毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

高一數(shù)學(xué)函數(shù)的單調(diào)性說課稿

時間:2021-06-10 16:53:24 說課稿 我要投稿

高一數(shù)學(xué)函數(shù)的單調(diào)性說課稿

  一、教學(xué)內(nèi)容的分析

高一數(shù)學(xué)函數(shù)的單調(diào)性說課稿

  1.教材的地位和作用

  首先,從單調(diào)性知識本身來講.學(xué)生對于函數(shù)單調(diào)性的學(xué)習(xí)共分為三個階段,第一階段是在初中學(xué)習(xí)了一次函數(shù)、二次函數(shù)、反比例函數(shù)圖象的基礎(chǔ)上對增減性有一個初步的感性認識;第二階段是在高一進一步學(xué)習(xí)函數(shù)單調(diào)性的嚴格定義,從數(shù)和形兩個方面理解單調(diào)性的概念;第三階段則是在高三利用導(dǎo)數(shù)為工具研究函數(shù)的單調(diào)性.高一單調(diào)性的學(xué)習(xí),既是初中學(xué)習(xí)的延續(xù)和深化,又為高三的學(xué)習(xí)奠定基礎(chǔ).

  其次,從函數(shù)角度來講. 函數(shù)的單調(diào)性是學(xué)生學(xué)習(xí)函數(shù)概念后學(xué)習(xí)的第一個函數(shù)性質(zhì),也是第一個用數(shù)學(xué)符號語言來刻畫的概念.函數(shù)的單調(diào)性與函數(shù)的奇偶性、周期性一樣,都是研究自變量變化時,函數(shù)值的變化規(guī)律;學(xué)生對于這些概念的認識,都經(jīng)歷了直觀感受、文字描述和嚴格定義三個階段,即都從圖象觀察,以函數(shù)解析式為依據(jù),經(jīng)歷用符號語言刻畫圖形語言,用定量分析解釋定性結(jié)果的過程.因此,函數(shù)單調(diào)性的學(xué)習(xí)為進一步學(xué)習(xí)函數(shù)的其它性質(zhì)提供了方法依據(jù).

  最后,從學(xué)科角度來講.函數(shù)的單調(diào)性是學(xué)習(xí)不等式、極限、導(dǎo)數(shù)等其它數(shù)學(xué)知識的重要基礎(chǔ),是解決數(shù)學(xué)問題的常用工具,也是培養(yǎng)學(xué)生邏輯推理能力和滲透數(shù)形結(jié)合思想的重要素材.

  2.教學(xué)的重點和難點

  對于函數(shù)的單調(diào)性,學(xué)生的認知困難主要在兩個方面:

  首先,要求用準(zhǔn)確的數(shù)學(xué)符號語言去刻畫圖象的上升與下降,把對單調(diào)性直觀感性的認識上升到理性的高度, 這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說比較困難.

  其次,單調(diào)性的證明是學(xué)生在函數(shù)學(xué)習(xí)中首次接觸到的代數(shù)論證內(nèi)容,而學(xué)生在代數(shù)方面的推理論證能力是比較薄弱的.

  根據(jù)以上的分析和教學(xué)大綱對單調(diào)性的教學(xué)要求,本節(jié)課的教學(xué)重點是函數(shù)單調(diào)性的概念,判斷、證明函數(shù)的單調(diào)性;難點是引導(dǎo)學(xué)生歸納并抽象出函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性.

  二、教學(xué)目標(biāo)的確定

  根據(jù)本課教材的特點、教學(xué)大綱對本節(jié)課的教學(xué)要求以及學(xué)生的認知水平,我從三個方面確定了以下教學(xué)目標(biāo):

  1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.

  2.通過對函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達能力;通過對函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.

  3.通過知識的探究過程培養(yǎng)學(xué)生細心觀察、認真分析、嚴謹論證的良好思維習(xí)慣;讓學(xué)生經(jīng)歷從具體到抽象,從特殊到一般,從感性到理性的認知過程.

