有關高中數(shù)學說課稿范文合集六篇
作為一名教職工,可能需要進行說課稿編寫工作,編寫說課稿是提高業(yè)務素質的有效途徑。我們應該怎么寫說課稿呢?下面是小編幫大家整理的高中數(shù)學說課稿6篇,歡迎閱讀與收藏。
高中數(shù)學說課稿 篇1
說教學目標
A、知識目標:
掌握等差數(shù)列前n項和公式的推導方法;掌握公式的運用。
B、能力目標:
。1)通過公式的探索、發(fā)現(xiàn),在知識發(fā)生、發(fā)展以及形成過程中培養(yǎng)學生觀察、聯(lián)想、歸納、分析、綜合和邏輯推理的能力。
。2)利用以退求進的思維策略,遵循從特殊到一般的認知規(guī)律,讓學生在實踐中通過觀察、嘗試、分析、類比的方法導出等差數(shù)列的求和公式,培養(yǎng)學生類比思維能力。
。3)通過對公式從不同角度、不同側面的剖析,培養(yǎng)學生思維的靈活性,提高學生分析問題和解決問題的能力。
C、情感目標:(數(shù)學文化價值)
。1)公式的發(fā)現(xiàn)反映了普遍性寓于特殊性之中,從而使學生受到辯證唯物主義思想的熏陶。
。2)通過公式的運用,樹立學生"大眾教學"的思想意識。
(3)通過生動具體的現(xiàn)實問題,令人著迷的數(shù)學史,激發(fā)學生探究的興趣和欲望,樹立學生求真的勇氣和自信心,增強學生學好數(shù)學的心理體驗,產生熱愛數(shù)學的情感。
說教學重點:
等差數(shù)列前n項和的公式。
說教學難點:
等差數(shù)列前n項和的公式的靈活運用。
說教學方法:
啟發(fā)、討論、引導式。
教具:
現(xiàn)代教育多媒體技術。
教學過程
一、創(chuàng)設情景,導入新課。
師:上幾節(jié),我們已經掌握了等差數(shù)列的概念、通項公式及其有關性質,今天要進一步研究等差數(shù)列的前n項和公式。提起數(shù)列求和,我們自然會想到德國偉大的數(shù)學家高斯"神速求和"的故事,小高斯上小學四年級時,一次教師布置了一道數(shù)學習題:"把從1到100的自然數(shù)加起來,和是多少?"年僅10歲的小高斯略一思索就得到答案5050,這使教師非常吃驚,那么高斯是采用了什么方法來巧妙地計算出來的呢?如果大家也懂得那樣巧妙計算,那你們就是二十世紀末的新高斯。(教師觀察學生的表情反映,然后將此問題縮小十倍)。我們來看這樣一道一例題。
例1,計算:1+2+3+4+5+6+7+8+9+10。
這道題除了累加計算以外,還有沒有其他有趣的解法呢?小組討論后,讓學生自行發(fā)言解答。
生1:因為1+10=2+9=3+8=4+7=5+6,所以可湊成5個11,得到55。
生2:可設S=1+2+3+4+5+6+7+8+9+10,根據(jù)加法交換律,又可寫成 S=10+9+8+7+6+5+4+3+2+1。
上面兩式相加得2S=11+10+。。。。。。+11=10×11=110
10個
所以我們得到S=55,
即1+2+3+4+5+6+7+8+9+10=55
師:高斯神速計算出1到100所有自然數(shù)的各的方法,和上述兩位同學的方法相類似。
理由是:1+100=2+99=3+98=。。。。。。=50+51=101,有50個101,所以1+2+3+。。。。。。+100=50×101=5050。請同學們想一下,上面的方法用到等差數(shù)列的哪一個性質呢?
