高一數(shù)學第三章同步訓練題:函數(shù)與方程
在中國古代把數(shù)學叫算術(shù),又稱算學,最后才改為數(shù)學。數(shù)學分為兩部分,一部分是幾何,另一部分是代數(shù)。小編準備了高一數(shù)學上冊第三章同步訓練題,具體請看以下內(nèi)容。
1.設f(x)=x3+bx+c是[-1,1]上的增函數(shù),且f(-12)f(12)0,則方程f(x)=0在[-1,1]內(nèi)()
A.可能有3個實數(shù)根 B.可能有2個實數(shù)根
C.有唯一的實數(shù)根 D.沒有實數(shù)根
解析:由f -12f 120得f(x)在-12,12內(nèi)有零點,又f(x)在[-1,1]上為增函數(shù),
f(x)在[-1,1]上只有一個零點,即方程f(x)=0在[-1,1]上有唯一的實根.
答案:C
2.(2014長沙模擬)已知函數(shù)f(x)的圖象是連續(xù)不斷的,x、f(x)的對應關(guān)系如下表:
x123456
f(x)136.1315.552-3.9210.88-52.488-232.064
則函數(shù)f(x)存在零點的區(qū)間有
()
A.區(qū)間[1,2]和[2,3]
B.區(qū)間[2,3]和[3,4]
C.區(qū)間[2,3]、[3,4]和[4,5]
D.區(qū)間[3,4]、[4,5]和[5,6]
解析:∵f(2)與f(3),f(3)與f(4),f(4)與f(5)異號,
f(x)在區(qū)間[2,3],[3,4],[4,5]上都存在零點.
答案:C
3.若a1,設函數(shù)f(x)=ax+x-4的零點為m,g(x)=logax+x-4的零點為n,則1m+1n的取值范圍是
()
A.(3.5,+) B.(1,+)
C.(4,+) D.(4.5,+)
解析:令ax+x-4=0得ax=-x+4,令logax+x-4=0得logax=-x+4,
在同一坐標系中畫出函數(shù)y=ax,y=logax,y=-x+4的圖象,結(jié)合圖形可知,n+m為直線y=x與y=-x+4的交點的橫坐標的2倍,由y=xy=-x+4,解得x=2,所以n+m=4,因為(n+m)1n+1m=1+1+mn+nm4,又nm,故(n+m)1n+1m4,則1n+1m1.
答案:B
4.(2014昌平模擬)已知函數(shù)f(x)=ln x,則函數(shù)g(x)=f(x)-f(x)的零點所在的區(qū)間是
()
A.(0,1) B.(1,2)
C.(2,3) D.(3,4)
解析:函數(shù)f(x)的導數(shù)為f(x)=1x,所以g(x)=f(x)-f(x)=ln x-1x.因為g(1)=ln 1-1=-10,g(2)=ln 2-120,所以函數(shù)g(x)=f(x)-f(x)的零點所在的區(qū)間為(1,2).故選B.
答案:B
5.已知函數(shù)f(x)=2x-1,x0,-x2-2x,x0,若函數(shù)g(x)=f(x)-m有3個零點,則實數(shù)m的取值范圍是________.
解析:畫出f(x)=2x-1,x0,-x2-2x,x0,的'圖象,如圖.由函數(shù)g(x)=f(x)-m有3個零點,結(jié)合圖象得:0
答案:(0,1)
6.定義在R上的奇函數(shù)f(x)滿足:當x0時,f(x)=2 014x+log2 014x則在R上,函數(shù)f(x)零點的個數(shù)為________.
解析:函數(shù)f(x)為R上的奇函數(shù),因此f(0)=0,當x0時,f(x)=2 014x+log2 014x在區(qū)間0,12 014內(nèi)存在一個零點,又f(x)為增函數(shù),因此在(0,+)內(nèi)有且僅有一個零點.根據(jù)對稱性可知函數(shù)在(-,0)內(nèi)有且僅有一解,從而函數(shù)在R上的零點的個數(shù)為3.
答案:3
7.已知函數(shù)f(x)=x+2x,g(x)=x+ln x,h(x)=x-x-1的零點分別為x1,x2,x3,則x1,x2,x3的大小關(guān)系是________.
解析:令x+2x=0,即2x=-x,設y=2x,y=-x;
令x+ln x=0,即ln x=-x,
設y=ln x,y=-x.
在同一坐標系內(nèi)畫出y=2x,y=ln x,y=-x,如圖:x10
則(x)2-x-1=0,
x=1+52,即x3=3+521,所以x1
答案:x1
8.若函數(shù)f(x)=ax2-x-1有且僅有一個零點,求實數(shù)a的取值范圍.
