毛片一区二区三区,国产免费网,亚洲精品美女久久久久,国产精品成久久久久三级

《探索勾股定理》的說課稿

時間:2021-11-30 11:56:36 說課稿 我要投稿

《探索勾股定理》的說課稿

  作為一名辛苦耕耘的教育工作者,很有必要精心設計一份說課稿,借助說課稿可以更好地提高教師理論素養(yǎng)和駕馭教材的能力。那么寫說課稿需要注意哪些問題呢?下面是小編整理的《探索勾股定理》的說課稿,希望能夠幫助到大家。

《探索勾股定理》的說課稿

  《探索勾股定理》的說課稿1

  一、教材分析

  教材所處的地位與作用

  “探索勾股定理”是人教版八年級《數(shù)學》下冊內容!肮垂啥ɡ怼笔前才旁趯W生學習了三角形、全等三角形、等腰三角形等有關知識之后,它揭示了直角三角形三邊之間的一種美妙關系,將數(shù)與形密切聯(lián)系起來,在幾何學中占有非常重要的位置。同時勾股定理在生產(chǎn)、生活中也有很大的用途。

  二、教學目標

  綜上分析及教學大綱要求,本課時教學目標制定如下:

  1、知識目標

  知道勾股定理的由來,初步理解割補拼接的面積證法。

  掌握勾股定理,通過動手操作利用等積法理解勾股定理的證明過程。

  2、能力目標

  在探索勾股定理的過程中,讓學生經(jīng)歷“觀察——合理猜想——歸納——驗證”的數(shù)學思想,并體會數(shù)形結合以及由特殊到一般的思想方法,培養(yǎng)學生的觀察力、抽象概括能力、創(chuàng)造想象能力以及科學探究問題的能力。

  3、情感目標

  通過觀察、猜想、拼圖、證明等操作,使學生深刻感受到數(shù)學知識的發(fā)生、發(fā)展過程。

  介紹“趙爽弦圖”,讓學生感受到中國古代在勾股定理研究方面所取得的偉大成就,激發(fā)學生的數(shù)學激情及愛國情感。

  三、教學重難點

  本課重點是掌握勾股定理,讓學生深刻感悟到直角三角形三邊所具備的特殊關系。由于八年級學生構造能力較低以及對面積證法的不熟悉,因此本課的難點便是勾股定理的證明。

  四、教學問題診斷

  本節(jié)主要攻克的問題就是本節(jié)的難點:勾股定理的證明。我打算采用面積法來講解,但這種借助于圖形的面積來探索、驗證數(shù)學結論的數(shù)形結合思想,對于學生來說,有些陌生,難以理解,又加之數(shù)學課本身的課程特征,在講解時,沒有文科那么深動形象,所以針對這一現(xiàn)狀,我在教法和學法上都進行了改進。

  五、教法與學法分析

  [教學方法與手段]針對八年級學生的知識結構和心理特征,本節(jié)課選擇引導探索法,由淺入深,由特殊到一般地提出問題,引導學生自主探索,合作交流,并利用多媒體進行教學。

  [學法分析]在教師組織引導下,采用自主探索、合作交流的方式,讓學生自己實驗,自己獲取知識,并感悟學習方法,借此培養(yǎng)學生動手、動口、動腦能力,使學生真正成為學習的主體。讓學生感受到自己是學習的主體,增強他們的主動感和責任感,這樣對掌握新知會事半功倍。

  六、教學流程設計

  1、創(chuàng)設情境,引入新課

  本節(jié)課開始利用多媒體介紹了在北京召開的2002年國際數(shù)學家大會的會標,其圖案為“趙爽弦圖”,由此導入新課,是為了激發(fā)學生的興趣和民族自豪感,它是課堂教學的重要一環(huán)!昂玫拈_始是成功的一半”,在課的起始階段迅速集中學生注意力,把他們的思緒帶進特定的學習情境中,激發(fā)學生濃厚的學習興趣和強烈的求知欲。多媒體展示這一有意義的圖案,可有效開啟學生思維的閘門,激勵探究,使學生的學習狀態(tài)由被動變?yōu)橹鲃,在輕松愉悅的氛圍中學到知識。

  2、觀察發(fā)現(xiàn),類比猜想

  讓學生仔細觀察畢達哥拉斯朋友家的瓷磚(圖1),從而得到特殊的等腰直角三角形三邊關系,緊接著由特殊到一般,讓學生合理猜測:是否任意直角三角形都符合這個“三邊關系”的結論?同學們很輕易的得到了結論。最后對此結論通過在網(wǎng)格中數(shù)格子進行驗證,讓學生經(jīng)歷了“觀察——合理猜測——歸納——驗證”的這一數(shù)學思想。在數(shù)格子的驗證過程中,發(fā)現(xiàn)任意直角三角形(圖2)斜邊上長出的正方形中網(wǎng)格不規(guī)則,沒法數(shù)出。通過同學們的討論,發(fā)現(xiàn)數(shù)不出來的原因是格子不規(guī)則,從而想到了用補或割的方法進行計算,其原則就是由不規(guī)則經(jīng)過割補變?yōu)橐?guī)則。