  三、教學(xué)方法的選擇

  1.教學(xué)方法

  本節(jié)課是函數(shù)單調(diào)性的起始課,根據(jù)教學(xué)內(nèi)容、教學(xué)目標(biāo)和學(xué)生的認知水平,主要采取教師啟發(fā)講授,學(xué)生探究學(xué)習(xí)的教學(xué)方法.教學(xué)過程中,根據(jù)教材提供的線索,安排適當(dāng)?shù)慕虒W(xué)情境,讓學(xué)生展示相應(yīng)的數(shù)學(xué)思維過程,使學(xué)生有機會經(jīng)歷數(shù)學(xué)概念抽象的各個階段,引導(dǎo)學(xué)生獨立自主地開展思維活動,深入探究,從而創(chuàng)造性地解決問題,最終形成概念,獲得方法,培養(yǎng)能力.

  2.教學(xué)手段

  教學(xué)中使用了多媒體投影和計算機來輔助教學(xué).目的是充分發(fā)揮其快捷、生動、形象的特點,為學(xué)生提供直觀感性的材料,有助于學(xué)生對問題的理解和認識.

  四、教學(xué)過程的設(shè)計

  為達到本節(jié)課的教學(xué)目標(biāo),突出重點,突破難點,我把教學(xué)過程設(shè)計為四個階段:創(chuàng)設(shè)情境,引入課題;歸納探索,形成概念;掌握證法,適當(dāng)延展;歸納小結(jié),提高認識.具體過程如下:

  (一)創(chuàng)設(shè)情境,引入課題

  概念的形成主要依靠對感性材料的抽象概括,只有學(xué)生對學(xué)習(xí)對象有了豐富具體經(jīng)驗以后,才能使學(xué)生對學(xué)習(xí)對象進行主動的、充分的理解,因此在本階段的教學(xué)中,我從具體材料——有關(guān)奧運會天氣的例子出發(fā),而不是從抽象語言入手來引入函數(shù)的單調(diào)性.使學(xué)生體會到研究函數(shù)單調(diào)性的必要性,明確本課我們要研究和學(xué)習(xí)的課題,同時激發(fā)學(xué)生的學(xué)習(xí)興趣和主動探究的精神.

  在課前,我給學(xué)生布置了兩個任務(wù):

  (1) 由于某種原因,2008年北京奧運會開幕式時間由原定的7月25日推遲到8月8日,請查閱資料說明做出這個決定的主要原因.

  課上通過交流,可以了解到開幕式推遲主要是天氣的原因,北京的天氣到8月中旬,平均氣溫、平均降雨量和平均降雨天數(shù)等均開始下降,比較適宜大型國際體育賽事.

  (2) 通過查閱歷史資料研究北京奧運會開幕式當(dāng)天氣溫變化情況.

  課上我引導(dǎo)學(xué)生觀察2006年8月8日的氣溫變化曲線圖,引導(dǎo)學(xué)生體會在某些時段溫度升高,某些時段溫度降低.

  然后,我指出生活中我們關(guān)心很多數(shù)據(jù)的變化,并讓學(xué)生舉出一些實際例子(如燃油價格等). 隨后進一步引導(dǎo)學(xué)生歸納:所有這些數(shù)據(jù)的變化,用函數(shù)觀點看,其實就是隨著自變量的變化,函數(shù)值是變大還是變小.

  (二)歸納探索,形成概念

  在本階段的教學(xué)中,為使學(xué)生充分感受數(shù)學(xué)概念的發(fā)生與發(fā)展過程和數(shù)形結(jié)合的數(shù)學(xué)思想,經(jīng)歷觀察、歸納、抽象的探究過程,加深對函數(shù)單調(diào)性的本質(zhì)的認識,我設(shè)計了三個環(huán)節(jié),引導(dǎo)學(xué)生分別完成對單調(diào)性定義的三次認識.

  1.借助圖象,直觀感知

  本環(huán)節(jié)的教學(xué)主要是從學(xué)生的已有認知出發(fā),即從學(xué)生熟悉的常見函數(shù)的圖象出發(fā),直觀感知函數(shù)的單調(diào)性,完成對函數(shù)單調(diào)性定義的第一次認識.

  在本環(huán)節(jié)的教學(xué)中,我主要設(shè)計了兩個問題:

  問題1:分別作出函數(shù)

  的圖象,并且觀察自變量變化時,函數(shù)值有什么變化規(guī)律?

