四年級數(shù)學(xué)《三角形內(nèi)角和》說課稿
作為一名教職工,常常要寫一份優(yōu)秀的說課稿,說課稿有助于順利而有效地開展教學(xué)活動。那么應(yīng)當(dāng)如何寫說課稿呢?下面是小編幫大家整理的四年級數(shù)學(xué)《三角形內(nèi)角和》說課稿,希望對大家有所幫助。
一、說教材
(一)教材的地位和作用
《三角形內(nèi)角和》一課是人教版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教材四年級下冊第五單元的內(nèi)容,是在學(xué)生學(xué)習(xí)了《三角形的特性》以及《三角形三邊關(guān)系》、《三角形的分類》之后進(jìn)行的,在此之后則是《圖形的拼組》,它是三角形的一個(gè)重要特征,也是掌握多邊形內(nèi)角和及解決其他實(shí)際問題的基礎(chǔ),因此,學(xué)習(xí)、掌握三角形的內(nèi)角和是180°這一規(guī)律具有重要意義。
。ǘ┙虒W(xué)目標(biāo)
基于以上對教材的分析以及對教學(xué)現(xiàn)狀的思考,我從知識與技能、教學(xué)過程與方法、情感態(tài)度價(jià)值觀三方面擬定了本節(jié)課的教學(xué)目標(biāo):
1、通過“量一量”、“算一算”、“拼一拼”、“折一折”的小組活動的方法,探索發(fā)現(xiàn)驗(yàn)證三角形內(nèi)角和等于180°,并能應(yīng)用這一知識解決一些簡單問題。
2、通過把三角形的內(nèi)角和轉(zhuǎn)化為平角進(jìn)行探究實(shí)驗(yàn),滲透“轉(zhuǎn)化”的數(shù)學(xué)思想。
3、通過數(shù)學(xué)活動使學(xué)生獲得成功的體驗(yàn),增強(qiáng)自信心。培養(yǎng)學(xué)生的創(chuàng)新意識、探索精神和實(shí)踐能力。
。ㄈ┙虒W(xué)重、難點(diǎn)
因?yàn)閷W(xué)生已經(jīng)掌握了三角形的概念、分類,熟悉了鈍角、銳角、平角這些角的知識。對于三角形的內(nèi)角和是多少度,學(xué)生并不陌生,也有提前預(yù)習(xí)的習(xí)慣,學(xué)生幾乎都能回答出三角形的內(nèi)角和是180°。在整個(gè)過程中學(xué)生要了解的是“內(nèi)角”的概念,如何驗(yàn)證得出三角形的'內(nèi)角和是180°。因此本節(jié)課我提出的教學(xué)的重點(diǎn)是:驗(yàn)證三角形的內(nèi)角和是180°。
二、說教法、學(xué)法
本節(jié)課主要是通過教師的精心引導(dǎo)和點(diǎn)撥,學(xué)生在小組中合作探索,通過量一量、折一折、撕一撕、畫一畫,選擇不同的一種或者幾種方法來驗(yàn)證三角形的內(nèi)角和是180°。
因?yàn)椤墩n程標(biāo)準(zhǔn)》明確指出:“要結(jié)合有關(guān)內(nèi)容的教學(xué),引導(dǎo)學(xué)生進(jìn)行觀察、操作、猜想,培養(yǎng)學(xué)生初步的思維能力”。四年級學(xué)生經(jīng)過第一學(xué)段以及本單元的學(xué)習(xí),已經(jīng)掌握了三角形的分類,比較熟悉平角等有關(guān)知識;具備了初步的動手操作、主動探究的能力,他們正處于由形象思維向抽象思維過渡的階段。因此,本節(jié)課,我將重點(diǎn)引導(dǎo)學(xué)生從“猜測――驗(yàn)證”展開學(xué)習(xí)活動,讓學(xué)生感受這種重要的數(shù)學(xué)思維方式。
三、說教學(xué)過程
我以引入、猜測、證實(shí)、深化和應(yīng)用五個(gè)活動環(huán)節(jié)為主線,讓學(xué)生通過自主探究學(xué)習(xí)進(jìn)行數(shù)學(xué)的思考過程,積累數(shù)學(xué)活動經(jīng)驗(yàn)。
。ㄒ唬┮
呈現(xiàn)情境:出示多個(gè)已學(xué)的平面圖形,讓學(xué)生認(rèn)識什么是“內(nèi)角”。(把圖形中相鄰兩邊的夾角稱為內(nèi)角)長方形有幾個(gè)內(nèi)角?(四個(gè))它的內(nèi)角有什么特點(diǎn)?(都是直角)這四個(gè)內(nèi)角的和是多少?(360°)三角形有幾個(gè)內(nèi)角呢?從而引入課題。
設(shè)計(jì)意圖:讓學(xué)生整體感知三角形內(nèi)角和的知識,這樣的教學(xué),將三角形內(nèi)角和置于平面圖形內(nèi)角和的大背景中,拓展了三角形內(nèi)角和的數(shù)學(xué)知識背景,滲透數(shù)學(xué)知識之間的聯(lián)系,有效地避免了新知識的“橫空出現(xiàn)”。
。ǘ┎聹y
提出問題:長方形內(nèi)角和是360°,那么三角形內(nèi)角和是多少呢?
