- 《背影》說課稿 推薦度:
- 說課稿 推薦度:
- 美術(shù)說課稿 推薦度:
- 《海燕》說課稿 推薦度:
- 《秋天》說課稿 推薦度:
- 相關(guān)推薦
勾股定理說課稿模板集錦5篇
在教學(xué)工作者開展教學(xué)活動前,常常要寫一份優(yōu)秀的說課稿,說課稿有助于教學(xué)取得成功、提高教學(xué)質(zhì)量。優(yōu)秀的說課稿都具備一些什么特點呢?以下是小編為大家整理的勾股定理說課稿5篇,僅供參考,希望能夠幫助到大家。
勾股定理說課稿 篇1
一、教材分析
勾股定理是學(xué)生在已經(jīng)掌握了直角三角形的有關(guān)性質(zhì)的基礎(chǔ)上進行學(xué)習(xí)的,它是直角三角形的一條非常重要的性質(zhì),是幾何中最重要的定理之一,它揭示了一個三角形三條邊之間的數(shù)量關(guān)系,它可以解決直角三角形中的計算問題,是解直角三角形的主要根據(jù)之一,在實際生活中用途很大,我們的教材在編寫時注意培養(yǎng)大家的動手操作能力和分析問題的能力,通過實際分析、拼圖等活動,使學(xué)生獲得較為直觀的印象;通過聯(lián)系和比較,理解勾股定理,以利于正確的進行運用。
據(jù)此,制定教學(xué)目標如下:
1、理解并且掌握勾股定理及其證明。
2、能夠靈活地運用勾股定理及其計算。
3、主要就是培養(yǎng)學(xué)生觀察、比較、分析、推理的能力。
4、通過介紹我們中國古代勾股方面的成就,激發(fā)學(xué)生熱愛祖國與熱愛祖國悠久文化的思想感情,培養(yǎng)他們的民族自豪感和鉆研精神。
教學(xué)重點:
勾股定理的證明和應(yīng)用。
教學(xué)難點:
勾股定理的證明。
二、教法和學(xué)法
教法和學(xué)法是體現(xiàn)在整個教學(xué)過程中的,本課的教法和學(xué)法體現(xiàn)如下特點:
1、以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)生學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程。
2、切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察、分析、討論、操作、歸納,理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力。
3、通過演示實物,引導(dǎo)學(xué)生觀察、操作、分析、證明,使學(xué)生得到獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望。
三、教學(xué)程序
本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生動手、動腦方面,根據(jù)學(xué)生的認知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)計如下:
。ㄒ唬﹦(chuàng)設(shè)情境 以古引新
1、由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5,小學(xué)數(shù)學(xué)教案《數(shù)學(xué) - 勾股定理說課稿》。這樣引起學(xué)生學(xué)習(xí)興趣,激發(fā)學(xué)生求知欲。
2、是不是所有的直角三角形都有這個性質(zhì)呢?教師要善于激疑,使學(xué)生進入樂學(xué)狀態(tài)。
3、板書課題,出示學(xué)習(xí)目標。
。ǘ┏醪礁兄 理解教材
教師指導(dǎo)學(xué)生自學(xué)教材,通過自學(xué)感悟理解新知,體現(xiàn)了學(xué)生的自主學(xué)習(xí)意識,鍛煉學(xué)生主動探究知識,養(yǎng)成良好的自學(xué)習(xí)慣。
。ㄈ┵|(zhì)疑解難 討論歸納
1、教師設(shè)疑或?qū)W生提疑。如:
怎樣證明勾股定理?學(xué)生通過自學(xué),中等以上的學(xué)生基本掌握,這時能激發(fā)學(xué)生的表現(xiàn)欲。
2、教師引導(dǎo)學(xué)生按照要求進行拼圖,觀察并分析;
。1)這兩個圖形有什么特點?
。2)你能寫出這兩個圖形的面積嗎?
。3)如何運用勾股定理?是否還有其他形式?