生3:數(shù)列{an}是等差數(shù)列,若m+n=p+q,則am+an=ap+aq。
二、教授新課(嘗試推導)
師:如果已知等差數(shù)列的首項a1,項數(shù)為n,第n項an,根據(jù)等差數(shù)列的性質,如何來導出它的前n項和Sn計算公式呢?根據(jù)上面的例子同學們自己完成推導,并請一位學生板演。
生4:Sn=a1+a2+。。。。。。an—1+an也可寫成
Sn=an+an—1+。。。。。。a2+a1
兩式相加得2Sn=(a1+an)+(a2+an—1)+。。。。。。(an+a1)
n個
=n(a1+an)
所以Sn=(I)
師:好!如果已知等差數(shù)列的首項為a1,公差為d,項數(shù)為n,則an=a1+(n—1)d代入公式(1)得
Sn=na1+ d(II)
上面(I)、(II)兩個式子稱為等差數(shù)列的前n項和公式。公式(I)是基本的,我們可以發(fā)現(xiàn),它可與梯形面積公式(上底+下底)×高÷2相類比,這里的上底是等差數(shù)列的首項a1,下底是第n項an,高是項數(shù)n。引導學生總結:這些公式中出現(xiàn)了幾個量?(a1,d,n,an,Sn),它們由哪幾個關系聯(lián)系?[an=a1+(n—1)d,Sn==na1+ d];這些量中有幾個可自由變化?(三個)從而了解到:只要知道其中任意三個就可以求另外兩個了。下面我們舉例說明公式(I)和(II)的一些應用。
三、公式的應用(通過實例演練,形成技能)。
1、直接代公式(讓學生迅速熟悉公式,即用基本量例2、計算:
。1)1+2+3+。。。。。。+n
。2)1+3+5+。。。。。。+(2n—1)
。3)2+4+6+。。。。。。+2n
。4)1—2+3—4+5—6+。。。。。。+(2n—1)—2n
請同學們先完成(1)—(3),并請一位同學回答。
生5:直接利用等差數(shù)列求和公式(I),得
(1)1+2+3+。。。。。。+n=
。2)1+3+5+。。。。。。+(2n—1)=
。3)2+4+6+。。。。。。+2n==n(n+1)
師:第(4)小題數(shù)列共有幾項?是否為等差數(shù)列?能否直接運用Sn公式求解?若不能,那應如何解答?小組討論后,讓學生發(fā)言解答。
生6:(4)中的數(shù)列共有2n項,不是等差數(shù)列,但把正項和負項分開,可看成兩個等差數(shù)列,所以
原式=[1+3+5+。。。。。。+(2n—1)]—(2+4+6+。。。。。。+2n)
=n2—n(n+1)=—n
生7:上題雖然不是等差數(shù)列,但有一個規(guī)律,兩項結合都為—1,故可得另一解法:
原式=—1—1—。。。。。!1=—n
n個
師:很好!在解題時我們應仔細觀察,尋找規(guī)律,往往會尋找到好的方法。注意在運用Sn公式時,要看清等差數(shù)列的項數(shù),否則會引起錯解。
例3、(1)數(shù)列{an}是公差d=—2的等差數(shù)列,如果a1+a2+a3=12,a8+a9+a10=75,求a1,d,S10。
生8:(1)由a1+a2+a3=12得3a1+3d=12,即a1+d=4
又∵d=—2,∴a1=6
∴S12=12 a1+66×(—2)=—60
生9:(2)由a1+a2+a3=12,a1+d=4
a8+a9+a10=75,a1+8d=25
解得a1=1,d=3 ∴S10=10a1+=145
師:通過上面例題我們掌握了等差數(shù)列前n項和的公式。在Sn公式有5個變量。已知三個變量,可利用構造方程或方程組求另外兩個變量(知三求二),請同學們根據(jù)例3自己編題,作為本節(jié)的課外練習題,以便下節(jié)課交流。
師:(繼續(xù)引導學生,將第(2)小題改編)
、贁(shù)列{an}等差數(shù)列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,求a1,d,n
②若此題不求a1,d而只求S10時,是否一定非來求得a1,d不可呢?引導學生運用等差數(shù)列性質,用整體思想考慮求a1+a10的值。
2、用整體觀點認識Sn公式。
例4,在等差數(shù)列{an}, (1)已知a2+a5+a12+a15=36,求S16;(2)已知a6=20,求S11。(教師啟發(fā)學生解)
師:來看第(1)小題,寫出的計算公式S16==8(a1+a6)與已知相比較,你發(fā)現(xiàn)了什么?
生10:根據(jù)等差數(shù)列的性質,有a1+a16=a2+a15=a5+a12=18,所以S16=8×18=144。
師:對!(簡單小結)這個題目根據(jù)已知等式是不能直接求出a1,a16和d的,但由等差數(shù)列的性質可求a1與an的和,于是這個問題就得到解決。這是整體思想在解數(shù)學問題的體現(xiàn)。
師:由于時間關系,我們對等差數(shù)列前n項和公式Sn的運用一一剖析,引導學生觀察當d≠0時,Sn是n的二次函數(shù),那么從二次(或一次)的函數(shù)的觀點如何來認識Sn公式后,這留給同學們課外繼續(xù)思考。
最后請大家課外思考Sn公式(1)的逆命題:
已知數(shù)列{an}的前n項和為Sn,若對于所有自然數(shù)n,都有Sn=。數(shù)列{an}是否為等差數(shù)列,并說明理由。
四、小結與作業(yè)。
師:接下來請同學們一起來小結本節(jié)課所講的內容。
生11:1、用倒序相加法推導等差數(shù)列前n項和公式。