  在學(xué)生畫圖的基礎(chǔ)上,引導(dǎo)學(xué)生觀察圖象,獲得信息:第一個圖象從左向右逐漸上升,y隨x的增大而增大;第二個圖象從左向右逐漸下降,y隨x的增大而減小.然后讓學(xué)生明確,對于自變量變化時,函數(shù)值具有這兩種變化規(guī)律的函數(shù),我們分別稱為增函數(shù)和減函數(shù).

  而后兩個函數(shù)圖象的上升與下降要分段說明,通過討論使學(xué)生明確函數(shù)的單調(diào)性是對定義域內(nèi)某個區(qū)間而言的,是函數(shù)的局部性質(zhì).

  對于概念教學(xué),若學(xué)生能用自己的語言來表述概念的相關(guān)屬性,則能更好的理解和掌握概念,因此我設(shè)計了問題2.

  問題2:能否根據(jù)自己的理解說說什么是增函數(shù)、減函數(shù)?

  教學(xué)中,我引導(dǎo)學(xué)生用自己的語言描述增函數(shù)的定義:

  如果函數(shù)

  在某個區(qū)間上的圖象從左向右逐漸上升,或者如果函數(shù)

  在某個區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)

  在該區(qū)間上為增函數(shù).

  然后讓學(xué)生類比描述減函數(shù)的定義.至此,學(xué)生對函數(shù)單調(diào)性就有了一個直觀、描述性的認識.

  2.探究規(guī)律,理性認識

  在此環(huán)節(jié)中,我設(shè)計了兩個問題,通過對兩個問題的研究、交流、討論,將函數(shù)的單調(diào)性研究從研究函數(shù)圖象過渡到研究函數(shù)的解析式,使學(xué)生對單調(diào)性的認識由感性認識上升到理性認識的高度,使學(xué)生完成對概念的第二次認識.

  問題1:右圖是函數(shù)

  的圖象,能說出這個函數(shù)分別在哪個區(qū)間為增函數(shù)和減函數(shù)嗎?

  對于問題1,學(xué)生的困難是難以確定分界點的確切位置.通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時不夠精確,需要結(jié)合解析式進行嚴密化、精確化的研究,使學(xué)生體會到用數(shù)量大小關(guān)系嚴格表述函數(shù)單調(diào)性的必要性,從而將函數(shù)的單調(diào)性研究從研究函數(shù)圖象過渡到研究函數(shù)的解析式.

  問題2:如何從解析式的角度說明

  在

  上為增函數(shù)?

  在前邊的鋪墊下,問題2是形成單調(diào)性概念的關(guān)鍵.在教學(xué)中,我組織學(xué)生先分組探究,然后全班交流,相互補充,并及時對學(xué)生的發(fā)言進行反饋,評價,對普遍出現(xiàn)的問題組織學(xué)生討論,在辨析中達成共識.

  對于問題2,學(xué)生錯誤的回答主要有兩種:

  (1)在給定區(qū)間內(nèi)取兩個數(shù),例如1和2,因為

  ,所以

  在

  上為增函數(shù).

  (2)仿(1),取很多組驗證均滿足,所以

  在

  上為增函數(shù).

  對于這兩種錯誤,我鼓勵學(xué)生分別用圖形語言和文字語言進行辨析.引導(dǎo)學(xué)生明確問題的.根源是兩個自變量不可能被窮舉.在充分討論的基礎(chǔ)上,引導(dǎo)學(xué)生從給定的區(qū)間內(nèi)任意取兩個自變量

  ,然后求差比較函數(shù)值的大小,從而得到正確的回答:

  任意取

  ,有

  ,即

  ,所以

  在

  為增函數(shù).

  這種回答既揭示了單調(diào)性的本質(zhì),也讓學(xué)生領(lǐng)悟到兩點:(1)兩自變量的取值具有任意性;(2)求差比較它們函數(shù)值的大小.事實上,這種回答也給出了證明單調(diào)性的方法,為后續(xù)用定義證明其他函數(shù)的單調(diào)性做好鋪墊,降低難度.至此,學(xué)生對函數(shù)單調(diào)性有了理性的認識.

  3.抽象思維,形成概念

  本環(huán)節(jié)在前面研究的基礎(chǔ)上,引導(dǎo)學(xué)生歸納、抽象出函數(shù)單調(diào)性的定義,使學(xué)生經(jīng)歷從特殊到一般,從具體到抽象的認知過程,完成對概念的第三次認識.