這時教師組織學(xué)生分組討論,調(diào)動全體學(xué)生的積極性,達到人人參與的效果,接著全班交流。先有某一組代表發(fā)言,說明本組對問題的理解程度,其他各組作評價和補充。教師及時進行富有啟發(fā)性的點撥,最后,師生共同歸納,形成一致意見,最終解決疑難。
。ㄋ模╈柟叹毩(xí) 強化提高
1、出示練習(xí),學(xué)生分組解答,并由學(xué)生總結(jié)解題規(guī)律。課堂教學(xué)中動靜結(jié)合,以免引起學(xué)生的疲勞。
2、出示例1學(xué)生試解,師生共同評價,以加深對例題的理解與運用。針對例題再次出現(xiàn)鞏固練習(xí),進一步提高學(xué)生運用知識的能力,對練習(xí)中出現(xiàn)的情況可采取互評、互議的形式,在互評互議中出現(xiàn)的具有代表性的問題,教師可以采取全班討論的形式予以解決,以此突出教學(xué)重點。
。ㄎ澹w納總結(jié) 練習(xí)反饋
引導(dǎo)學(xué)生對知識要點進行總結(jié),梳理學(xué)習(xí)思路。分發(fā)自我反饋練習(xí),學(xué)生獨立完成。
本課意在創(chuàng)設(shè)愉悅和諧的樂學(xué)氣氛,優(yōu)化教學(xué)手段,借助電教手段提高課堂教學(xué)效率,建立平等、民主、和諧的師生關(guān)系。加強師生間的合作,營造一種學(xué)生敢想、感說、感問的課堂氣氛,讓全體學(xué)生都能生動活潑、積極主動地教學(xué)活動,在學(xué)習(xí)中創(chuàng)新精神和實踐能力得到培養(yǎng)。
勾股定理說課稿 篇2
一、教材分析:
。ㄒ唬┙滩牡牡匚慌c作用
從知識結(jié)構(gòu)上看,勾股定理揭示了直角三角形三條邊之間的數(shù)量關(guān)系,為后續(xù)學(xué)習(xí)解直角三角形提供重要的理論依據(jù),在現(xiàn)實生活中有著廣泛的應(yīng)用。
從學(xué)生認知結(jié)構(gòu)上看,它把形的特征轉(zhuǎn)化成數(shù)量關(guān)系,架起了幾何與代數(shù)之間的橋梁;
勾股定理又是對學(xué)生進行愛國主義教育的良好素材,因此具有相當(dāng)重要的地位和作用。
根據(jù)數(shù)學(xué)新課程標準以及八年級學(xué)生的認知水平我確定如下學(xué)習(xí)目標:知識技能、數(shù)學(xué)思考、問題解決、情感態(tài)度。其中【情感態(tài)度】方面,以我國數(shù)學(xué)文化為主線,激發(fā)學(xué)生熱愛祖國悠久文化的情感。
。ǘ┲攸c與難點
為變被動接受為主動探究,我確定本節(jié)課的重點為:勾股定理的探索過程。限于八年級學(xué)生的思維水平,我將面積法(拼圖法)發(fā)現(xiàn)勾股定理確定為本節(jié)課的難點,我將引導(dǎo)學(xué)生動手實驗突出重點,合作交流突破難點。
二、教學(xué)與學(xué)法分析
教學(xué)方法
葉圣陶說過"教師之為教,不在全盤授予,而在相機誘導(dǎo)。"因此教師利用幾何直觀提出問題,引導(dǎo)學(xué)生由淺入深的探索,設(shè)計實驗讓學(xué)生進行驗證,感悟其中所蘊涵的思想方法。
學(xué)法指導(dǎo)
為把學(xué)習(xí)的主動權(quán)還給學(xué)生,教師鼓勵學(xué)生采用動手實踐,自主探索、合作交流的學(xué)習(xí)方法,讓學(xué)生親自感知體驗知識的形成過程。
三、教學(xué)過程
我國數(shù)學(xué)文化源遠流長、博大精深,為了使學(xué)生感受其傳承的魅力,我將本節(jié)課設(shè)計為以下五個環(huán)節(jié)。