2、用所推導的兩個公式解決有關例題,熟悉對Sn公式的運用。
生12:1、運用Sn公式要注意此等差數(shù)列的項數(shù)n的值。
2、具體用Sn公式時,要根據(jù)已知靈活選擇公式(I)或(II),掌握知三求二的解題通法。
3、當已知條件不足以求此項a1和公差d時,要認真觀察,靈活應用等差數(shù)列的有關性質,看能否用整體思想的方法求a1+an的值。
師:通過以上幾例,說明在解題中靈活應用所學性質,要糾正那種不明理由盲目套用公式的學習方法。同時希望大家在學習中做一個有心人,去發(fā)現(xiàn)更多的性質,主動積極地去學習。
本節(jié)所滲透的數(shù)學方法;觀察、嘗試、分析、歸納、類比、特定系數(shù)等。
數(shù)學思想:類比思想、整體思想、方程思想、函數(shù)思想等。
作業(yè):P49:13、14、15、17
高中數(shù)學說課稿 篇2
各位老師:
今天我說課的題目是《輸入、輸出語句和賦值語句》,內容選自于新課程人教A版必修3第一章第二節(jié),課時安排為一個課時。下面我將從教材分析、教學目標分析、教學方法與手段分析、教學過程分析等四大方面來闡述我對這節(jié)課的分析和設計:
一、教材分析
1.教材所處的地位和作用
我們用自然語言或程序框圖描述的算法,但是計算機是無法“看得懂,聽得見”的。因此還需要將算法用計算機能夠理解的程序設計語言翻譯成計算機程序。程序設計語言有很多種。為了實現(xiàn)算法中的三種基本的邏輯結構:順序結構、條件結構和循環(huán)結構,各種程序設計語言中都包含下列基本的算法語句:輸入語句、輸出語句、賦值語句、條件語句和循環(huán)語句.。而我們今天所要學習的是前三種算法語句,它們基本上是對應于算法中的順序結構的。
2.教學的重點和難點
重點:正確理解輸入語句、輸出語句、賦值語句的作用。
難點:準確寫出輸入語句、輸出語句、賦值語句。
二、教學目標分析
1.知識與技能目標:
。1)正確理解輸入語句、輸出語句、賦值語句的結構。
。2)會寫一些簡單的程序。
(3)掌握賦值語句中的“=”的作用。
2.過程與方法目標:
(1)讓學生充分地感知、體驗應用計算機解決數(shù)學問題的方法;并能初步操作、模仿。
。2)通過模仿,操作,探索的過程,體會算法的基本思想和基本語句的用途,提高學生應用數(shù)學軟件的能力.
3.情感,態(tài)度和價值觀目標
(1) 通過對三種語句的了解和實現(xiàn),發(fā)展有條理的思考,表達的能力,提高邏輯思維能力.
(2) 學習算法語句,幫助學生利用計算機軟件實現(xiàn)算法,活躍思維,提高學生的數(shù)學素養(yǎng).
(3) 結合計算機軟件的.應用, 增強應用數(shù)學的意識,在計算機上實現(xiàn)算法讓學生體會成功喜悅.
三、教學方法與手段分析
1.教學方法:引導與合作交流相結合,學生在體會三種語句結構格式的過程中,讓學生積極參與,討論交流,充分挖掘三種算法語句的格式特點及意義,在分析具體問題的過程中總結三種算法語句的思想與特征.
2.教學手段:運用計算機、圖形計算器輔助教學
四、教學過程分析
1. 創(chuàng)設情境(約5分鐘)
在課的開始,我要求學生們舉出一些在日常生活中所應用到的有關計算機的例子,如:聽MP3,看電影,玩游戲,打字排版,畫卡通畫,處理數(shù)據(jù)等等,并告訴他們在現(xiàn)代社會里,計算機已經成為人們日常生活和工作不可缺少的工具,然后接著問他們知不知道計算機到底是怎樣工作的?通過這個問題引出我們今天所要學習的內容。(板出課題)
在這個過程中,我讓學生們將課本學習的內容與現(xiàn)實生活聯(lián)系在了一起,這樣能夠激起他們對接下來的所要學習內容的興趣,為整節(jié)課的學習打下一個良好的基礎。
2.探究新知(約15分鐘)
這里我先給出一個題目:用描點法作出函數(shù)
的圖象,用描點法作函數(shù)的圖象時,需要先求出自變量與函數(shù)的對應值。編寫程序,分別計算當
時的函數(shù)值。(程序由我在課前準備好,教學中直接調用運行)
程序:INPUT“x=”;x 輸入語句
y=x^3+3*x^2-24*x+30 賦值語句
PRINT x 輸出語句
PRINT y 輸出語句
END
。▽W生們先看,再跟著做,先不必深究該程序如何得來,只要模仿編寫程序,通過運行自己編寫的程序發(fā)現(xiàn)問題所在,進一步提高學生的模仿能力)
之后,我向學生們提問:在這個程序中,他們覺得哪些是輸入語句、輸出語句和賦值語句?(同學們互相交流、議論、猜想、概括出結論。提示:“input”和“print”的中文意思,還要請學生們注意到在賦值語句中的賦值號“=”與數(shù)學中的等號意義不同。)
此過程由老師引導,學生們自己討論并總結出什么是輸入語句、輸出語句和賦值語句,這樣比老師直接地將知識傳授給他們,學習的效果更佳,同時也鍛煉了學生們思考問題的能力和概括能力,激發(fā)學習興趣。
然后給出一個思考題:在1.1.2中程序框圖中的輸入框,輸出框的內容怎樣用輸入語句、輸出語句來表達?(學生討論、交流想法,然后請學生作答)這樣可以及時應用剛剛學習的內容,并可以將前后所學知識聯(lián)系起來。
3.例題精析(約12分鐘)
在本環(huán)節(jié)中我為學生們準備了三道例題,這三道例題均選自課本的例2、例3和例4,學生通過這幾道例題的講解,結合計算機程序上機運用,可以掌握在程序設計語言中的前三種算法語句,體會到他們在程序中的意義和作用。
4.課堂精練(約4分鐘)
P15 練習 1.
