毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

高中圓的方程練習(xí)題

時(shí)間:2021-06-14 15:02:25 試題 我要投稿

高中圓的方程練習(xí)題

  一、填空題

  1.若圓C的半徑為1,圓心在第一象限,且與直線4x-3y=0和x軸都相切,則該圓的標(biāo)準(zhǔn)方程是________.

  [解析] 設(shè)圓心C(a,b)(a0,b0),由題意得b=1.

  又圓心C到直線4x-3y=0的距離d==1,

  解得a=2或a=-(舍).

  所以該圓的標(biāo)準(zhǔn)方程為(x-2)2+(y-1)2=1.

  [答案] (x-2)2+(y-1)2=1

  2.(2014南京質(zhì)檢)已知點(diǎn)P(2,1)在圓C:x2+y2+ax-2y+b=0上,點(diǎn)P關(guān)于直線x+y-1=0的對(duì)稱點(diǎn)也在圓C上,則圓C的圓心坐標(biāo)為_(kāi)_______.

  [解析] 因?yàn)辄c(diǎn)P關(guān)于直線x+y-1=0的對(duì)稱點(diǎn)也在圓上,

  該直線過(guò)圓心,即圓心滿足方程x+y-1=0,

  因此-+1-1=0,解得a=0,所以圓心坐標(biāo)為(0,1).

  [答案] (0,1)

  3.已知圓心在直線y=-4x上,且圓與直線l:x+y-1=0相切于點(diǎn)P(3,-2),則該圓的方程是________.

  [解析] 過(guò)切點(diǎn)且與x+y-1=0垂直的直線為y+2=x-3,與y=-4x聯(lián)立可求得圓心為(1,-4).

  半徑r=2,所求圓的方程為(x-1)2+(y+4)2=8.

  [答案] (x-1)2+(y+4)2=8

  4.(2014江蘇常州模擬)已知實(shí)數(shù)x,y滿足x2+y2-4x+6y+12=0,則|2x-y|的最小值為_(kāi)_______.

  [解析] x2+y2-4x+6y+12=0配方得(x-2)2+(y+3)2=1,令x=2+cos ,

  y=-3+sin ,則|2x-y|=|4+2cos +3-sin |

  =|7-sin (-7-(tan =2).

  [答案] 7-

  5.已知圓x2+y2+4x-8y+1=0關(guān)于直線2ax-by+8=0(a0,b0)對(duì)稱,則+的最小值是________.

  [解析] 由圓的對(duì)稱性可得,直線2ax-by+8=0必過(guò)圓心(-2,4),所以a+b=2.所以+=+=++52+5=9,由=,則a2=4b2,又由a+b=2,故當(dāng)且僅當(dāng)a=,b=時(shí)取等號(hào).

  [答案] 9

  6.(2014南京市、鹽城市高三模擬)在平面直角坐標(biāo)系xOy中,若圓x2+(y-1)2=4上存在A,B兩點(diǎn)關(guān)于點(diǎn)P(1,2)成中心對(duì)稱,則直線AB的方程為_(kāi)_______.

  [解析] 由題意得圓心與P點(diǎn)連線垂直于AB,所以kOP==1,kAB=-1,

  而直線AB過(guò)P點(diǎn),所以直線AB的方程為y-2=-(x-1),即x+y-3=0.

  [答案] x+y-3=0

  7.(2014泰州質(zhì)檢)若a,且方程x2+y2+ax+2ay+2a2+a-1=0表示圓,則a=________.

  [解析] 要使方程x2+y2+ax+2ay+2a2+a-1=0表示圓,則a2+(2a)2-4(2a2+a-1)0,解得-20)關(guān)于直線x+y+2=0對(duì)稱.

  (1)求圓C的方程;

  (2)設(shè)Q為圓C上的一個(gè)動(dòng)點(diǎn),求的最小值.

  [解] (1)設(shè)圓心C(a,b),

  由題意得解得

  則圓C的方程為x2+y2=r2,

  將點(diǎn)P的坐標(biāo)代入得r2=2,

  故圓C的方程為x2+y2=2.

  (2)設(shè)Q(x,y),則x2+y2=2,

  =(x-1,y-1)(x+2,y+2)

  =x2+y2+x+y-4=x+y-2.

  令x=cos ,y=sin ,

  =x+y-2=(sin +cos )-2

  =2sin-2,

  所以的最小值為-4.

  10.已知圓的圓心為坐標(biāo)原點(diǎn),且經(jīng)過(guò)點(diǎn)(-1,).

  (1)求圓的方程;

  (2)若直線l1:x-y+b=0與此圓有且只有一個(gè)公共點(diǎn),求b的值;

  (3)求直線l2:x-y+2=0被此圓截得的弦長(zhǎng).

  [解] (1)已知圓心為(0,0),半徑r==2,所以圓的方程為x2+y2=4.

  (2)由已知得l1與圓相切,則圓心(0,0)到l1的`距離等于半徑2,即=2,解得b=4.

  (3)l2與圓x2+y2=4相交,圓心(0,0)到l2的距離d==,所截弦長(zhǎng)l=2=2=2.

  二、填空題

  1.在圓x2+y2-2x-6y=0內(nèi),過(guò)點(diǎn)E(0,1)的最長(zhǎng)弦和最短弦分別為AC和BD,則四邊形ABCD的面積為_(kāi)_______.

  [解析] 圓的標(biāo)準(zhǔn)方程為(x-1)2+(y-3)2=10,則圓心(1,3),半徑r=,

  由題意知ACBD,且|AC|=2,|BD|=2=2,

  所以四邊形ABCD的面積為S=|AC||BD|

  =22=10.

  [答案] 10

  2.在平面直角坐標(biāo)系xOy中,已知點(diǎn)P(3,0)在圓C:x2+y2-2mx-4y+m2-28=0內(nèi),動(dòng)直線AB過(guò)點(diǎn)P且交圓C于A,B兩點(diǎn),若ABC的面積的最大值為16,則實(shí)數(shù)m的取值范圍為_(kāi)_______.

  [解析] 圓C的標(biāo)準(zhǔn)方程為(x-m)2+(y-2)2=32,首先由點(diǎn)P在圓內(nèi),則(3-m)2+(0-2)232,解得3-2,圓C與直線y=-2x+4不相交,所以t=-2不符合題意,舍去.

  故圓C的方程為(x-2)2+(y-1)2=5.

【高中圓的方程練習(xí)題】相關(guān)文章:

直線與圓的方程練習(xí)題06-22

圓的方程(一) 圓的標(biāo)準(zhǔn)方程教案11-16

圓的方程的教案01-27

圓的標(biāo)準(zhǔn)方程01-20

圓的方程的教案09-03

《圓的標(biāo)準(zhǔn)方程》的說(shuō)課稿08-08

圓的參數(shù)方程課件04-28

《圓標(biāo)準(zhǔn)方程》說(shuō)課稿07-06

《圓的標(biāo)準(zhǔn)方程》說(shuō)課稿03-07