  3、實驗探究,證明結論

  因為勾股定理的出現(xiàn),使數(shù)學從單一的純計算進入了幾何圖形的證明,所以為了讓學生感受數(shù)形結合這一數(shù)學思想,讓學生親自動手,互相協(xié)作,拿一塊由a2和b2組成的不規(guī)則的平面圖形經(jīng)割補,變?yōu)橐?guī)則的c2,又因兩塊割補前后面積相等,從而得到勾股定理:a2+b2=c2,也因此引入了“等積法”證明勾股定理。

  4、練兵之際

  這是“總統(tǒng)證法”,此時讓學生自己探索,然后討論。選用“總統(tǒng)證法”,第一是為了讓同學們熟悉“等積法”,第二讓學生感受數(shù)學的地位之高,第三在沒有講解的情況下,學生自己得出了“總統(tǒng)證法”,大大增強了學生的自信心和自豪感。

  5、自己動手,拼出弦圖

  讓同學們拿出了提前準備好的四個全等的邊長為a、b、c的直角三角形進行拼圖,小組活動,拼出自己喜愛的圖形,但有一個前提是所拼出的圖形必須能夠用等積法證明勾股定理。此時已經(jīng)是把課堂全部還給了學生,讓他們在數(shù)學的海洋中馳騁,提供這種學習方式就是為了讓孩子們更加開闊,更加自主,更方便于他們到廣闊的海洋中去尋找寶藏,學生們拼得很好,并且都給出了正確的證明,在黑板上盡情地展示了一番。

  6、總結反思

  通過這一堂課,我認為數(shù)學教學的核心不是知識本身,而是數(shù)學的思維方式,而培養(yǎng)這種數(shù)學思維方式需要豐富的數(shù)學活動。在活動中學生可以用自己創(chuàng)造與體驗的方法來學習數(shù)學,這樣才能真正的掌握數(shù)學,真正擁有數(shù)學的思維方式,這一課的學習就是通過讓學生自主探索知識,從而將其轉化為自己的,真正做到了先激發(fā)興趣,再合作交流,最后展示成果的自主學習,教學模式也從教師講授為主轉為了學生動腦、動手、自主研究,小組學習討論交流為主,把數(shù)學課堂轉化為“數(shù)學實驗室”,學生通過自己活動得出結論,使創(chuàng)新精神與實踐能力得到了發(fā)展。

  七、設計說明

  1、根據(jù)學生的知識結構,我采用的數(shù)學流程是:創(chuàng)設情境引入新課——觀察發(fā)現(xiàn)類比猜想——實驗探究證明結論——自己動手拼出弦圖——總結反思這五部分。這一流程體現(xiàn)了知識的發(fā)生、形成和發(fā)展的過程,讓學生經(jīng)歷了觀察——猜想——歸納——驗證的思想和數(shù)形結合的思想。

  2、探索定理采用了面積法,引導學生利用實驗由特殊到一般的數(shù)學思想對直角三角形三邊關系進行了研究,并得出了結論。這種方法是認識事物規(guī)律的重要方法之一,通過教學讓學生初步掌握這種方法,對于學生良好的思維品質的形成有重要作用,對學生終身發(fā)展也有很大作用。

  《探索勾股定理》的說課稿2

  一、教材分析

 。ㄒ唬┙滩牡匚唬哼@節(jié)課是九年制義務教育初級中學教材北師大版七年級第二章第一節(jié)《探索勾股定理》第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關系。它在數(shù)學的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學生通過對勾股定理的學習,可以在原有的基礎上對直角三角形有進一步的認識和理解。

 。ǘ┙虒W目標:

  知識與能力:掌握勾股定理,并能運用勾股定理解決一些簡單實際問題。

  過程與方法:經(jīng)歷探索及驗證勾股定理的過程,了解利用拼圖驗證勾股定理的方法,發(fā)展學生的`合情推理意識、主動探究的習慣,感受數(shù)形結合和從特殊到一般的思想。

  情感態(tài)度與價值觀:激發(fā)學生愛國熱情,讓學生體驗自己努力得到結論的成就感,體驗數(shù)學充滿探索和創(chuàng)造,體驗數(shù)學的美感,從而了解數(shù)學,喜歡數(shù)學。

 。ㄈ┙虒W重點:經(jīng)歷探索及驗證勾股定理的過程,并能用它來解決一些簡單的實際問題。

  教學難點:用面積法(拼圖法)發(fā)現(xiàn)勾股定理。

  突出重點、突破難點的辦法:發(fā)揮學生的主體作用,通過學生動手實驗,讓學生在實驗中探索、在探索中領悟、在領悟中理解。

  二、教法與學法分析:

  學情分析:七年級學生已經(jīng)具備一定的觀察、歸納、猜想和推理的能力.他們在小學已學習了一些幾何圖形的面積計算方法(包括割補、拼接),但運用面積法和割補思想來解決問題的意識和能力還不夠、另外,學生普遍學習積極性較高,課堂活動參與較主動,但合作交流的能力還有待加強。

  教法分析:結合七年級學生和本節(jié)教材的特點,在教學中采用“問題情境————建立模型————解釋應用———拓展鞏固”的模式,選擇引導探索法。把教學過程轉化為學生親身觀察,大膽猜想,自主探究,合作交流,歸納總結的過程。

  學法分析:在教師的組織引導下,學生采用自主探究合作交流的研討式學習方式,使學生真正成為學習的主人。

  三、教學過程設計

  1、創(chuàng)設情境,提出問題

  2、實驗操作,模型構建

  3、回歸生活,應用新知

  4、知識拓展,鞏固深化

  5、感悟收獲,布置作業(yè)

  一創(chuàng)設情境提出問題

 。1)圖片欣賞勾股定理數(shù)形圖1955年希臘發(fā)行美麗的勾股樹2002年國際數(shù)學的一枚紀念郵票大會會標。

  設計意圖:通過圖形欣賞,感受數(shù)學美,感受勾股定理的文化價值。

 。2)某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的底部離墻基的距離是2.5米,請問消防隊員能否進入三樓滅火?

  設計意圖:以實際問題為切入點引入新課,反映了數(shù)學來源于實際生活,產(chǎn)生于人的需要,也體現(xiàn)了知識的發(fā)生過程,解決問題的過程也是一個“數(shù)學化”的過程,從而引出下面的環(huán)節(jié)、

  二實驗操作模型構建

  1、等腰直角三角形(數(shù)格子)

2、一般直角三角形(割補)

  問題一:對于等腰直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積有何關系?

  設計意圖:這樣做利于學生參與探索,利于培養(yǎng)學生的語言表達能力,體會數(shù)形結合的思想。

  問題二:對于一般的直角三角形,正方形Ⅰ、Ⅱ、Ⅲ的面積也有這個關系嗎?(割補法是本節(jié)的難點,組織學生合作交流)

  設計意圖:不僅有利于突破難點,而且為歸納結論打下基礎,讓學生的分析問題解決問題的能力在無形中得到提高。

  通過以上實驗歸納總結勾股定理。

  設計意圖:學生通過合作交流,歸納出勾股定理的雛形,培養(yǎng)學生抽象、概括的能力,同時發(fā)揮了學生的主體作用,體驗了從特殊——一般的認知規(guī)律。

  三回歸生活應用新知

  讓學生解決開頭情景中的問題,前呼后應,增強學生學數(shù)學、用數(shù)學的意識,增加學以致用的樂趣和信心。

  四、知識拓展鞏固深化

  基礎題,情境題,探索題。

  設計意圖:給出一組題目,分三個梯度,由淺入深層層練習,照顧學生的個體差異,關注學生的個性發(fā)展、知識的運用得到升華。

  基礎題:直角三角形的一直角邊長為3,斜邊為5,另一直角邊長為X,你可以根據(jù)條件提出多少個數(shù)學問題?你能解決所提出的問題嗎?

  設計意圖:這道題立足于雙基.通過學生自己創(chuàng)設情境,鍛煉了發(fā)散思維。

  情境題:小明媽媽買了一部29英寸(74厘米)的電視機、小明量了電視機的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了、你同意他的想法嗎?

  設計意圖:增加學生的生活常識,也體現(xiàn)了數(shù)學源于生活,并用于生活。

  探索題:做一個長,寬,高分別為50厘米,40厘米,30厘米的木箱,一根長為70厘米的木棒能否放入,為什么?試用今天學過的知識說明。

  設計意圖:探索題的難度相對大了些,但教師利用教學模型和學生合作交流的方式,拓展學生的思維、發(fā)展空間想象能力。

  五、感悟收獲布置作業(yè):

  這節(jié)課你的收獲是什么?

  作業(yè):

  1、課本習題2、1。

  2、搜集有關勾股定理證明的資料。

  板書設計探索勾股定理

  如果直角三角形兩直角邊分別為a,b,斜邊為c,那么

  設計說明:

  1、探索定理采用面積法,為學生創(chuàng)設一個和諧、寬松的情境,讓學生體會數(shù)形結合及從特殊到一般的思想方法。

  2、讓學生人人參與,注重對學生活動的評價,一是學生在活動中的投入程度;二是學生在活動中表現(xiàn)出來的思維水平、表達水平。

【《探索勾股定理》的說課稿】相關文章:

勾股定理的逆定理說課稿12-04

勾股定理的逆定理說課稿4篇12-04

勾股定理的教學反思10-08

華師大版八年級數(shù)學 勾股定理說課稿11-08

成功的探索作文08-20

探索大自然的作文07-27

★探索月球的奧秘作文01-06

探索月球的奧秘作文04-15

探索三角形全等的條件第1課時說課稿11-02