提問:如果要求輸入一個攝氏溫度,輸出其相應的華氏溫度,又該如何設計程序?(學生課后思考,討論完成)通過提問啟發(fā)學生們思考,發(fā)散思維。
5.課堂小結(約5分鐘)
、泡斎胝Z句、輸出語句和賦值語句的結構特點及聯(lián)系
⑵應用輸入語句,輸出語句,賦值語句編寫一些簡單的程序解決數(shù)學問題
⑶ 賦值語句中“=”的作用及應用
、染幊桃话愕牟襟E:先寫出算法,再進行編程。
6.布置作業(yè)
P23 習題1.2 A組 1(2)、2
[設計意圖]課后作業(yè)的布置是為了檢驗學生對本節(jié)課內容的理解和運用程度以及實際接受情況,并促使學生進一步鞏固和掌握所學內容。
7.板書設計
高中數(shù)學說課稿 篇3
一、教材分析
集合概念及其基本理論,稱為集合論,是近、現(xiàn)代數(shù)學的一個重要的基礎,一方面,許多重要的數(shù)學分支,都建立在集合理論的基礎上。另一方面,集合論及其所反映的數(shù)學思想,在越來越廣泛的領域種得到應用。
本節(jié)課主要分為兩個部分,一是理解集合的定義及一些基本特征。二是掌握集合與元素之間的關系。
二、教學目標
1、學習目標
。1)通過實例,了解集合的含義,體會元素與集合之間的關系以及理解“屬
于”關系;
。2)能選擇自然語言、圖形語言、集合語言(列舉法或描述法)描述不同的具體問題,感受集合語言的意義和作用;
2、能力目標
。1)能夠把一句話一個事件用集合的方式表示出來。
(2)準確理解集合與及集合內的元素之間的關系。
3、情感目標
通過本節(jié)的把實際事件用集合的方式表示出來,從而培養(yǎng)數(shù)學敏感性,了 解到數(shù)學于生活中。
三、教學重點與難點
重點 集合的基本概念與表示方法;
難點 運用集合的兩種常用表示方法———列舉法與描述法,正確表示一些簡單的集合;
四、教學方法
。1)本課將采用探究式教學,讓學生主動去探索,激發(fā)學生的學習興趣。并分層教學,這樣可顧及到全體學生,達到優(yōu)生得到培養(yǎng),后進生也有所收獲的效果;
。2)學生在老師的引導下,通過閱讀教材,自主學習、思考、交流、討論和概括,從而完成本節(jié)課的教學目標。
五、學習方法
。1)主動學習法:舉出例子,提出問題,讓學生在獲得感性認識的同時,
教師層層深入,啟發(fā)學生積極思維,主動探索知識,培養(yǎng)學生思維想象 的綜合能力。
。2)反饋補救法:在練習中,注意觀察學生對學習的反饋情況,以實現(xiàn)“培
優(yōu)扶差,滿足不同。”
六、教學思路
具體的思路如下
復習的引入:講一些集合的相關數(shù)學及相關數(shù)學家的經歷故事!這可以讓學生更加了解數(shù)學史從何使學生對數(shù)學更加感興趣,有助于上課的效率!因為時間關系這里我就不說相關數(shù)學史咯。
一、 引入課題
軍訓前學校通知:8月15日8點,高一年段在體育館集合進行軍訓動員;試問這個通知的對象是全體的高一學生還是個別學生?
在這里,集合是我們常用的一個詞語,我們感興趣的是問題中某些特定(是高一而不是高二、高三)對象的總體,而不是個別的對象,為此,我們將學習一個新的概念——集合,即是一些研究對象的總體。
二、 正體部分
學生閱讀教材,并思考下列問題:
。1)集合有那些概念?
。2)集合有那些符號?
(3)集合中元素的特性是什么?
。4)如何給集合分類?
(一)集合的有關概念
。1)對象:我們可以感覺到的客觀存在以及我們思想中的事物或抽象符號,
都可以稱作對象.
。2)集合:把一些能夠確定的不同的對象看成一個整體,就說這個整體是由
這些對象的全體構成的集合.
。3)元素:集合中每個對象叫做這個集合的元素.
集合通常用大寫的拉丁字母表示,如A、B、C、??元素通常用小寫的拉丁字母表示,如a、b、c、??
1. 思考:課本P3的思考題,并再列舉一些集合例子和不能構成集合的例子,
對學生的例子予以討論、點評,進而講解下面的問題。
2、元素與集合的關系
。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A。(舉例)集合A={2,3,4,6,9}a=2 因此我們知道 a∈A
。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作a?A
要注意“∈”的方向,不能把a∈A顛倒過來寫. (舉例)
集合A={3,4,6,9}a=2 因此我們知道a?A
3、集合中元素的特性
。1)確定性:給定一個集合,任何對象是不是這個集合的元素是確定的了.