設(shè)計(jì)意圖:引導(dǎo)學(xué)生提出合理猜測:三角形的內(nèi)角和是180°。
。ㄈ(yàn)證
。1)量:請學(xué)生每人畫一個(gè)自己喜歡的三角形,接著用量角器量一量,然后把這三個(gè)內(nèi)角的度數(shù)加起來算一算,看看得出的三角形的內(nèi)角和是多少度?
。2)撕拼:利用平角是180°這一特點(diǎn),啟發(fā)學(xué)生能否也把三角形的三個(gè)內(nèi)角撕下來拼在一起,成為一個(gè)平角?請學(xué)生同桌合作,從學(xué)具中選出一個(gè)三角形,撕下來拼一拼。
。3)折拼:把三角形的三個(gè)內(nèi)角都向內(nèi)折,把這三個(gè)內(nèi)角拼組成一個(gè)平角,一個(gè)平角是180°,所以得出三角形的內(nèi)角和是180°。
(4)畫:根據(jù)長方形的內(nèi)角和來驗(yàn)證三角形內(nèi)角和是180°。
一個(gè)長方形有4個(gè)直角,每個(gè)直角90°,那么長方形的內(nèi)角和就是360°,每個(gè)長方形都可以平均分成兩個(gè)直角三角形,每個(gè)直角三角形的內(nèi)角和就是180°。從長方形的內(nèi)角和聯(lián)想到直角三角形的內(nèi)角和是180°。
設(shè)計(jì)意圖:利用已經(jīng)學(xué)過的知識構(gòu)建新的數(shù)學(xué)知識,這不僅有助于學(xué)生理解新的知識,而且是一種非常重要的學(xué)習(xí)方法。在探索三角形內(nèi)角和規(guī)律的教學(xué)中,注意引導(dǎo)學(xué)生將三角形內(nèi)角和與平角、長方形四個(gè)內(nèi)角的和等知識聯(lián)系起來,并使學(xué)生在新舊知識的連接點(diǎn)和新知識的生長點(diǎn)上把握好他們之間的內(nèi)在聯(lián)系。在整個(gè)探索過程中,學(xué)生積極思考并大膽發(fā)言,他們的創(chuàng)造性思維得到了充分發(fā)揮。
。ㄋ模┥罨
質(zhì)疑:大小不同的三角形,它們的內(nèi)角和會是一樣嗎?
觀察:(指著黑板上兩個(gè)大小不同但三個(gè)角對應(yīng)相等的三角形并說明原因,三角形變大了,但角的大小沒有變。)
結(jié)論:角的兩條邊長了,但角的大小不變。因?yàn)榻堑拇笮∨c邊的長短無關(guān)。
實(shí)驗(yàn):教師先在黑板上固定小棒,然后用活動角與小棒組成一個(gè)三角形,教師手拿活動角的頂點(diǎn)處,往下壓,形成一個(gè)新的三角形,活動角在變大,而另外兩個(gè)角在變小。這樣多次變化,活動角越來越大,而另外兩個(gè)角越來越小。最后,當(dāng)活動角的兩條邊與小棒重合時(shí),
結(jié)論:活動角就是一個(gè)平角180°,另外兩個(gè)角都是0°。
設(shè)計(jì)意圖:小學(xué)生由于年齡小,容易受圖形或物體的外在形式的影響。教師主要是引導(dǎo)學(xué)生與角的有關(guān)知識聯(lián)系起來,通過讓學(xué)生觀察利用“角的大小與邊的長短無關(guān)”的舊知識來理解說明。
對于利用精巧的小教具的演示,讓學(xué)生通過觀察、交流、想象,充分感受三角形三個(gè)角之間的聯(lián)系和變化,感悟三角形內(nèi)角和不變的原因。
【四年級數(shù)學(xué)《三角形內(nèi)角和》說課稿】相關(guān)文章:
《三角形的內(nèi)角和》說課稿7篇11-05
《三角形的內(nèi)角和》優(yōu)秀說課稿模板12-28
三角形的內(nèi)角和課件和教案05-12
三角形的內(nèi)角和試講稿11-16
《三角形的內(nèi)角和》教學(xué)反思8篇04-15
《同位角、內(nèi)錯角、同旁內(nèi)角》說課稿11-19
小班數(shù)學(xué)《認(rèn)識三角形》說課稿11-23