A.56 B.2512

  C.94 D.以上都不對(duì)

  解析 (log43+log83)(log32+log98)

  =12log23+13log23log32+32log32

  =2512.

  答案 B

  7.若f(x)=log2x的值域?yàn)閇-1,1],則函數(shù)f(x)的定義域?yàn)?)

  A.12,1 B.[1,2]

  C.12,2 D.22,2

  解析 由-1log2x1,得122.

  答案 C

  8.函數(shù)f(x)的圖像向右平移1個(gè)單位長(zhǎng)度,所得圖像與曲線y=ex關(guān)于y軸對(duì)稱,則f(x)=()

  A.ex+1 B.ex-1

  C.e-x+1 D.e-x-1

  解析 與曲線y=ex關(guān)于y軸對(duì)稱的.曲線為y=e-x,函數(shù)y=e-x的圖像向左平移一個(gè)單位長(zhǎng)度即可得到函數(shù)f(x)的圖像,即f(x)=e-(x+1)=e-x-1.

  答案 D

  9.若f(x)=2x+2-xlga是奇函數(shù),則實(shí)數(shù)a=()

  A.13 B.14

  C.12 D.110

  解析 ∵f(x)是定義域?yàn)镽的奇函數(shù),

  f(0)=0,20+20lg a=0,

  lg a=-1,a=110.

  答案 D

  10.某地區(qū)植被破壞,土地沙化越來(lái)越嚴(yán)重,最近三年測(cè)得沙漠增加值分別為0.2萬(wàn)公頃,0.4 萬(wàn)公頃和0.76萬(wàn)公頃,則沙漠增加數(shù)y公頃關(guān)于年數(shù)x的函數(shù)關(guān)系較為近似的是()

  A.y=0.2x B.y=110(x2+2x)

  C.y=2x10 D.y=0.2+log16x

  解析 逐個(gè)檢驗(yàn).

  答案 C

  二、填空題(本大題共5小題,每題5分,共25分.將答案填在題中橫線上.)

  11.函數(shù)y=ax-2+1(a0,且a1)的圖像必經(jīng)過(guò)點(diǎn)________.

  答案 (2,2)

  12.函數(shù)y=lg4-xx-3的定義域是________.

  解析 由4-x0,x-30,得x4,x3,

  定義域?yàn)閧x|x3或3

  答案 {x|x3或3

  13.函數(shù)f(x)=x2+12 x0,ex-1 x0,若f(1)+f(a)=2,則a=________.

  答案 1或-22

  14.y=log0.3(x2-2x)的單調(diào)減區(qū)間為_(kāi)_______.

  解析 寫單調(diào)區(qū)間注意函數(shù)的定義域.

  答案 (2,+)

  15.若函數(shù)f(x)=ax,x1,4-a2x+2,x1為R上的增函數(shù),則實(shí)數(shù)a的取值范圍是________.

  解析 由題意得a1,4-a20,a4-a2+2,得48.

  答案 [4,8)

  三、解答題(本大題共6小題,共75分.解答應(yīng)寫出文字說(shuō)明、證明過(guò)程或演算步驟.)

  16.(12分)計(jì)算下列各式

  (1)(lg2)2+lg2lg50+lg25;

  (2)2790.5+21027 13 -2

  (3)(lg5)2+lg2lg5+lg20-4-426125+21+ 12 log25.

  解 (1)(lg2)2+lg2lg50+lg25

  =(lg2)2+lg2(lg2+2lg5)+2lg5

  =2(lg2)2+2lg2lg5+2lg5

  =2lg2(lg2+lg5)+2lg5=2.

  (2)原式=259 12 +6427 13 -2

  =53+43-2=3-2=1.

  (3)原式=lg5(lg5+lg2)+lg20-25+25

  =lg5+lg2+1=2.

  17.(12分)已知函數(shù)f(x)=loga(1+x),g(x)=loga(1-x),其中a0,a1,設(shè)h(x)=f(x)-g(x).

  (1)判斷h(x)的奇偶性,并說(shuō)明理由;

  (2)若f(3)=2,求使h(x)0成立的x的集合.

  解 (1)依題意,得1+x0,1-x0,解得-1

  函數(shù)h(x)的定義域?yàn)?-1,1).

  ∵對(duì)任意的x(-1,1),-x(-1,1),

  h(-x)=f(-x)-g(-x)=loga(1-x)-loga(1+x)=g(x)-f(x)=-h(x),

  h(x)是奇函數(shù).