。2)互異性:集合中的元素一定是不同的.
。3)無序性:集合中的元素沒有固定的順序.
4、集合分類
根據(jù)集合所含元素個屬不同,可把集合分為如下幾類:
。1)把不含任何元素的集合叫做空集Ф
。2)含有有限個元素的集合叫做有限集
。3)含有無窮個元素的集合叫做無限集
注:應區(qū)分?,{?},{0},0等符號的含義
5、常用數(shù)集及其表示方法
。1)非負整數(shù)集(自然數(shù)集):全體非負整數(shù)的集合.記作N
。2)正整數(shù)集:非負整數(shù)集內排除0的集.記作N*或N+
。3)整數(shù)集:全體整數(shù)的集合.記作Z
。4)有理數(shù)集:全體有理數(shù)的集合.記作Q
(5)實數(shù)集:全體實數(shù)的集合.記作R
注:(1)自然數(shù)集包括數(shù)0.
。2)非負整數(shù)集內排除0的集.記作N*或N+,Q、Z、R等其它數(shù)集內排
除0的集,也這樣表示,例如,整數(shù)集內排除0的集,表示成Z*
(二)集合的表示方法
我們可以用自然語言來描述一個集合,但這將給我們帶來很多不便,除此之外還常用列舉法和描述法來表示集合。
(1) 列舉法:把集合中的元素一一列舉出來,寫在大括號內。
如:{1,2,3,4,5},{x2,3x+2,5y3-x,x2+y2},?;
例1.(課本例1)
思考2,引入描述法
說明:集合中的元素具有無序性,所以用列舉法表示集合時不必考慮元素的順序。
。2) 描述法:把集合中的元素的公共屬性描述出來,寫在大括號{}內。 具體方法:在大括號內先寫上表示這個集合元素的一般符號及取值(或變化)范圍,再畫一條豎線,在豎線后寫出這個集合中元素所具有的共同特征。
如:{x|x-3>2},{(x,y)|y=x2+1},{直角三角形},?;
例2.(課本例2)
說明:(課本P5最后一段)
思考3:(課本P6思考) 強調:描述法表示集合應注意集合的代表元素
{(x,y)|y= x2+3x+2}與 {y|y= x2+3x+2}不同,只要不引起誤解,集合的代表元素也可省略,例如:{整數(shù)},即代表整數(shù)集Z。
辨析:這里的{ }已包含“所有”的意思,所以不必寫{全體整數(shù)}。下列寫法{實數(shù)集},{R}也是錯誤的。
說明:列舉法與描述法各有優(yōu)點,應該根據(jù)具體問題確定采用哪種表示法,要注意,一般集合中元素較多或有無限個元素時,不宜采用列舉法。
(三)課堂練習(課本P6練習)
三、 歸納小結與作業(yè)
本節(jié)課從實例入手,非常自然貼切地引出集合與集合的概念,并且結合實例對集合的概念作了說明,然后介紹了集合的常用表示方法,包括列舉法、描述法。
書面作業(yè):習題1.1,第1- 4題
高中數(shù)學說課稿 篇4
一、教材分析
1、教材所處的地位和作用
奇偶性是人教A版第一章集合與函數(shù)概念的第3節(jié)函數(shù)的基本性質的第2小節(jié)。
奇偶性是函數(shù)的一條重要性質,教材從學生熟悉的 及入手,從特殊到一般,從具體到抽象,注重信息技術的應用,比較系統(tǒng)地介紹了函數(shù)的奇偶性。從知識結構看,它既是函數(shù)概念的拓展和深化,又是后續(xù)研究指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)、三角函數(shù)的基礎。因此,本節(jié)課起著承上啟下的重要作用。
2、學情分析
從學生的認知基礎看,學生在初中已經學習了軸對稱圖形和中心對稱圖形,并且有了一定數(shù)量的簡單函數(shù)的儲備。同時,剛剛學習了函數(shù)單調性,已經積累了研究函數(shù)的基本方法與初步經驗。
從學生的思維發(fā)展看,高一學生思維能力正在由形象經驗型向抽象理論型轉變,能夠用假設、推理來思考和解決問題、
3、教學目標
基于以上對教材和學生的分析,以及新課標理念,我設計了這樣的教學目標:
【知識與技能】
1、能判斷一些簡單函數(shù)的奇偶性。
2、能運用函數(shù)奇偶性的代數(shù)特征和幾何意義解決一些簡單的問題。
【過程與方法】
經歷奇偶性概念的形成過程,提高觀察抽象能力以及從特殊到一般的歸納概括能力。
【情感、態(tài)度與價值觀】
通過自主探索,體會數(shù)形結合的思想,感受數(shù)學的對稱美。
從課堂反應看,基本上達到了預期效果。
4、教學重點和難點