首先,情境導(dǎo)入,古韻今風(fēng)
給出《七巧八分圖》中的一組圖片,讓學(xué)生利用兩組七巧板進行合作拼圖。讓學(xué)生觀察并思考三個正方形面積之間的關(guān)系?它們圍成了怎么樣三角形,反映在三邊上,又蘊含著怎么樣數(shù)學(xué)奧秘呢?寓教于樂,激發(fā)學(xué)生好奇、探究的欲望。
第二步,追溯歷史,解密真相
勾股定理的探索過程是本節(jié)課的重點,依照數(shù)學(xué)知識的循序漸進、螺旋上升的原則,我設(shè)計如下三個活動。
從上面低起點的問題入手,有利于學(xué)生參與探索。學(xué)生很容易發(fā)現(xiàn),在等腰三角形中存在如下關(guān)系。巧妙的將面積之間的關(guān)系轉(zhuǎn)化為邊長之間的關(guān)系,體現(xiàn)了轉(zhuǎn)化的思想。觀察發(fā)現(xiàn)雖然直觀,但面積計算更具說服力。將圖形轉(zhuǎn)化為邊在格線上的圖形,以便于計算圖形面積,體現(xiàn)了數(shù)形結(jié)合的思想。學(xué)生會想到用"數(shù)格子"的方法,這種方法雖然簡單易行,但對于下一步探索一般直角三角形并不適用,具有局限性。因此教師應(yīng)引導(dǎo)學(xué)生利用"割"和"補"的方法求正方形C的面積,為下一步探索復(fù)雜圖形的面積做鋪墊。
突破等腰直角三角形的束縛,探索在一般情況下的直角三角形是否也存在這一結(jié)論呢?體現(xiàn)了"從特殊到一般"的認知規(guī)律。教師給出邊長單位長度分別為3、4、5的直角三角形,避免了學(xué)生因作圖不準確而產(chǎn)生的錯誤,也為下面"勾三股四弦五"的提出埋下伏筆。有了上一環(huán)節(jié)的鋪墊,有效地分散了難點。在求正方形C的面積時,學(xué)生將展示"割"的方法,"補"的方法,有的學(xué)生可能會發(fā)現(xiàn)平移的方法,旋轉(zhuǎn)的方法,對于這兩種新方法教師應(yīng)給于表揚,肯定學(xué)生的研究成果,培養(yǎng)學(xué)生的類比、遷移以及探索問題的能力。
使用幾何畫板動態(tài)演示,使幾何與代數(shù)之間的關(guān)系可視化。當(dāng)為直角三角形時,改變?nèi)呴L度三邊關(guān)系不變,當(dāng)∠α為銳角或鈍角時,三邊關(guān)系就改變了,進而強調(diào)了命題成立的前提條件必須是直角三角形。加深學(xué)生對勾股定理理解的同時也拓展了學(xué)生的視野。
以上三個環(huán)節(jié)層層深入步步引導(dǎo),學(xué)生歸納得到命題1,從而培養(yǎng)學(xué)生的合情推理能力以及語言表達能力。
感性認識未必是正確的,推理驗證證實我們的猜想。
第三步,推陳出新,借古鼎新
教材中直接給出"趙爽弦圖"的證法對學(xué)生的思維是一種禁錮,教師創(chuàng)新使用教材,利用拼圖活動解放學(xué)生的大腦,讓學(xué)生發(fā)揮自己的聰明才智證明勾股定理。這是教學(xué)的難點也是重點,教師應(yīng)給學(xué)生充分的自主探索的時間與空間,讓學(xué)生的思維在相互討論中碰撞、在相互學(xué)習(xí)中完善。教師深入到學(xué)生中間,觀察學(xué)生探究方法接受學(xué)生的質(zhì)疑,對于不同的拼圖方案給予肯定。從而體現(xiàn)出"學(xué)生是學(xué)習(xí)的主體,教師是組織者、引導(dǎo)者與合作者"這一教學(xué)理念。學(xué)生會發(fā)現(xiàn)兩種證明方案。