解:(1)當a=0時,函數(shù)f(x)=-x-1為一次函數(shù),則-1是函數(shù)的零點,即函數(shù)僅有一個零點.
(2)當a0時,函數(shù)f(x)=ax2-x-1為二次函數(shù),并且僅有一個零點,則一元二次方程ax2-x-1=0有兩個相等實根.則=1+4a=0,解得a=-14.綜上,當a=0或a=-14時,函數(shù)僅有一個零點.
9.關(guān)于x的二次方程x2+(m-1)x+1=0在區(qū)間[0,2]上有解,求實數(shù)m的取值范圍.
解:設f(x)=x2+(m-1)x+1,x[0,2],
、偃鬴(x)=0在區(qū)間[0,2]上有一解,
∵f(0)=10,則應用f(2)0,
又∵f(2)=22+(m-1)2+1,
m-32.
、谌鬴(x)=0在區(qū)間[0,2]上有兩解,
則0,0-m-122,f20,
m-12-40,-3
m3或m-1,-3
-32-1.
由①②可知m的取值范圍(-,-1].
B組 能力突破
1.函數(shù)f(x)=x-cos x在[0,+)內(nèi)
()
A.沒有零點 B.有且僅有一個零點
C.有且僅有兩個零點 D.有無窮多個零點
解析:在同一直角坐標系中分別作出函數(shù)y=x和y=cos x的圖象,如圖,由于x1時,y=x1,y=cos x1,所以兩圖象只有一個交點,即方程x-cos x=0在[0,+)內(nèi)只有一個根,所以f(x)=x-cos x在[0,+)內(nèi)只有一個零點,所以選B.
答案:B
2.(2014吉林白山二模)已知函數(shù)f(x)=2mx2-x-1在區(qū)間(-2,2)上恰有一個零點,則m的取值范圍是
()
A.-38,18 B.-38,18
C.-38,18 D.-18,38
解析:當m=0時,函數(shù)f(x)=-x-1有一個零點x=-1,滿足條件.當m0時,函數(shù)f(x)=2mx2-x-1在區(qū)間(-2,2)上恰有一個零點,需滿足①f(-2)f(2)0,或
、趂-2=0,-20,或③f2=0,02.
解①得-18
答案:D
3.已知函數(shù)f(x)滿足f(x+1)=f(x-1),且f(x)是偶函數(shù),當x[0,1]時,f(x)=x,若在區(qū)間[-1,3]上函數(shù)g(x)=f(x)-kx-k有4個零點,則實數(shù)k的取值范圍是________.
解析:由f(x+1)=f(x-1)得,
f(x+2)=f(x),則f(x)是周期為2的函數(shù).
∵f(x)是偶函數(shù),當x[0,1]時,f(x)=x,
當x[-1,0]時,f(x)=-x,
易得當x[1,2]時,f(x)=-x+2,
當x[2,3]時,f(x)=x-2.
在區(qū)間[-1,3]上函數(shù)g(x)=f(x)-kx-k有4個零點,即函數(shù)y=f(x)與y=kx+k的圖象在區(qū)間[-1,3]上有4個不同的交點.作出函數(shù)y=f(x)與y=kx+k的圖象如圖所示,結(jié)合圖形易知k0,14].
答案:0,14]
4.(1)m為何值時,f(x)=x2+2mx+3m+4.①有且僅有一個零點;②有兩個零點且均比-1大;
(2)若函數(shù)f(x)=|4x-x2|+a有4個零點,求實數(shù)a的取值范圍.
解:(1)①函數(shù)f(x)有且僅有一個零點方程f(x)=0有兩個相等實根=0,即4m2-4(3m+4)=0,即m2-3m-4=0,m=4或m=-1.
、谠Of(x)有兩個零點分別為x1,x2,
則x1+x2=-2m,x1x2=3m+4.
由題意,有=4m2-43m+40x1+1x2+10 x1+1+x2+10
m2-3m-403m+4-2m+10-2m+2m4或m-1,m-5,m1,
-5
(2)令f(x)=0,
得|4x-x2|+a=0,
即|4x-x2|=-a.
令g(x)=|4x-x2|,
h(x)=-a.
作出g(x)、h(x)的圖象.
由圖象可知,當04,即-4
故a的取值范圍為(-4,0).
【高一數(shù)學第三章同步訓練題:函數(shù)與方程】相關(guān)文章:
高一數(shù)學函數(shù)與方程同步練習題目06-14
高一數(shù)學必修同步訓練題示例06-02
數(shù)學解方程課后訓練題05-29
數(shù)學方程問題選擇題訓練06-01
數(shù)學第五單元同步訓練題06-21
愛蓮說同步訓練題06-21
天鵝同步訓練題05-26