重點:函數(shù)奇偶性的概念和幾何意義。
幾年的教學實踐證明,雖然函數(shù)奇偶性這一節(jié)知識點并不是很難理解,但知識點掌握不全面的學生容易出現(xiàn)下面的錯誤。他們往往流于表面形式,只根據(jù)奇偶性的定義檢驗成立即可,而忽視了考慮函數(shù)定義域的問題。因此,在介紹奇、偶函數(shù)的定義時,一定要揭示定義的隱含條件,從正反兩方面講清定義的內涵和外延。因此,我把函數(shù)的奇偶性概念設計為本節(jié)課的重點。在這個問題上我除了注意概念的講解,還特意安排了一道例題,來加強本節(jié)課重點問題的講解。
難點:奇偶性概念的數(shù)學化提煉過程。
由于,學生看待問題還是靜止的、片面的,抽象概括能力比較薄弱,這對建構奇偶性的概念造成了一定的困難。因此我把奇偶性概念的數(shù)學化提煉過程設計為本節(jié)課的難點。
二、教法與學法分析
1、教法
根據(jù)本節(jié)教材內容和編排特點,為了更有效地突出重點,突破難點,按照學生的認知規(guī)律,遵循教師為主導,學生為主體,訓練為主線的指導思想,采用以引導發(fā)現(xiàn)法為主,直觀演示法、類比法為輔。教學中,精心設計一個又一個帶有啟發(fā)性和思考性的問題,創(chuàng)設問題情景,誘導學生思考,使學生始終處于主動探索問題的積極狀態(tài),從而培養(yǎng)思維能力。從課堂反應看,基本上達到了預期效果。
2、學法
讓學生在觀察一歸納一檢驗一應用的學習過程中,自主參與知識的發(fā)生、發(fā)展、形成的過程,從而使學生掌握知識。
三、教學過程
具體的教學過程是師生互動交流的過程,共分六個環(huán)節(jié):設疑導入、觀圖激趣;指導觀察、形成概念;學生探索、領會定義;知識應用,鞏固提高;總結反饋;分層作業(yè),學以致用。下面我對這六個環(huán)節(jié)進行說明。
。ㄒ唬┰O疑導入、觀圖激趣
由于本節(jié)內容相對獨立,專題性較強,所以我采用了開門見山導入方式,直接點明要學的內容,使學生的思維迅速定向,達到開始就明確目標突出重點的效果。
用多媒體展示一組圖片,使學生感受到生活中的對稱美。再讓學生觀察幾個特殊函數(shù)圖象。通過讓學生觀察圖片導入新課,既激發(fā)了學生濃厚的學習興趣,又為學習新知識作好鋪墊。
(二)指導觀察、形成概念
在這一環(huán)節(jié)中共設計了2個探究活動。
探究1 、2 數(shù)學中對稱的形式也很多,這節(jié)課我們就以函數(shù)和=︱x︱以及和為例展開探究。這個探究主要是通過學生的自主探究來實現(xiàn)的,由于有圖片的鋪墊,絕大多數(shù)學生很快就說出函數(shù)圖象關于Y軸(原點)對稱。接著學生填表,從數(shù)值角度研究圖象的這種特征,體現(xiàn)在自變量與函數(shù)值之間有何規(guī)律? 引導學生先把它們具體化,再用數(shù)學符號表示。借助課件演示(令 比較 得出等式 , 再令 ,得到 ) 讓學生發(fā)現(xiàn)兩個函數(shù)的對稱性反應到函數(shù)值上具有的特性, ()然后通過解析式給出嚴格證明,進一步說明這個特性對定義域內任意一個 都成立。 最后給出偶函數(shù)(奇函數(shù))定義(板書)。
在這個過程中,學生把對圖形規(guī)律的感性認識,轉化成數(shù)量的規(guī)律性,從而上升到了理性認識,切實經歷了一次從特殊歸納出一般的過程體驗。
。ㄈ 學生探索、領會定義
探究3 下列函數(shù)圖象具有奇偶性嗎?
設計意圖:深化對奇偶性概念的理解。強調:函數(shù)具有奇偶性的前提條件是--定義域關于原點對稱。(突破了本節(jié)課的難點)
。ㄋ模┲R應用,鞏固提高
在這一環(huán)節(jié)我設計了4道題
例1判斷下列函數(shù)的奇偶性
選例1的第(1)及(3)小題板書來示范解題步驟,其他小題讓學生在下面完成。
例1設計意圖是歸納出判斷奇偶性的步驟:
(1) 先求定義域,看是否關于原點對稱;
(2) 再判斷f(-x)=-f(x) 還是 f(-x)=f(x)。
例2 判斷下列函數(shù)的奇偶性:
例3 判斷下列函數(shù)的奇偶性:
例2、3設計意圖是探究一個函數(shù)奇偶性的可能情況有幾種類型?
例4(1)判斷函數(shù)的奇偶性。
。2)如圖給出函數(shù)圖象的一部分,你能根據(jù)函數(shù)的奇偶性畫出它在y軸左邊的圖象嗎?