方案1為趙爽弦圖,學(xué)生講解論證過程,再現(xiàn)古代數(shù)學(xué)家的探索方法。方案2為學(xué)生自己探索的結(jié)果,論證之巧較方案1有異曲同工之妙。整個探索過程,讓學(xué)生經(jīng)歷由表面到本質(zhì),由合情推理到演繹推理的發(fā)掘過程,體會數(shù)學(xué)的嚴謹性。對比"古"、"今"兩種證法,讓學(xué)生體會"吹盡黃沙始到金"的喜悅,感受到"青出于藍而勝于藍"的自豪感。板書勾股定理,進而給出字母表示,培養(yǎng)學(xué)生的符號意識。
教師對"勾、股、弦"的含義以及古今中外對勾股定理的研究做一個介紹,使學(xué)生感受數(shù)學(xué)文化,培養(yǎng)民族自豪感和愛國主義精神。利用勾股樹動態(tài)演示,讓學(xué)生欣賞數(shù)學(xué)的精巧、優(yōu)美。
第四步,取其精華,古為今用
我按照"理解—掌握—運用"的梯度設(shè)計了如下三組習(xí)題。
。1)對應(yīng)難點,鞏固所學(xué);(2)考查重點,深化新知;(3)解決問題,感受應(yīng)用
第五步,溫故反思,任務(wù)后延
在課堂接近尾聲時,我鼓勵學(xué)生從"四基"的要求對本節(jié)課進行小結(jié)。進而總結(jié)出一個定理、二個方案、三種思想、四種經(jīng)驗。
然后布置作業(yè),分層作業(yè)體現(xiàn)了教育面向全體學(xué)生的理念。
勾股定理說課稿 篇3
一、勾股定理是我國古數(shù)學(xué)的一項偉大成就.勾股定理為我們提供了直角三角形的三邊間的數(shù)量關(guān)系,它的逆定理為我們提供了判斷三角形是否屬于直角三角形的依據(jù),也是判定兩條直線是否互相垂直的一個重要方法,這些成果被廣泛應(yīng)用于數(shù)學(xué)和實際生活的各個方面.教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際分析,使學(xué)生獲得較為直觀的印象,通過聯(lián)系和比較,了解勾股定理在實際生活中的廣泛應(yīng)用. 據(jù)此,制定教學(xué)目標如下:
1.知識和方法目標:通過對一些典型題目的思考,練習(xí),能正確熟練地進行勾股定理有關(guān)計算,深入對勾股定理的理解. 2.過程與方法目標:通過對一些題目的探討,以達到掌握知識的目的.
3.情感與態(tài)度目標:感受數(shù)學(xué)在生活中的應(yīng)用,感受數(shù)學(xué)定理的美.
教學(xué)重點:勾股定理的應(yīng)用. 教學(xué)難點:勾股定理的正確使用.
教學(xué)關(guān)鍵:在現(xiàn)實情境中捕抓直角三角形,確定好直角三角形之后,再應(yīng)用勾股定理.
二.說教法和學(xué)法
1.以自學(xué)輔導(dǎo)為主,充分發(fā)揮教師的主導(dǎo)作用,運用各種手段激發(fā)學(xué)習(xí)欲望和興趣,組織學(xué)生活動,讓學(xué)生主動參與學(xué)習(xí)全過程.
2.切實體現(xiàn)學(xué)生的主體地位,讓學(xué)生通過觀察,分析,討論,操作,歸納理解定理,提高學(xué)生動手操作能力,以及分析問題和解決問題的能力.
3.通過演示實物,引導(dǎo)學(xué)生觀察,操作,分析,證明,使學(xué)生獲得新知的成功感受,從而激發(fā)學(xué)生鉆研新知的欲望.
三、教學(xué)程序本節(jié)內(nèi)容的教學(xué)主要體現(xiàn)在學(xué)生的動手,動腦方面,根據(jù)學(xué)生的認知規(guī)律和學(xué)習(xí)心理,教學(xué)程序設(shè)置如下: 回顧問:勾股定理的內(nèi)容是什么? 勾股定理揭示了直角三角形三邊之間的關(guān)系,今天我們來學(xué)習(xí)這個定理在實際生活中的應(yīng)用.