  教學(xué)中,我引導(dǎo)學(xué)生用嚴格的數(shù)學(xué)符號語言歸納、抽象增函數(shù)的定義,并讓學(xué)生類比得到減函數(shù)的定義.然后我指導(dǎo)學(xué)生認真閱讀教材中有關(guān)單調(diào)性的概念,對定義中關(guān)鍵的地方進行強調(diào).

  同時我設(shè)計了一組判斷題:

  判斷題:

 、

  .

  滿足f(2)

  在[2,3]上為增函數(shù).

 、廴艉瘮(shù)

  在

  和(2,3)上均為增函數(shù),則函數(shù)

  在(1,3)上為增函數(shù).

 、芤驗楹瘮(shù)

  在

  上都是減函數(shù),所以

  在

  上是減函數(shù).

  通過對判斷題的討論,強調(diào)三點:

 、賳握{(diào)性是對定義域內(nèi)某個區(qū)間而言的,離開了定義域和相應(yīng)區(qū)間就談不上單調(diào)性.

 、谟械暮瘮(shù)在整個定義域內(nèi)單調(diào)(如一次函數(shù)),有的函數(shù)只在定義域內(nèi)的某些區(qū)間單調(diào)(如二次函數(shù)),有的函數(shù)根本沒有單調(diào)區(qū)間(如常函數(shù)).

 、酆瘮(shù)在定義域內(nèi)的兩個區(qū)間A,B上都是增(或減)函數(shù),一般不能認為函數(shù)在

  上是增(或減)函數(shù).

  從而加深學(xué)生對定義的理解,完成本階段的教學(xué).

  (三)掌握證法,適當(dāng)延展

  本階段的教學(xué)主要是通過對例題和練習(xí)的思考交流、分析講解以及反思小結(jié),使學(xué)生初步掌握根據(jù)單調(diào)性定義證明函數(shù)單調(diào)性的方法,同時引導(dǎo)學(xué)生探究定義的等價形式,對證明方法做適當(dāng)延展.

  例證明函數(shù)

  在

  上是增函數(shù).

  在引入導(dǎo)數(shù)后,用定義證明單調(diào)性的作用已經(jīng)有所降低,我選擇一個較難的例子,主要是考慮讓學(xué)生對證明過程中遇到的問題有一個比較深刻的認識.

  證明過程的教學(xué)分為三個環(huán)節(jié):難點突破、詳細板書、歸納步驟.

  1.難點突破

  對于函數(shù)單調(diào)性的證明,由于前邊有對函數(shù)

  在

  上為增函數(shù)的研究作鋪墊, 大部分學(xué)生能完成取值和求差兩個步驟:

  證明:任取

  ,

  ,

  因此學(xué)生的難點主要是兩個函數(shù)值求差后的變形方向以及變形的程度.問題主要集中在兩個方面:一方面部分學(xué)生不知道如何變形,不敢動筆;另一方面部分學(xué)生在變形不徹底,理由不充分的情形下就下結(jié)論.

  針對這兩方面的問題,教學(xué)中,我組織學(xué)生討論,引導(dǎo)學(xué)生回顧函數(shù)

  在

  上為增函數(shù)的說明過程,明確變形的主要思路是因式分解.然后我引導(dǎo)學(xué)生從已有的認知出發(fā),考慮分組分解法,即把形式相同的項分在一起,變形后容易找到公因式

  ,提取后即可考慮判斷符號.

  2.詳細板書

  在上面分析的基礎(chǔ)上,我對證明過程進行規(guī)范、完整的板書,引導(dǎo)學(xué)生注意證明過程的規(guī)范性和嚴謹性,幫助學(xué)生養(yǎng)成良好的學(xué)習(xí)習(xí)慣.

  ,  設(shè)元

  求差

  變形

  .

  由

  得

  斷號

  又由

  ,得

  即

  .

  所以,函數(shù)

  在

  上是增函數(shù).定論

  3.歸納步驟

  在板書的基礎(chǔ)上,我引導(dǎo)學(xué)生歸納利用定義證明函數(shù)單調(diào)性的方法和步驟(設(shè)元,求差,變形,斷號,定論).通過對證明過程的分析,使學(xué)生明確每一步的必要性和目的,特別是第三步,讓學(xué)生明確變形的方法以及變形的程度,幫助學(xué)生掌握方法,提高學(xué)生的推理論證能力.