例4設計意圖加強函數(shù)奇偶性的幾何意義的應用。
在這個過程中,我重點關注了學生的推理過程的表述。通過這些問題的解決,學生對函數(shù)的奇偶性認識、理解和應用都能提升很大一個高度,達到當堂消化吸收的效果。
。ㄎ澹┛偨Y反饋
在以上課堂實錄中充分展示了教法、學法中的互動模式,問題貫穿于探究過程的始終,切實體現(xiàn)了啟發(fā)式、問題式教學法的特色。
在本節(jié)課的最后對知識點進行了簡單回顧,并引導學生總結出本節(jié)課應積累的解題經驗。知識在于積累,而學習數(shù)學更在于知識的應用經驗的積累。所以提高知識的應用能力、增強錯誤的預見能力是提高數(shù)學綜合能力的很重要的策略。
。┓謱幼鳂I(yè),學以致用
必做題:課本第36頁練習第1-2題。
選做題:課本第39頁習題1、3A組第6題。
思考題:課本第39頁習題1、3B組第3題。
設計意圖:面向全體學生,注重個人差異,加強作業(yè)的針對性,對學生進行分層作業(yè),既使學生掌握基礎知識,又使學有余力的學生有所提高,進一步達到不同的人在數(shù)學上得到不同的發(fā)展。
高中數(shù)學說課稿 篇5
一、教材分析:
1、教材的地位與作用:
線性規(guī)劃是運籌學的一個重要分支,在實際生活中有著廣泛的應用。本節(jié)內容是在學習了不等式、直線方程的基礎上,利用不等式和直線方程的有關知識展開的,它是對二元一次不等式的深化和再認識、再理解。通過這一部分的學習,使學生進一步了解數(shù)學在解決實際問題中的應用,體驗數(shù)形結合和轉化的思想方法,培養(yǎng)學生學習數(shù)學的興趣、應用數(shù)學的意識和解決實際問題的能力。
2、教學重點與難點:
重點:畫可行域;在可行域內,用圖解法準確求得線性規(guī)劃問題的最優(yōu)解。
難點:在可行域內,用圖解法準確求得線性規(guī)劃問題的最優(yōu)解。
二、目標分析:
在新課標讓學生經歷“學數(shù)學、做數(shù)學、用數(shù)學”的理念指導下,本節(jié)課的教學目標分設為知識目標、能力目標和情感目標。
知識目標:
1、了解線性規(guī)劃的意義,了解線性約束條件、線性目標函數(shù)、可行解、可行
域和最優(yōu)解等概念;
2、理解線性規(guī)劃問題的圖解法;
3、會利用圖解法求線性目標函數(shù)的最優(yōu)解.
能力目標:
1、在應用圖解法解題的過程中培養(yǎng)學生的觀察能力、理解能力。
2、在變式訓練的過程中,培養(yǎng)學生的分析能力、探索能力。
3、在對具體事例的感性認識上升到對線性規(guī)劃的理性認識過程中,培養(yǎng)學生運用數(shù)形結合思想解題的能力和化歸能力。
情感目標:
1、讓學生體驗數(shù)學來源于生活,服務于生活,體驗數(shù)學在建設節(jié)約型社會中的作用,品嘗學習數(shù)學的樂趣。
2、讓學生體驗數(shù)學活動充滿著探索與創(chuàng)造,培養(yǎng)學生勤于思考、勇于探索的精神;
3、讓學生學會用運動觀點觀察事物,了解事物之間從一般到特殊、從特殊到一般的辨證關系,滲透辯證唯物主義認識論的思想。
高中數(shù)學說課稿 篇6
一、說教材:
1、教材的地位與作用
導數(shù)是微積分的核心概念之一,它為研究函數(shù)提供了有效的方法. 在前面幾節(jié)課里學生對導數(shù)的概念已經有了充分的認識,本節(jié)課教材從形的角度即割線入手,用形象直觀的“逼近”方法定義了切線,獲得導數(shù)的幾何意義,更有利于學生理解導數(shù)概念的本質內涵. 這節(jié)課可以利用幾何畫板進行動畫演示,讓學生通過觀察、思考、發(fā)現(xiàn)、思維、運用形成完整概念. 通過本節(jié)的學習,可以幫助學生更好的體會導數(shù)是研究函數(shù)的單調性、變化快慢等性質最有效的工具,是本章的關鍵內容。
2、教學的重點、難點、關鍵
教學重點:導數(shù)的幾何意義、切線方程的求法以及“數(shù)形結合,逼近”的思想方法。
教學難點:理解導數(shù)的幾何意義的本質內涵
1) 從割線到切線的過程中采用的逼近方法;
2) 理解導數(shù)的概念,將多方面的意義聯(lián)系起來,例如,導數(shù)反映了函數(shù)f(x)在點x附近的變化快慢,導數(shù)是曲線上某點切線的斜率,等等.