勾股定理說課稿 篇4
一、教材分析
(一)教材所處的地位
這節(jié)課是九年制義務(wù)教育課程標準實驗教科書八年級第十八章第一節(jié)勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進一步的認識和理解。
(二)根據(jù)課程標準,本課的教學(xué)目標是:
1、知識技能:了解勾股定理的文化背景,體驗勾股定理的探索過程。
2、數(shù)學(xué)思考:在勾股定理的探索過程中,發(fā)展合情推理能力,體會數(shù)形結(jié)合的思想。
3、解決問題:①通過拼圖活動,體驗數(shù)學(xué)思維的嚴謹性,發(fā)展形象思維。
、谠谔骄窟^程中,學(xué)會與人合作并能與他人交流思維的過程和探究的結(jié)果。
4、情感態(tài)度:①通過介紹勾股定理在中國古代的研究,激發(fā)學(xué)生熱愛祖國,熱愛祖國悠久文化的思想,激發(fā)學(xué)生發(fā)奮學(xué)習(xí)。
、谠谔骄窟^程中,體驗解決問題方法的多樣性,培養(yǎng)學(xué)生的合作交流意識和探索精神。
(三)本課的教學(xué)重點:探索和證明勾股定理
本課的教學(xué)難點:用拼圖的方法證明勾股定理
二、教法與學(xué)法分析:
教法分析:針對八年級學(xué)生的知識結(jié)構(gòu)和心理特征,本節(jié)課可選擇引導(dǎo)探索法,由淺入深,由特殊到一般地提出問題。引導(dǎo)學(xué)生自主探索,合作交流,這種教學(xué)理念反映了時代精神,有利于提高學(xué)生的思維能力,能有效地激發(fā)學(xué)生的思維積極性,基本教學(xué)流程是:提出問題實驗操作歸納驗證問題解決鞏固練習(xí)課堂小結(jié) 布置作業(yè)七部分。
學(xué)法分析:在教師的組織引導(dǎo)下,采用自主探索、合作交流的研討式學(xué)習(xí)方式,讓學(xué)生思考問題,獲取知識,掌握方法,借此培養(yǎng)學(xué)生動手、動腦、動口的能力,使學(xué)生真正成為學(xué)習(xí)的主體。
三、教學(xué)過程設(shè)計
(一)提出問題:
首先提出問題1:你知道下圖所表示的意義嗎?創(chuàng)設(shè)問題情境,20xx年在北京召開了第24屆國際數(shù)學(xué)家大會,它是最高水平的全球性數(shù)學(xué)科學(xué)學(xué)術(shù)會議,被譽為數(shù)學(xué)界的奧運會,這就是本屆大會會徽的圖案,你聽說過勾股定理嗎?通過提出問題,從而激發(fā)學(xué)生的求知欲。
其次提出問題2:你知道勾三、股四、弦五的意義嗎?此問題由故事引入,3000多年前有個叫商高的人對周公說,把一根直尺折成直角,兩端連接得到一個直角三角形,如果勾是3,股是4,那么弦等于5。這樣引起學(xué)生的學(xué)習(xí)興趣,激發(fā)學(xué)生的求知欲。
勾股定理說課稿 篇5
一、說教材
(一)教材分析
本節(jié)內(nèi)容選自人教版八年級數(shù)學(xué)下冊第17章第二節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判定定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計算的方法來證明幾何問題的思想,為將來學(xué)習(xí)解析幾何埋下了伏筆。
。ǘ┙虒W(xué)目標
根據(jù)數(shù)學(xué)課標的要求和教材的具體內(nèi)容,結(jié)合學(xué)生實際我確定了本節(jié)課的教學(xué)目標。
知識技能:
理解勾股定理的'逆定理的證明方法并能證明勾股定理的逆定理。
掌握勾股定理的逆定理,并能利用勾股定理的逆定理判定一個三角形是不是直角三角形。
了解逆命題的概念,以及原命題為真時,它的逆命題不一定為真。
過程方法:
1、通過對勾股定理的逆定理的探索,經(jīng)歷知識的發(fā)生、發(fā)展與形成的過程
2、通過用三角形三邊的數(shù)量關(guān)系來判斷三角形的形狀,體驗數(shù)形結(jié)合方法的應(yīng)用
3、通過勾股定理的逆定理的證明,體會數(shù)與形結(jié)合方法在問題解決中的作用,并能運用勾股定理的逆定理解決相關(guān)問題。
情感態(tài)度:
在探究勾股定理的逆定理的活動中,通過一系列富有探究性的問題,滲透與他人交流、合作的意識和探究精神
。ㄈ⿲W(xué)情分析
