- 相關(guān)推薦
用公式法解一元二次方程的說課稿
今天我說課的內(nèi)容是人教版九年級上冊第22章《用公式法解一元二次方程》。我主要從教材分析、教法分析、過程分析、板書設(shè)計四個方面對本節(jié)課作如下說明。
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
“一元二次方程的解法”是初中代數(shù)的方程中的一個重要內(nèi)容之一,是在學(xué)完一元一次方程、因式分解、數(shù)的開方、以及前三種因式分解法、直接開方法、配方法解一元二次方程的基礎(chǔ)上,掌握用求根公式解一元二次方程,是配方法和開平方兩個知識的綜合運用和升華。通過本節(jié)課的教學(xué)使學(xué)生明確配方法是解方程的通法,同時會根據(jù)題目選擇合適的方法解一元二次方程。一元二次方程的解法也是今后學(xué)習(xí)二次函數(shù)和一元二次不等式的基礎(chǔ)。
。ǘ┙虒W(xué)目標
知識技能方面:理解一元二次方程求根公式的推導(dǎo)過程,會用公式法解一元二次方程。
數(shù)學(xué)思考方面:通過求根公式的推導(dǎo)過程進一步使學(xué)生熟練掌握配方法,培養(yǎng)學(xué)生數(shù)學(xué)推理的嚴密性和邏
輯性以及由特殊到一般的數(shù)學(xué)思想。
解決問題方面:結(jié)合用公式法解一元二次方程的練習(xí),培養(yǎng)學(xué)生快速準確的運算能力和運用公式解決實際
問題的能力。
情感態(tài)度方面:讓學(xué)生體驗到所有的方程都可以用公式法解決,感受到公式的對稱美、簡潔美,滲透分類
的思想;公式的引入培養(yǎng)學(xué)生尋求簡便方法的探索精神和創(chuàng)新意識。
。ㄈ┙虒W(xué)重、難點
重點:掌握用公式法解一元二次方程的一般步驟;會熟練用公式法解一元二次方程。
難點:理解求根公式的推導(dǎo)過程和判別式
二、教學(xué)法分析
教法:本節(jié)課采用引導(dǎo)發(fā)現(xiàn)式的自主探究式與交流討論結(jié)合的方法;在教學(xué)中由舊知識引導(dǎo)探究一般化問題的形式展開,利用學(xué)生已有的知識、多交流、主動參與到教學(xué)活動中來。
學(xué)法:讓學(xué)生學(xué)會善于觀察、分析討論和分類歸納的方法,提出問題后,鼓勵學(xué)生通過分析、探索、嘗試解決問題的方法,銅鎖親自嘗試,使學(xué)生的思維能力得到培養(yǎng)。
三、過程分析
本節(jié)課的教學(xué)設(shè)計成以下六個環(huán)節(jié):復(fù)習(xí)導(dǎo)入——呈現(xiàn)問題——例題講解——鞏固練習(xí)——課時小結(jié)——布置作業(yè)。
1、復(fù)習(xí)引入:
這節(jié)課,我首先從舊知問題(1)用配方法解方程2x28x90的練習(xí)引入,問題(2)總結(jié)配方法的一般步驟(化一般方程——二次項系數(shù)為1——配方使左邊為完全平方式——兩邊開方——求解)。
設(shè)計意圖:讓學(xué)生鞏固昨天的知識,進一步熟練鑰匙并為今天做學(xué)的內(nèi)容解一般形式的一元二次方程做好鋪墊,達到“溫故而知新”。
2、問題呈現(xiàn):
你能用配方法解一般形式的一元二次方程嗎?ax2bxc0(a0)
此處由一個特殊的舊知引導(dǎo)學(xué)生推導(dǎo)出一般的結(jié)果,希望學(xué)生學(xué)會由特殊性到一般化的思想。為降低b2b24ac推導(dǎo)的難度,化簡、移項、配方、變形由我和學(xué)生一起探究完成,到(x這步時,提出 )22a4a
問題:①此時可以直接開平方嗎?
、诘忍栍疫叺闹敌枰獫M足什么條件?為什么?
、鄣忍栍疫叺闹抵桓膫式子有關(guān)?