二、說教學目標:
根據(jù)新課程標準的要求、學生的認知水平,確定教學目標如下:
1、知識與技能 :
通過實驗探求理解導數(shù)的幾何意義,理解曲線在一點的切線的概念,會求簡單函數(shù)在某點的切線方程。
過程與方法:
經歷切線定義的形成過程,培養(yǎng)學生分析、抽象、概括等思維能力;體會導數(shù)的思想及內涵,完善對切線的認識和理解
通過逼近、數(shù)形結合思想的具體運用,使學生達到思維方式的遷移,了解科學的思維方法。
3、情感態(tài)度與價值觀:
滲透逼近、數(shù)形結合、以直代曲等數(shù)學思想,激發(fā)學生學習興趣,引導學生領悟特殊與一般、有限與無限,量變與質變的辯證關系,感受數(shù)學的統(tǒng)一美,意識到數(shù)學的應用價值
三、說教法與學法
對于直線來說它的導數(shù)就是它的斜率,學生會很自然的思考導數(shù)在函數(shù)圖像上是不是有很特殊的幾何意義。而且剛剛學過了圓錐曲線,學生對曲線的切線的概念也有了一些認識,基于以上學情分析,我確定下列教法:
教法:從圓的切線的定義引入本課,再引導學生討論一般曲線的切線的定義,通過幾何畫板的動畫演示,得出曲線的切線的“逼近”法的定義.同樣通過幾何畫板的實驗觀察得到導數(shù)的幾何意義和直觀感知“逼近”的數(shù)學思想.因此,我采用實驗觀察法、探究性研究教學和信息技術輔助教學法相結合,以突出重點和突破難點;
學法:為了發(fā)揮學生的主觀能動性,提高學生的綜合能力,本節(jié)課采取了
自主 、合作、探究的學習方法。
教具: 幾何畫板、幻燈片
四、說教學程序
1.創(chuàng)設情境
學生活動——問題系列
問題1 平面幾何中我們是怎樣判斷直線是否是圓的割線或切線的呢?
問題2 如圖直線l是曲線C的切線嗎?
(1)與 (2)與 還有直線與雙曲線的位置關系
問題3 那么對于一般的曲線,切線該如何定義呢?
【設計意圖】:通過類比構建認知沖突。
學生活動——復習回顧
導數(shù)的定義
【設計意圖】:從理論和知識基礎兩方面為本節(jié)課作鋪墊。
2.探索求知
學生活動——試驗探究
問一;求導數(shù)的步驟是怎樣的?
第一步:求平均變化率;第二步:當趨近于0時,平均變化率無限趨近于的常數(shù)就是。
【設計意圖】:這是從“數(shù)”的角度描述導數(shù),為探究導數(shù)的幾何意義做準備。
問二;你能借助圖像說說平均變化率表示什么嗎?請在函數(shù)圖像中畫出來。
【設計意圖】:通過學生動手實踐得到平均變化率表示割線PQ的斜率。
問三;在的過程中,你能描述一下割線PQ的變化情況嗎?請在圖像中畫出來。
【設計意圖】:分別從“數(shù)”和“形”的角度描述的過程情況。從數(shù)的角度看,,Q();從形的角度看, 的過程中,Q點向P點無限趨近,割線PQ趨近于確定的位置,這個位置的直線叫做曲線在 處的切線。
探究一:學生通過幾何畫板的演示觀察割線的變化趨勢,教師引導給出一般曲線的切線定義。
【設計意圖】: 借助多媒體教學手段引導學生發(fā)現(xiàn)導數(shù)的幾何意義,使問題變得直觀,易于突破難點;學生在過程中,可以體會逼近的思想方法。能夠同時從數(shù)與形兩個角度強化學生對導數(shù)概念的理解。
問四;你能從上述過程中概括出函數(shù)在處的導數(shù)的幾何意義嗎?
【設計意圖】:引導學生發(fā)現(xiàn)并說出:,割線PQ切線PT,所以割線
PQ的斜率切線PT的斜率。因此,=切線PT的斜率。
五、教學評價
1、通過學生參加活動是否積極主動,能否與他人合作探索,對學生的學習過程評價;
2、通過學生對方法的選擇,對學生的學習能力評價;
3、通過練習、課后作業(yè),對學生的學習效果評價.
4、教學中,學生以研究者的身份學習,在問題解決的過程中,通過自身的體驗對知識的認識從模糊到清晰,從直觀感悟到精確掌握;
5、本節(jié)課設計目標力求使學生體會微積分的基本思想,感受近似與精確的統(tǒng)一,運動和靜止的統(tǒng)一,感受量變到質變的轉化。希望利用這節(jié)課滲透辨證法的思想精髓.
【有關高中數(shù)學說課稿范文合集六篇】相關文章:
高中數(shù)學說課稿(精選10篇)11-02
人教版高中數(shù)學必修一說課稿 函數(shù)的概念說課稿11-02
有關《滕王閣序》說課稿范文12-19
有關《觀滄!氛f課稿04-08
《冰花》說課稿范文01-15
《離騷》說課稿范文12-09
人教版高中數(shù)學A版必修二 傾斜角與斜率說課稿11-02
人教版高中數(shù)學必修2 直線的點斜式方程說課稿11-02
體育說課稿大全體育說課稿范文11-11