盡管已到初二下學(xué)期的學(xué)生知識增多,能力增強,但思維的局限性還很大,能力之間也有差距,而利用“構(gòu)造法”證明勾股定理的逆定理學(xué)生第一次見到,它要求根據(jù)已知條件構(gòu)造一個直角三角形,根據(jù)學(xué)生的智能狀況,學(xué)生不容易想到,因此勾股定理的逆定理的證明又是本節(jié)的難點,而勾股定理逆定理的應(yīng)用是本節(jié)重點
重點:勾股定理逆定理的應(yīng)用
難點:勾股定理逆定理的證明
二、說教法學(xué)法
數(shù)學(xué)課程不僅注重知識、技能,以及情感意識和創(chuàng)造力的培養(yǎng),同樣注重社會實踐和體驗,教學(xué)要遵循以教師為主導(dǎo),學(xué)生為主體的原則,因此我采用的教法學(xué)法如下:
在教學(xué)中以小組合作,自主探索為形式,采用“提問引導(dǎo)法”,通過“提出疑問”來啟發(fā)誘導(dǎo)學(xué)生,讓學(xué)生自覺主動地去分析問題、解決問題,學(xué)生在操作過程中不斷“發(fā)現(xiàn)問題——解決問題”,變學(xué)生“學(xué)會”為“會學(xué)”.這樣不僅使學(xué)生學(xué)習(xí)目標明確,而且能夠培養(yǎng)他們的合作精神和自主學(xué)習(xí)的能力。根據(jù)學(xué)法指導(dǎo)自主性和差異性原則,本節(jié)我主要采用自主探究學(xué)習(xí)法,通過設(shè)計一系列問題,引導(dǎo)學(xué)生主動探究新知,體現(xiàn)學(xué)習(xí)自主性,從不同層面發(fā)掘不同學(xué)生的不同能力。
三、說教學(xué)準備
1、多媒體教學(xué)課件
2、紙片、直尺、圓規(guī)等
3、對學(xué)生事先分組
四、說教學(xué)過程
根據(jù)本課教學(xué)內(nèi)容以及數(shù)學(xué)課程學(xué)科特點,結(jié)合八年級學(xué)生的實際認知水平,我設(shè)計了如下六個教學(xué)環(huán)節(jié):
。ㄒ唬⿵(fù)習(xí)提問、引入新課
問題1:前面我們學(xué)習(xí)了勾股定理,你能說出它的題設(shè)和結(jié)論嗎?
問題2:若一個三角形三邊具有a2+b2=c2,能否確定這個三角形是直角三角形?
。ǘ﹦邮植僮、觀察猜想
探究一:分組做實驗
第一組同學(xué)每人畫一個邊長為3cm、4 cm、5 cm的三角形;
第二組同學(xué)每人畫一個邊長為2.5 cm、6 cm、7.5 cm的三角形;
第三組同學(xué)每人畫一個邊長為4 cm、7.5 cm、8.5 cm的三角形;
第四組同學(xué)每人畫一個邊長為2 cm、5 cm、6 cm的三角形。
問題1:觀察這些三角形,它們分別是什么形狀呢?并測量驗證
問題2:前三個三角形三邊具有怎樣的關(guān)系呢?
問題3: 結(jié)合三角形三邊長度的平方關(guān)系,你能猜一猜三角形的三邊長度與三角形的形狀之間有怎樣的關(guān)系嗎?
學(xué)生活動:動手、觀察、測量、思考、猜想
設(shè)計意圖:由特殊到一般,歸納猜想得出勾股定理的逆命題,既培養(yǎng)學(xué)生動手操作能力和尋求解決數(shù)學(xué)問題的一般方法,又體驗了數(shù)與形的內(nèi)在聯(lián)系。
(三)實踐驗證,歸納證明
教師出示問題
問題1:對于一個真命題,它的逆命題是否也為真?學(xué)生舉例說明。
勾股定理的逆命題是否也正確?怎么證明?
問題2:三邊長度分別3cm,4cm,5cm的三角形與以3cm,4cm為直角邊的直角三角形之間有什么關(guān)系,你是怎樣得到的?(出示紙片)
問題3:你能否借鑒問題2的方法來證明勾股定理的逆命題呢?
學(xué)生活動:觀察思考,動手操作,分組討論,交流合作(教師引導(dǎo)學(xué)生主動探索,在師生互動中完成證明,得到勾股定理的逆定理)
設(shè)計意圖:把“構(gòu)造直角三角形”這一方法的獲取過程交給學(xué)生,讓他們在不斷的嘗試、探究的過程中,親身體驗參與發(fā)現(xiàn)的愉悅,有效地突破本節(jié)的難點。
【勾股定理說課稿模板集錦5篇】相關(guān)文章:
勾股定理說課稿15篇02-04
《探索勾股定理》的說課稿11-30
勾股定理說課稿范文7篇02-04
勾股定理的逆定理說課稿12-04
勾股定理的逆定理說課稿4篇12-04
華師大版八年級數(shù)學(xué) 勾股定理說課稿11-08
初中地理說課稿模板《北京》說課稿12-29
《離騷》說課稿模板12-05
蘭亭集序說課稿模板集錦9篇06-09
《過秦論》優(yōu)秀說課稿模板12-28