  為了鞏固用定義證明函數(shù)單調(diào)性的方法,強化解題步驟,形成并提高解題能力,我設(shè)計了課堂練習(xí):

  證明:函數(shù)

  在

  上是增函數(shù).

  教學(xué)過程中,我對學(xué)生的完成情況進行及時評價和有針對性的指導(dǎo).同時考慮到我校學(xué)生數(shù)學(xué)基礎(chǔ)較好,思維較為活躍的特點,為了加深學(xué)生對定義的理解,并對判斷單調(diào)性的方法做適當(dāng)延展,我設(shè)計了下面的問題.

  問題:除了用定義外,如果證得對任意的

  ,且

  ,能斷定函數(shù)

  在

  上是增函數(shù)嗎?

  教學(xué)過程中,我引導(dǎo)學(xué)生分析這種敘述與定義的等價性.然后,讓學(xué)生嘗試用這種定義等價形式證明之前的課堂練習(xí).這種方法進一步發(fā)展可以得到導(dǎo)數(shù)法,為今后用導(dǎo)數(shù)方法研究函數(shù)單調(diào)性埋下伏筆.

  (四)歸納小結(jié),提高認識

  本階段通過學(xué)習(xí)小結(jié)進行課堂教學(xué)的反饋,組織和指導(dǎo)學(xué)生歸納知識、技能、方法的一般規(guī)律,深化對數(shù)學(xué)思想方法的認識,為后續(xù)學(xué)習(xí)打好基礎(chǔ).

  1.學(xué)習(xí)小結(jié)

  在知識層面上,引導(dǎo)學(xué)生回顧函數(shù)單調(diào)性定義的探究過程,使學(xué)生對單調(diào)性概念的發(fā)生與發(fā)展過程有清晰的認識,體會到數(shù)學(xué)概念形成的主要三個階段:直觀感受、文字描述和嚴格定義.

  在方法層面上,首先引導(dǎo)學(xué)生回顧判斷,證明函數(shù)單調(diào)性的方法和步驟;然后引導(dǎo)學(xué)生回顧知識探究過程中用到的思想方法和思維方法,如數(shù)形結(jié)合,等價轉(zhuǎn)化,類比等,重點強調(diào)用符號語言來刻畫圖形語言,用定量分析來解釋定性結(jié)果;同時對學(xué)習(xí)過程作必要的反思,為后續(xù)的學(xué)習(xí)做好鋪墊.

  2.布置作業(yè)

  在布置書面作業(yè)的同時,為了尊重學(xué)生的個體差異,滿足學(xué)生多樣化的學(xué)習(xí)需要,我設(shè)計了探究作業(yè)供學(xué)有余力的同學(xué)課后完成.

  (1) 證明:函數(shù)

  在

  上是增函數(shù)的充要條件是對任意的

  ,且有

  目的是加深學(xué)生對定義的理解,而且這種方法進一步發(fā)展同樣也可以得到導(dǎo)數(shù)法.

  (2) 研究函數(shù)

  的單調(diào)性,并結(jié)合描點法畫出函數(shù)的草圖.

  目的是使學(xué)生體會到利用函數(shù)的單調(diào)性可以簡化函數(shù)圖象的繪制過程,體會由數(shù)到形的研究方法和引入單調(diào)性定義的必要性,加深對數(shù)形結(jié)合的認識.

【高一數(shù)學(xué)函數(shù)的單調(diào)性說課稿】相關(guān)文章:

高一數(shù)學(xué)《函數(shù)的單調(diào)性》說課稿03-13

高一數(shù)學(xué)《函數(shù)的單調(diào)性》說課稿模板07-27

函數(shù)單調(diào)性數(shù)學(xué)說課稿04-02

《函數(shù)單調(diào)性》的說課稿03-05

《函數(shù)單調(diào)性》說課稿11-06

《函數(shù)的單調(diào)性》的說課稿06-11

函數(shù)的單調(diào)性說課稿04-01

函數(shù)單調(diào)性的說課稿03-09

高二數(shù)學(xué)《函數(shù)單調(diào)性》說課稿03-31