  (2)由f(3)=2,得a=2.

  此時(shí)h(x)=log2(1+x)-log2(1-x),

  由h(x)0,即log2(1+x)-log2(1-x)0,

  得log2(1+x)log2(1-x).

  則1+x0,解得0

  故使h(x)0成立的x的集合是{x|0

  18.(12分)已知0

  解 由題意得16a2,6a22-22+30,得a112,a124,

  得124

  故a的取值范圍是124

  19.(12分)已知f(x)=loglog14xx2-log14 x+5,A={x|2x2-6x+81},當(dāng)xA時(shí),求f(x)的最值.

  解 由2x2-6x+81

  由二次函數(shù)y=x2-6x+8的圖像可知24.

  設(shè)log14 x=t,∵24,

  -1log14 x-12,即-1-12.

  f(x)=t2-t+5對(duì)稱軸為t=12,

  f(x)=t2-t+5在-1,-12單調(diào)遞減,

  故f(x)max=1+1+5=7,

  f(x)min=-122+12+5=234.

  綜上得f(x)的最小值為234,最大值為7.

  20.(13分)已知函數(shù)f(x)=ax+k(a0,且a1)的圖像過(guò)(-1,1)點(diǎn),其反函數(shù)f-1(x)的圖像過(guò)點(diǎn)(8,2).

  (1)求a,k的值;

  (2)若將其反函數(shù)的圖像向左平移2個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,就得到函數(shù)y=g(x)的圖像,寫出y=g(x)的解析式;

  (3)若g(x)3m-1在[2,+)恒成立,求實(shí)數(shù)m的取值范圍.

  解 (1)由題意得a-1+k=1,a2+k=8. 解得a=2,k=1.

  (2)由(1)知f(x)=2x+1,得

  f-1(x)=log2x-1,將f-1(x)的圖像向左平移2個(gè)單位,得到y(tǒng)=log2(x+2)-1,再向上平移到1個(gè)單位,得到y(tǒng)=g(x)=log2(x+2).

  (3)由g(x)3m-1在[2,+)恒成立,

  只需g(x)min3m-1即可.

  而g(x)min=log2(2+2)=2,

  即23m-1,得m1.

  21.(14分)有時(shí)可用函數(shù)f(x)=0.1+15lnaa-xx6,x-4.4x-4x6.)描述學(xué)習(xí)某科知識(shí)的掌握程度.其中x表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(xN+),f(x)表示對(duì)該學(xué)科知識(shí)的掌握程度,正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān).

  (1)根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對(duì)應(yīng)的a的取值區(qū)間分別為(100,106],(106,112],(112,123],當(dāng)學(xué)習(xí)某學(xué)科知識(shí)4次時(shí),掌握程度為70%,請(qǐng)確定相應(yīng)的學(xué)科;

  (2)證明:當(dāng)x7時(shí),掌握程度的增大量f(x+1)-f(x)總是下降.(參考數(shù)據(jù)e0.04=1.04)

  解 (1)由題意可知0.1+15lnaa-4=0.70,整理得aa-4=e0.04,得a=104(100,106],由此可知,該學(xué)科是甲學(xué)科.

  (2)證明:當(dāng)x7時(shí),f(x+1)-f(x)=0.4x-3x-4,

  而當(dāng)x7時(shí),函數(shù)y=(x-3)(x-4)單調(diào)遞增;

  且(x-3)(x-4)0.

  故f(x+1)-f(x)單調(diào)遞減,

  當(dāng)x7時(shí),掌握程度的增大量f(x+1)-f(x)總是下降.

【高一上冊(cè)數(shù)學(xué)第三章單元測(cè)試題】相關(guān)文章:

數(shù)學(xué)上冊(cè)單元綜合測(cè)試題04-08

高一數(shù)學(xué)上冊(cè)集合單元測(cè)試題答案06-22

初一上冊(cè)第三章單元綜合測(cè)試題06-18

數(shù)學(xué)上冊(cè)第二單元測(cè)試題06-20

初一上冊(cè)數(shù)學(xué)第三章測(cè)試題06-19

高一政治上冊(cè)第二單元測(cè)試題04-05

數(shù)學(xué)上冊(cè)第五單元測(cè)試題的總結(jié)04-08

數(shù)學(xué)上冊(cè)第一單元檢測(cè)試題及答案06-18

關(guān)于初二數(shù)學(xué)第三章直棱柱的單元測(cè)試題06-20