設(shè)計意圖:師生共同完成前四步,這樣與利于減輕學(xué)生的思維負擔,便于將主要精力放在后邊公式的推導(dǎo)上。通過小組的討論有利于發(fā)揮學(xué)生的互幫互助,借助小組的交流完善答案,關(guān)鍵讓學(xué)生會對
掌握b24ac與方程有無實數(shù)根的關(guān)系,這里分類思想也是今后常用的一種數(shù)學(xué)思想,b24ac進行討論,
應(yīng)加以強化。
最終總結(jié)出:
當b24ac<0時,原方程無實數(shù)解。
當b24ac≥0時,原方程有實數(shù)解,
再進一步談?wù)摚篵24ac=0與b24ac>0時,兩個解區(qū)別?
。╞24ac=0時,兩個相等的實數(shù)解,b24ac>0時,兩個不等的實數(shù)解)
由此可知,方程有解還是無解是由b24ac決定,即b24ac是方程解的判別式。
同時,方程的解是可以將a、b、c
的值帶入公式x根公式”,利用它解一元二次方程叫做公式法。
3、例題講解
例4:用公式法解下列方程
2x5x30 4x214x 2321x2x0 42
總結(jié)步驟:1、把方程公成一般形式,并寫出a,b,c的值。
2、求出b24ac的值
b3
代入求根公式:x(a0,b24ac0) 2a
4、寫出方程的解:x1= ,x2=
設(shè)計意圖:規(guī)范解題格式,讓學(xué)生體會數(shù)學(xué)課中的嚴謹?shù)倪壿嬐评;體驗并掌握公式法解一元二次方程的步驟,從中讓學(xué)生領(lǐng)會到由特殊到一般,一般到特殊的辯證思想。
4、鞏固練習(xí)
解下列一元二次方程:①x2x60
、4x2x90
③x2100
設(shè)計意圖:(1)熟悉公式法,強化解題格式,(2)及時發(fā)現(xiàn)錯誤及時解決。
例5:解方程:x(x1)(x2)
化簡得12212x3x40 2
強調(diào):①當方程不是一般形式時,應(yīng)先化成一般形式,再運用求根公式。
、谀氵能用其他方法解本例方程嗎?
設(shè)計意圖:明確一元二次方程解題方法的多樣性,讓學(xué)生在你觀察分析題目后靈活合理的選擇解題方法,培養(yǎng)學(xué)生的多樣化思維,提高解題能力和解題的速度。
5、課時小結(jié)
。1)學(xué)生作知識總結(jié):本節(jié)課通過配方法求解一般形式的一元二次方程的根,推出了一元二次方程的求根公式,并按照公式法的步驟解一元二次方程。
。2)我擴展:(方法歸納)求根公式是一元二次方程的專用公式,只有在確定方程是一元二次方程時才能使用,是常用而重要的一元二次方程的萬能求根公式。
6、布置作業(yè):面向全體學(xué)生,注重個體差異,加強作業(yè)的針對性,分層布置作業(yè),適應(yīng)新課標,讓不同的學(xué)生各其所長,因材施教的要求,提高他們的學(xué)習(xí)的興趣和自信心。
四、板書設(shè)計
教學(xué)評價
本節(jié)課內(nèi)容較為單一,通過“層層設(shè)疑”、“復(fù)習(xí)回顧”等環(huán)節(jié)促進學(xué)生的思考和探究。
通過比較合理的問題設(shè)計鞏固練習(xí)、小組討論等形式給學(xué)生提供了充分的展示機會,強化了學(xué)生的運算能力,有利于學(xué)生掌握基本技能。
【用公式法解一元二次方程的說課稿】相關(guān)文章:
《用公式法解一元二次方程》教案03-29
九年級數(shù)學(xué)上冊《公式法解一元二次方程》教學(xué)反思(精選6篇)05-16
數(shù)學(xué)一元二次方程公式03-25
解一元二次方程教學(xué)反思04-01
關(guān)于用配方法解一元二次方程的教學(xué)反思(精選13篇)01-05
《用配方法解一元二次方程》教學(xué)反思(通用13篇)06-08
《一元二次方程的解法》說課稿07-07
《配方法解一元二次方程》教學(xué)反思(通用6篇)02-26
《解比例》說課稿12-11